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Abstract

This Note is devoted to the theoretical study of the elastostatic fields at a vertex notch under general far-field loading conditions.
The analysis is based on the finite plane deformation hyperelasticity theory for an incompressible Mooney–Rivlin material. We
approach the solution, near the singularity, by a mixed asymptotic development. We show that the shape of the solution depends
on the opening angle of the notch and that there is singularity if the notch is concave. Furthermore, we show that a pure loading
mode II gives rise to the opening of the notch vertex in contrast to the linear elasticity. To cite this article: M. Arfaoui et al., C. R.
Mecanique 336 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Analyse asymptotique en déformation finie plane des champs élastostatiques au coin d’un secteur pour un matériau hy-
perélastique incompressible. Cette Note est consacrée à l’étude théorique des champs élastostatiques au coin d’un secteur soumis
à des chargements généraux à l’infini. L’analyse est basée sur la théorie de l’hyperélasticité en déformation plane pour un matériau
incompressible de Mooney–Rivlin. Nous approchons la solution en déplacement, près de la singularité, par un développement
asymptotique mixte. La forme de la solution dépend de l’angle d’ouverture du coin et nous montrons qu’il y a singularité si le
secteur est concave. Par ailleurs, nous montrons qu’un chargement en mode II pur donne lieu à l’ouverture du coin contrairement
à l’élasticité linéaire. Pour citer cet article : M. Arfaoui et al., C. R. Mecanique 336 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Keywords: Notch vertex; Hyperelasticity; Singularity; Asymptotic analysis; Mixed mode loading; Stress

Mots-clés : Coin d’un secteur ; Hyperélasticité ; Singularité ; Analyse asymptotique ; Chargement en mode mixte ; Contrainte

* Corresponding author.
E-mail addresses: makremarfaoui@yahoo.fr (M. Arfaoui), khalil.mansouri@gmail.com (K. Mansouri), ali.rezgui@fr.michelin.com

(A. Rezgui).
1631-0721/$ – see front matter © 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.crme.2008.07.003



738 M. Arfaoui et al. / C. R. Mecanique 336 (2008) 737–743
1. Introduction

In solid mechanics, the determination of deformation and stress fields in proximity of cracks, corners, voids of
inclusions, and other material or geometrical imperfections, is of paramount interest. In these situations, the associated
elastic problem may admit a singular solution. In the linear elastic theory, several methods of singularity analysis are
used to calculate the singular stresses in the vicinity of the vertex of a two-dimensional notch [1,2]. Nevertheless, these
studies often yield strain fields which are locally unbounded and therefore in conflict with the underlying assumption
that justifies the kinematic linearization.

Without any doubt, the most important papers, within the framework of fully nonlinear finite elasticity, are those
written by Knowles and Stenberg [3,4]. They gave the earliest systematic analyses of the local fields for a symmet-
rically loaded traction-free crack in a homogeneous slab. Another fundamental paper is that of Stephenson [5]. He
investigated the general plane strain problems (mixed-mode loading). This analyse showed that the global nonlinear
Mode II crack problem cannot admit a solution that is antisymmetric about the crack axis for a class of an incom-
pressible Mooney–Rivlin materials.

With reference to notch problems, some analyses have been performed to compute the singular elastostatic fields
near the notch vertex by removing the requirement of infinitesimal deformations. Within the framework of fully
nonlinear elastostatics, early investigations seem to be due to Tarantino [6,7], who carried out a global plane-stress
analysis for an infinite compressible and incompressible Mooney–Rivlin sheet. The interesting work of Ru [8] aims to
give a finite plane-strain analysis of the deformations and stresses near the vertex of a compressible elastic bi-material
notch. Each of two edge-bonded dissimilar wedges is hyperelastic with the harmonic-type strain energy density which
facilitate the analysis. We note also the work of Gao [9] who used an alternative approach by dividing the singular
field into shrinking and expanding sectors for which the asymptotic equations are derived separately.

