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A gap in the continuous spectrum of an elastic waveguide ✩

Sergey A. Nazarov

Institute of Mechanical Engineering Problems, V.O., Bol’shoi pr., 61, 199178, St.-Petersburg, Russia

Received 15 May 2008; accepted 30 May 2008

Available online 11 September 2008

Presented by Évariste Sanchez-Palencia

Abstract

A periodic elastic waveguide is found out such that the continuous spectrum of the elasticity problem operator contains a gap.
This effect can be used for constructing elastic wave filters. To cite this article: S.A. Nazarov, C. R. Mecanique 336 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Un gap dans le spectre continu d’un guide d’onde élastique. On exhibe un guide périodique d’onde élastique tel que le
spectre continu de l’opérateur du problème élastique contienne un gap. Cet effet peut être utilisé pour construire des filtres d’ondes
elastiques. Pour citer cet article : S.A. Nazarov, C. R. Mecanique 336 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Statement of the elasticity problem in a waveguide

Let Π be a periodic solid, anisotropic and inhomogeneous. Π is the interior of the set

Π =
⋃
j∈Z

�j, (1)

where Z = {0,±1, . . .}, �j = {x = (y, z): (y, z−j) ∈ � } and � is the periodicity cell, i.e., a domain with a Lipschitz
boundary and a compact closure in the layer {x: y = (y1, y2) ∈ R

2, z ∈ [0,1]}. We assume that Π ⊂ R
3 is a domain

with a Lipschitz boundary, in particular, a connected set. The lateral side ∂� # = {x ∈ ∂� : z ∈ (0,1)} is divided into
two sets γ and ∂� # \γ . The union Γ = ⋃

γj denotes the clamped surface and ∂Π \Γ is free of traction. We suppose
that mes2 γ > 0.

We present the boundary value problem on the propagation and the diffraction of elastic waves in the periodic
waveguide Π by means of the matrix notation (see, e.g. [1])
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D(−∇x)
�A(x)D(∇x)u(x) = λρ(x)u(x), x ∈ Π,

D
(
n(x)

)�
A(x)D(∇x)u(x) = 0, x ∈ ∂Π \ Γ , u(x) = 0, x ∈ Γ (2)

Here n(x) is the unit outward normal and λ is a spectral parameter, the square of the frequency. Furthermore, the
displacement vector u = (u1, u2, u3)

� is interpreted in the fixed Cartesian coordinate system x as a column in R
3

and � stands for transposition. The strain column of height 6

ε = (ε11, ε22, ε33,
√

2ε23,
√

2ε31,
√

2ε12)
� (3)

and the stress column σ of the same structure are in the relationship

σ(u;x) = A(x)ε(u;x), ε(u;x) = D(∇x)u(x), (4)

D(∇x)
� =

(
∂1 0 0 0 2−1/2∂3 2−1/2∂2
0 ∂2 0 2−1/2∂3 0 2−1/2∂1
0 0 ∂3 2−1/2∂2 2−1/2∂1 0

)
, ∇x =

(
∂1
∂2
∂3

)
, ∂j = ∂

∂xj

(5)

The symmetric stiffness matrix A of size 6×6 in the Hooke’s Law from (4) and the material density ρ are measurable
functions and satisfy the boundless and positivity properties

cA|a|2 � a�A(x)a � CA|a|2, a ∈ R
6, cρ � ρ(x) � Cρ for a.a. x ∈ Π (6)

where cA, CA and cρ , Cρ are positive constants. Moreover, they imply exponential perturbations of A0 and ρ0 which
are 1-periodic in z, namely, A0(y, z ± 1) = A0(y, z), ρ0(y, z ± 1) = ρ0(y, z) and∣∣A(x) − A0(x)

∣∣ + ∣∣ρ(x) − ρ0(x)
∣∣ � c0 exp

(−δ0|z|
)
, δ0 > 0 (7)

For A0 and ρ0, inequalities (6) with the positive constants cA0 , CA0 and cρ0 , Cρ0 are valid as well.
Owing to possible irregularities of the boundary and coefficients of differential operators, we deal with the varia-

tional formulation of the inhomogeneous problem (2)(
AD(∇x)u,D(∇x)v

)
Π

− λ(ρu, v)Π = f (v), v ∈ H 1
0 (Π;Γ ) (8)

where ( , ) is the inner product in the Lebesgue space L2(Π), H 1
0 (Π;Γ ) is the Sobolev space of functions vanishing

at Γ and f ∈ H 1
0 (Π;Γ )∗ is a continuous functional. If f = 0, (8) becomes a spectral problem.

The wave phenomenon is intimately related to the continuous spectrum of problem (8)

Σc =
⋃
p∈N

[
Λ−

p ,Λ+
p

] ⊂ R+ = (0,+∞) (9)

where N = {1,2, . . .} and 0 < Λ−
p < Λ+

p , Λ−
p → ∞ as p → ∞ (see Section 2). Namely, for λ ∈ Σc the model

problem, obtained from (8) by setting A = A0, ρ = ρ0 and f = 0, has an oscillating solution in the form of Floquet’s
wave

exp(iηz)U(y, z) (10)

where η ∈ [0,2π) and U ∈ H 1
per(�) is 1-periodic in z. In the case λ /∈ Σc problem (8) enjoys the Fredholm alternative,

i.e. it admits a solution u ∈ H 1
0 (Π;Γ ) if and only if f ∈ H 1

0 (Π;Γ )∗ satisfies the orthogonality condition f (v) = 0
for v ∈ K where K is the subspace of solutions to the homogeneous problem (8), dimK < ∞.

The main goal of this Note is to demonstrate that the continuous spectrum (9) may possess a gap. More precisely,
we construct a family of waveguides (1), for which

max
{
Λ+

1 , . . . ,Λ+
5

}
< Λ−

6 (11)

The numbers in (11) are but the endpoints of the desired gap. We emphasize that the existence of the gap is guarantied
under a restriction on the shape of � and the constants cA0,CA0 and cρ0,Cρ0 only.

In the literature the existence results for gaps in the continuous spectrum are mainly related to scalar problems in
the mathematic physics (see [2,3] and others). The author does not have met a similar result in elasticity. The gaps
under discussion can be used for constructing elastic wave filters and dampers.
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2. The spectral pencil on the periodicity cell

The partial Gel’fand transform

u(y, z) 
→ u(y, z, η) = 1√
2π

∑
k∈Z

exp
(−iη(z + k)

)
v(y, z + k) (12)

(see [4] and, e.g., [5,6]) realizes the isometric isomorphism L2(Π) ∼= L2(0,2π;L2(�)). Here L2(0,2π;L2(�)) is
the Lebesgue space of abstract functions with the norm

∥∥u;L2(0,2π;L2(�)
)∥∥ =

( 2π∫
0

∥∥u(·, η);L2(�)
∥∥2 dη

)1/2

Note that (y, z) ∈ Π on the left of (12), but (y, z) ∈ � on the right. Furthermore, transform (12) establishes the
isomorphisms H 1(Π) ≈ L2(0,2π;H 1

per(�)) and H 1(Π)∗ ≈ L2(0,2π;H 1
per(�)∗). The Gel’fand transform and the

corresponding Perceval theorem correlate the family of problems in the periodicity cell

〈u,v〉η := (
A0Dη(∇x)u,Dη̄(∇x)v

)
�

= λ
(
ρ0u,v

)
�

, v ∈ H 1
0,per(� ;γ ) (13)

with the model problem in the waveguide Π . Here Dη(∇x) = D(∇y, iη + ∂/∂z) and η ∈ [0,2π).
Since the problem involves the square of the spectral parameter η, the quadratic pencil η 
→ A(η;λ) is associated

with (13). According to a general result in [7] on holomorphic pencils, eigenvalues of A are normal on the complex
plane C and have no finite accumulation point. Furthermore, the spectrum of A is invariant with respect to the shifts
±2π along the real axis R.