The purpose of the present work is closely related to that of crack analyses developed in [3–5]. The notch problem
is formulated and solved for an incompressible hyperelastic material under plane deformation condition in a fully
nonlinear finite elasticity context. In order to calculate the deformation and stress singular fields near the notch vertex
an asymptotic analysis is carried out. Finally, the structure of the singular deformation field is examined in detail.
Emphasis is placed on describing the notch-profile after deformation, proving Stephenson’s conjecture [5] in our
context and evaluating the asymptotic order of pressure and stress singularities. The most important differences with
respect to the predictions of the linear theory are evidenced and discussed.

2. Formulation of the global notch problem

Let Ω be the domain of the (x1, x2) plane characterizing the cross section of an infinite cylindrical body in its
undeformed configuration. We assume that the cylindrical body is subjected to a plane strain (deformation) so that the
position of material point (x1, x2) after deformation is (y1, y2). The plane domain Ω is described by:

Ω = {
(r, θ) | 0 < r < +∞,−ω � θ � ω

}
(1)

where (r, θ) are the material polar coordinates. In this model, the possibility of the notch faces coalescing until they
form an interface is admitted. The deformation is represented by a vectorial transformation y:

yα = yα(x1, x2) (α = 1,2) for all (x1, x2) ∈ Ω with xα(r, θ) (2)

which maps Ω on to a domain Ω∗ of the same plane. The geometry transformation subjected to the incompressibility
constraint is described by the second order tensor of a gradient transformation F :

[Fαβ ] =
[

∂yα

∂xβ

]
(α,β = 1,2) on Ω and J = detF = 1 (3)

We introduce a class of polyconvex hyperelastic incompressible potential W per unit undeformed volume governed
by the Moony–Rivlin potential which satisfy the strong ellipticity condition:

W(I) = μ(I − 2)

2
on Ω, μ > 0, I = tr(F T F ) (4)

For hyperelastic potential (4), the first Piola–Kirchhoff and Cauchy stresses tensors τ and σ are written, respec-
tively:
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Fig. 1. The notch problem: the notch angle ω and the opening angle ω̄.

τ = ∂W

∂F
− pF−T = μF − pF−T on Ω and

σ = τ FT =
(

∂W

∂F

)
FT − p1 = μF FT − p1 on Ω∗ (5)

while p is an arbitrary hydrostatic pressure field arising from the constraint of incompressibility. In the absence of
body forces, equilibrium in the undeformed configuration then demands that:

Div τ = 0 on Ω ⇔ ∂p

∂r
= μ

∂yα

∂r

yα and

∂p

∂θ
= μ

∂yα

∂θ

yα on Ω (sum on α = 1,2) (6)

To satisfy traction-free boundaries conditions at the notch faces, we impose the following conditions:

τn = 0 at θ = ±ω ⇔ p = μ

r2

∂yα

∂θ

∂yα

∂θ
and

∂yα

∂r

∂yα

∂θ
= 0 at θ = ±ω (sum on α) (7)

where n is the external normal to the notch face. At infinity, the transformation y must be compatible with the kine-
matic mixed-mode loading conditions.

We now turn to the determination of the local structure of the pressure field from (6):

μ
y1 = 1

r

(
∂p

∂r

∂y2

∂θ
− ∂p

∂θ

∂y2

∂r

)
(8)

Solving the global notch problem, at least in closed form, is a very complex task. Thus, asymptotic analysis are
commonly performed. In this case, solutions, which hold exclusively for points close to the vertex of the notch, are
sought. The local notch problem can be stated by requiring that the transformation satisfies the field equations and
the condition that the surfaces of the notch must be traction-free. The far field loading conditions in the formulation
of the local notch problem are ignored. We note that without corresponding requirements on the transformation field
at infinity this formulation is not a complete statement. However, the significance of the fields resulted by the local
formulation lies in their characterisation of the singular elastostatic field behaviour in the vertex region, namely, as
r → 0.

Let � be the class of all {y,σ ,p} that satisfy the boundary value problems. Then it is easy to prove that:

{y,σ ,p} ⊂ � ⇔ {Qy,QσQT ,p} ⊂ � ∀Q Orthogonal second order tensor (9)

This is assured by the objectivity of the constitutive equation (5) and by virtue of the form of the boundary condi-
tions (7). This property will be used later to better understand the nature of the local deformation field [5].
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3. Asymptotic analysis of the elastostatic field near the notch vertex

3.1. First order

On supposing that the global notch problem admits a solution, in order to investigate the singularity induced by the
vertex presence, it is assumed that such solution has the following form [3]:

yα(r, θ) = rm1Uα(θ) + o
(
rm1

)
, Uα(θ) ∈ C∞([−ω,ω]) and Uα(θ) 
= 0 (10)

m1 must be real constant to avoid the appearance of oscillations arising in the linearized local solution and satisfies the
inequality 0 < m1 < 1 in order to ensure bounded displacement but admit unbounded gradients at the notch vertex.
As suggested by [5], the exponent m1 in (10) replaces, without loss of generality, an eventual pair of exponents m

(α)
1 .

This is justified by the objectivity of the constitutive equations. Finally, we suppose that the pressure field associated
with the global solution satisfies:

p(r, θ) = rl1P1(θ) + o
(
rl1

)
as r → 0, P1(θ) ∈ C1([−ω,ω]), l1 ∈ R∗+ (11)

We now seek to determine the smallest exponent m1 ∈]0,1[ and the function Uα appearing in (10) consistent with the
incompressibility constraint (3), the governing field equations (6) and boundary conditions (7). The incompressibility
constraint (3), together with (10), give:

J = m1r
2(m1−1)

[
U1(θ)U̇2(θ) − U2(θ)U̇1(θ)

] + o
(
r2(m1−1)

) = 1

⇒ Uα = aαU (α = 1,2) on [−ω,ω], aα ∈ R∗+ with a =
√

a2
1 + a2

2 (12)

Governing field equations (6) and the boundary conditions (7), with (10), lead to:

m2
1U + Ü = 0 on [−ω,ω] and U̇ (±ω) = 0 with U̇ = ∂U

∂θ
(13)

Therefore, the first asymptotic solution is:

yα(θ) = aαrm1 sin(m1θ) + o
(
rm1

)
as r → 0 with m1 = π

2ω
(14)

However, the inequality m1 < 1 implies that ω > π/2. Namely, the result (14) holds for concave notch problems only.
Consequently, the problem in the case of re-entrant notches (wedge, for ω � π/2 ) does not admit singular solutions.
Nevertheless, such a solution provides the following estimate:

J = o
(
rπ/ω−2) → ∞ and p(r, θ) = o

(
rπ/ω−2) → ∞ as r → 0 (15)

and is therefore inadequate which reflects the degenerate character of the asymptotic approximation established so far.

3.2. Second order

The first order approximation to the local deformation in the vicinity of the notch vertex does not constitute an
invertible mapping. Consequently, we should refine (10) by seeking at least a two term approximation:

yα = aαrm1U(θ) + rm2Vα(θ) + o
(
rm2

)
(α = 1,2), Vα(θ) ∈ C∞([−ω,ω]), m1 < m2 ∈ R∗+ (16)

m1 and U are now given by (14). Again, by virtue of the discussion that led to the adoption of (10), no generality is
lost in assuming equal exponents in the second term of (16). From the incompressibility constraint (3) with (16) one
can write:

m1UΨ̇2 − m2U̇Ψ2 = 0 on [−ω,ω] if m1 < m2 < 2 − m1, Ψ2 = a1V2 − a2V1 (17)

m1UΨ̇2 − m2U̇Ψ2 = 1 on [−ω,ω] if m1 < m2 = 2 − m1 (18)

The boundary conditions can be deduced from (17) and (18):

Ψ̇2(±ω) = 0 if m1 < m2 < 2 − m1 (19)

Ψ̇2(±ω) = 1/m1U(±ω) if m2 = 2 − m1 (20)
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By inserting (16) into the field equations (6) and the boundary conditions (7), and recalling that satisfies (13), we can
prove that χ2 must verify the following eigenvalue equation:{

χ̈2 + m2
2χ2 = 0 on [−ω,ω]

χ̇2(±ω) = 0
if m1 < m2 � 2 − m1, χ2 = a1V1 + a2V2 (21)