For a real η, the form on the left-hand side of (13) is Hermitian. Let η ∈ [0,2π) be fixed and let Hη be the Sobolev
space H 1

0,per(� ;γ ) ⊂ H 1
0 (� ;γ ) of 1-periodic in z functions with the specific inner product 〈 , 〉η . The operator Tη,

defined by

〈Tηu,v〉η = (
ρ0u,v

)
�

, u,v ∈ Hη (14)

is positive, compact, and symmetric, therefore, self-adjoint. Thus, the essential spectrum of Tη coincides with M∞ = 0
and the discrete spectrum forms the infinitesimal positive sequence

M1(η) � M2(η) � · · · � Mp(η) � · · · → +0 (15)

where eigenvalues are listed according to multiplicity. By the definition in (13) and (14), Λp(η) = Mp(η)−1 with
p ∈ N become eigenvalues of problem (13) with the parameter η ∈ R fixed. They depend on η continuously and, by
an obvious argument, 2π -periodically. The following assertion is proved in [8] (see also [5,6]).

Theorem 2.1. The operator of problem (8)

H 1
0 (Π;Γ ) � u 
→ f ∈ H 1

0 (Π;Γ )∗ (16)

is Fredholm if and only if the segment [0,2π) ⊂ R ⊂ C is free of the spectrum of the pencil η 
→ A(η;λ).

We now are in position to conclude that the essential spectrum of problem (8) is but the set (9) where

±Λ±
p = max

{±Λp(η)
∣∣ η ∈ [0,2π)

}
(17)

To make this conclusion precise, we endow H := H 1
0 (Π;Γ ) with the specific inner product

〈u,v〉 = (
AD(∇x)u,D(∇x)v

)
Π

(18)

and introduce the positive, continuous, and self-adjoint operator T by the formula

〈T u,v〉 = (ρu, v)�, u, v ∈ H 1
0 (Π;Γ ) (19)
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Fig. 1. The periodicity cell.

Since Π is not bounded, T cannot be compact. We emphasize especially the relationship μ = λ−1 between eigenvalues
of T and problem (8), respectively. The essential spectrum of T coincides with

{0} ∪ {
μ ∈ R+: μ−1 ∈ Σc

}
. (20)

Note that, by a result in [8], the kernel of mapping (16) is finite-dimensional even in the case when the segment [0,2π)

contains a point of the spectrum of the pencil η 
→ A(η;λ). This means that the second set in (20) is covered with the
continuous spectrum of T .

3. Korn’s inequalities

The formula∥∥u;H 1(�)
∥∥2 � c(�)

∥∥D(∇x)u;L2(�)
∥∥2

, u ∈ H 1
0 (� ;γ ) (21)

is known as the Korn inequality (see [9,10] and others). The change u(x) 
→ u(x) = exp(−iηz)u(x), η ∈ [0,2π), turns
(21) into the relation∥∥u;H 1(�)

∥∥2 � C′(�)
∥∥Dη(∇x)u;L2(�)

∥∥2
, u ∈ H 1

0 (� ;γ )

which, together with the positivity condition (6), ensures 〈 , 〉η to be an inner product in the Hilbert space Hη . Fur-
thermore, summing inequalities (21) written for the cells �j in (1), we derive the Korn inequality for u ∈ H 1

0 (Π;Γ )

which proves (18) to be an inner product in H.
Let the periodicity cell � be composed from the two cubes

�− = (−1,0) × (−1/2,1/2) × (0,1), �+ = (1,3/2) × (−1/4,1/4) × (1/4,3/4)

connected by the thin cylinder �h = {x: y1 ∈ [0,1), |y2|2 + |z − 1/2|2 < h2} of radius h ∈ (0,1/4] (see Fig. 1). Let
also the face γ = {−1} × (−1/2,1/2) × (0,1) of the bigger cube, shown shaded on Fig. 1, be clamped. If h → 0,
the periodicity cell implies a junction of two massive bodies and a thin rod. A method developed in [11], permits one
to make Korn’s inequality on the junction asymptotically sharp with respect to the small geometrical parameter h by
distributing weights in Sobolev norms of the displacements u1, u2 and u3. In the sequel we use only the following
consequence of this inequality:

Theorem 3.1. Let the field u ∈ H 1
0 (� ;γ ) on the periodicity cell described above, verify the orthogonality conditions∫

�+
up(x)dx = 0, p = 1,2,

∫
�+

(
x − x+) × u(x)dx = 0 ∈ R

3 (22)

where × stands for the vector product in the Euclidean space R
3 and x+ for the mass center of �+. Then the estimate∥∥u;H 1(�−)∥∥2 + h2

∥∥u;H 1(�h ∪ �+)∥∥2 � C�

∥∥D(∇x)u;L2(�)
∥∥2 (23)

is valid with a constant C� which depends on neither h ∈ (0,1/4], nor u.
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Let us demonstrate that, without the orthogonality conditions (22), the constant C� in (23) cannot be independent
of h. We set

up(x) = e1+pχ(x1) − x1+pe1
∂χ

∂x1
(x1), u2+p(x) = e1+px1χ(x1) − x1+pe1

∂

∂x1

(
x1χ(x1)

)
u5(x) = (x3e2 − x2e3)χ(x1) (24)

where eq and e3 are the unit vectors of the axes xq = yq and x3 = z, respectively, p,q = 1,2, and χ ∈ C∞(R) is a
cut-off function which equals 1 for x1 � 1 and 0 for x1 � 0. The restriction of uq on �+ becomes a rigid motion
which violates at least one of the orthogonality conditions in (22). Furthermore,∥∥uq;L2(�)

∥∥2 �
∥∥uq;L2(�+)∥∥2 � c > 0, q = 1, . . . ,5 (25)

At the same time, all non-trivial strains εjk(u
q) are presented in the list

ε11
(
up;x) = −x1+p

∂2χ

∂x2
1

(x1), ε11
(
u2+p;x) = −x1+p

∂2

∂x2
1

(
x1χ(x1)

)
ε1+p1

(
u5;x) = 1

2
(−1)px1+p

∂χ

∂x1
(x1)

and do not vanish on the ligament �h only. Hence,∥∥D(∇x)u
q;L2(�)

∥∥2 � Ch4, q = 1, . . . ,5 (26)

and inequality (23) cannot hold true for the displacement fields (24).

4. A gap in the continuous spectrum

We employ the max–min principle (see, e.g., [12, Theorem 10.2.2]) for the operator −Tη in (14):

−Mq(η) = max
Eq⊂Hη

inf
u∈Eq\{0}

〈−Tηu,u〉η
〈u,u〉η (27)

Here Eq is a subspace in Hη of co-dimension q − 1, i.e., dim(Hη � Eq) = q − 1. For q = 5, any E5 contains a
non-trivial linear combination u(x) = exp(−iηz)(a1u

1(x) + · · · + a5u
5(x)) and, therefore, by (25) and (26), we get

−M5(η) � − (ρ0u,u)�

(A0D(∇x)u,D(∇x)u)�
� − cρ0 c

CA0 Ch4
⇐⇒ Λ5(η) � cΛh4 (28)

On the other hand, let E6 consists of vector functions u ∈ H 1
0,per (� ;γ ) such that u = exp(iηz)u verifies (22). By

virtue of (27) and (23), we have

−M6(η) � inf
u

−(ρ0u,u)�

(A0D(∇x)u,D(∇x)u)�
� −Cρ0C�

cA0h2
⇐⇒ Λ6(η) � CΛh2, CΛ > 0 (29)

We take h0 > 0 such that cΛh4
0 � CΛh2

0. Then, for h ∈ (0, h0) we find out that, in view of (28), (29) and (17),
relation (11) is valid that ensures the desired gap in the continuous spectrum (9).

Assuming a single small cube in Π to be sufficiently heavy (see figure and cf. [13]), one readily gets an eigenvalue
of problem (2) on the interval (0,Λ−

1 ), i.e., in the discrete spectrum below the threshold. An example of an eigenvalue
inside the gap is not known yet.
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