Solving the differential equations (17) and (21) with the boundary conditions (19) and (21) gives:

m2 = 2m1 = π/ω, Ψ2 = b2 sin2(m1θ), χ2(θ) = c2 cos(m2θ), b2, c2 ∈ R (22)

In addition m2 defined by (22) conforms to (17) which lead to the condition on ω: 3π/4 < ω � π .
We now turn to the determination of the local structure of the pressure field, which has been assumed to admit the

representation (11). From (7), (8), (11), (16) and (22) follows:

p(r, θ) = rl1P1(θ) + o
(
rl1

)
with l1 = m1 = π/2ω and P1(θ) = −μ/

(
a2)b2 cos(l1θ) (23)

We note that the dominant term in (16) has a degenerate Jacobian determinant J = o(r3π/(2ω)−2). Thus a higher order
asymptotic analysis is needed. The results of the second order asymptotic analysis are valid for notches obtained
as 3π/4 < ω � π . When this condition is violated, namely when π/2 < ω � 3π/4, we must relax the constraint
m2 < 2 − m1 and take m2 = 2 − m1 > m1. This possibility will be discussed briefly in Section 3.4 (for more details
see [10]).

3.3. Third order for 3π/4 < ω � π

With a view to refining these estimates, when m2 < 2 − m1, we first replace (16) by:

yα = aαrm1U(θ) + rm2Vα(θ) + rm3Rα(θ) + o
(
rm3)

Rα(θ) ∈ C∞([−ω,ω]), m1 < m2 < m3 ∈ R∗+ (24)

The functions U and Vα are already known. Combining (24) with (6) and invoking the boundary conditions (7), one
finds after considerable computations that:

R1 = 1

a2
[a1χ3 − a2Ψ3], R2 = 1

a2
[a2χ3 + a1Ψ3], m3 = 2 − m1 = 2 − π

2ω
(25)

Ψ3(θ,m1) = − 1

m1m3
F

(
1

2
− 1

m1
,

1

2
; 3

2
− 1

m1
; sin2(m1θ)

)
and χ3 = 0 on [−ω,ω] (26)

F stands for the hypergeometric function [5]. We note that the solution (24), (25) and (26) is available for 3π/4 <

ω < π . In the case of ω = π , the solution was done in [5].
At this stage and in order to deduce the intrinsic or canonical simple representation of yα , we apply the objectivity

property (9) by using a particular form of Q:

[Qαβ ] =
[

a2/a −a1/a

a1/a a2/a

]
(27)

to (24). One arrives at:

y1(r, θ) = −1

a
rm2Ψ2(θ) − 1

a
rm3Ψ3(θ) + o

(
rm3

)

y2(r, θ) = arm1U(θ) + 1

a
rm2χ2(θ) + o

(
rm2

)
(28)

The particular form of Q (27) corresponds to a rotation angle given by the mixed-mode loading of the first asymptotic

term, tan(φ) = −a1/a2. We shall call the particular field deduced from (9) and (27) a canonical field, because it is the
standard representative element of the set � of local singular fields. To specify all the other elements of � we simply
apply the reverse formula of (9) and (27). We will see later the consequence of the canonical field. In order to calculate
an additional term for the pressure field, we now suppose that the pressure field conforms to:

p(r, θ) = rl1P1(θ) + rl2P2(θ) + o
(
rl2

)
, l2 > l1 (29)

with l1, P1 supplied by (23) and l2, P2, unknown. Eqs. (8), (28), (29) and the boundary conditions (7) lead to l2 =
m3 − m1 = 2 − π with P2 is a functional of Ψ3 [10].
ω
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3.4. Higher order for π/2 < ω � 3π/4

These results are valid for notches obtained as 3π/4 < ω � π . When this condition is violated, namely when
π/2 < ω � 3π/4, we must relax the constraint m2 < 2 −m1 and take m2 = 2 −m1 > m1. We show (see [10] for more
details) that when π/2 < ω < 3π/4, the solution is achieved by an asymptotic development to the second order which
has the same form as the third order term of the solution for 3π/4 < ω < π (25) and (26). In the case of ω = 3π/4,
the solution involve a logarithm term (ε small parameter and Ψ̃ is a known function):

y1(r, θ) = 27

8a
r

4
3 Ln(r) sin2

(
2

3
θ

)
+ r

4
3 Ψ̃2(θ) + o

(
r

4
3
)

y2(r, θ) = ar
2
3 sin

(
2

3
θ

)
+ o

(
r

2
3 +ε

)
(30)

4. Discussion of the deformation and stresses near the notch vertex and closure

Of particular concern is the deformation image of the notch vertex faces θ = ±ω. Thus, to dominant order, the two
notch vertex faces at θ = ±ω are transformed into the curves represented by:

y2 = ±am1/m2+1(−y1)
m1/m2 if ω ∈]π/2,3π/4[∪ ]3π/4,π ]

y1 = (81/8a3)y2
2 Ln(±y2/a) if ω = 3π/4 (31)

From (31), it follows that points near the notch vertex in the undeformed body lie to the right of this curve after
deformation. We note on the basis of (31) that the notch vertex is bound to open, regardless of the magnitude and
nature of the particular loading at infinity. This conclusion is in marked contrast to the predictions of the linearized
theory for a mode II loading [10]. From (28) and (30) we get the important result that, for arbitrarily given loading
conditions at the infinite edge, the asymptotic deformation field is obtained by a mere rigid rotation of the canonical
symmetric deformation field, or, likewise, of the solution of the mode I notch problem. More specifically, (28) and
(30) imply, in contrast to predictions of the linear elastostatic theory, that, even if the applied loading is antisymmetric
about the plane of the notch (mode II), the notch faces should open symmetrically at the notch vertex. Consequently,
the general nonlinear global notch problem, cannot admit an antisymmetric solution. The above result confirms how
this important property, which was demonstrated by [5] for a crack problem concerning an incompressible Mooney–
Rivlin material under plane strain, also holds in our context. At this stage we calculate the dominant terms of the
associated local true-stress field for. On account of (5) one has:⎧⎪⎪⎨

⎪⎪⎩
σ11 = μ

a2
r4m1−2

[
(1 − m1)

2
(
Ψ2(θ)

)2 + (
Ψ̇2(θ)

)2] − r2−2m1P1(θ) + o
(
rm

)
σ22 = μa2r2m1−2

[
(1 − m1)

2U2(θ) + U̇2(θ)
] + o

(
r2m1−2

)
σ12 = σ21 = −rm1+m2−2

{
m1(1 − m1)Ψ2U + Ψ̇2U̇

} + o
(
rm1+m2−2

)

for ω ∈
]

π

2
,

3π

4

[
∪

]
3π

4
,π

]
with m = max(4m1 − 2,2 − 2m1) (32)

The most singular of the stress components in (32) is σ22, which becomes infinite at the notch vertex like r2m1−2.
In the transition case ω = 3π/4, Eqs. (5) and (30) may be used to deduce the corresponding stress field. We now
determine the dominant character of the true stresses when the latter are referred to the spatial coordinates yα . We

introduce the special coordinate y =
√

y2
1 + y2

2 , evaluated along the line θ = 0 and one draws from (5), (28) and (30)
that: {

y ∼ r2m1

σ22 ∼ y1−1/m1
if ω ∈

]
3π

4
,π

]
,

{
y ∼ r2−m1

σ22 ∼ y(2m1−2)/(2−m1)
if ω ∈

]
π

2
,

3π

4

[
{

y ∼ r4/3

σ22 ∼ y−1/2 if ω = 3π

4
(33)

For the crack problem, ω = π , it follows from both (32) and (33) that the most singular component of the Cauchy
stress tensor has the asymptotic behaviour y−1, which is stronger than the inverse square root singularity predicted by
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linear fracture mechanics [2]. Eqs. (32) and (33) show how the order of the stress singularities depends on the local
geometry of the notch: as the opening angle ω increases, the stress singularities decrease. In particular, for ω̄ = π

2 ,
the asymptotic behaviour of the component σ22 reduces to (y−1/2). On the other hand, the order of stress singularities
as the opening angle varies does not depend on the type of far-field loading conditions, namely, it is the same for a
mode I and mode II problems. This is still in contrast with the predictions of the linear theory [2].
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