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Abstract

We derive a new yield function for materials containing spheroidal voids embedded in a perfectly-plastic anisotropic Hill-
type matrix. Using approximate limit-analysis and a restricted set of trial velocity fields, analytical yield loci are derived for a
hollow, spheroidal volume element containing a confocal spheroidal void. Alternatively, the yield loci are determined through
numerical limit-analysis, i.e., employing a larger set of velocity fields. The numerical results are quasi-exact for transversely
isotropic materials under axisymmetric loading. We show that an enhanced description of admissible microscopic deformation
fields results in a close agreement between analytical and numerical macroscopic yield loci. To cite this article: S.M. Keralavarma,
A.A. Benzerga, C. R. Mecanique 336 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Critère de plasticité approché pour milieux poreux anisotropes. On développe un nouveau critère de plasticité pour maté-
riaux anisotropes contenant des cavités ellipsoïdales dans une matrice parfaitement plastique de type Hill. Le critère homogenéisé
est obtenu par analyse limite approchée d’un volume élémentaire creux de forme ellipsoïdale contenant une cavité ellipsoïdale
confocale, en utilisant un nombre réduit de champs de vitesse. Par ailleurs, on détermine numériquement les surfaces de charges en
utilisant un ensemble plus large de champs de vitesse. Les résultats numériques sont quasi-exacts dans le cas de matériaux isotropes
transverses sous chargement axisymétrique. On montre que la prise en compte de nouveaux champs admissibles de déformation
améliore considérablement l’accord entre formes analytique et numérique du critère de plasticité macroscopique. Pour citer cet
article : S.M. Keralavarma, A.A. Benzerga, C. R. Mecanique 336 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Gurson [1] developed a micromechanics-based yield function for isotropic ductile porous media. He considered a
spherical representative volume element (RVE) made of a rigid, perfectly plastic and isotropic material containing a
concentric spherical void. The matrix was taken to obey the Von Mises yield criterion. His derivation was later shown
to be amenable to Hill–Mandel homogenization of the kinematic kind, combined with limit-analysis of the chosen
RVE subject to arbitrary loading conditions; see e.g. [2,3]. A unique feature of Gurson’s criterion is that it constitutes,
for the chosen RVE, a rigorous upper bound, which also happens to lie very close to the exact criterion.

Under large plastic deformations, however, the basic structural unit, i.e. the RVE itself, evolves. This microstructure
evolution is only partially accounted for in the Gurson model, through the change in relative volume. But microstruc-
ture changes also occur due to development of plastic anisotropy, e.g., grain elongation or texture development, as
well as to void shape evolution. The former was considered by Benzerga and co-workers [4–6] and the latter by Golo-
ganu and co-workers [7–10] and Garajeu et al. [11]. The development of improved anisotropic models that account
for coupling between plastic anisotropy and void shape effects has received limited attention in the literature, despite
the practical need for such models. Since any change in void attributes, namely relative volume and aspect ratio, is not
independent of the surrounding plastically deforming matrix, it only seems natural to adopt the same micromechanics
framework used in previous studies to quantify the combined effects of plastic anisotropy and void shape on the effec-
tive behavior of porous plastic solids. Thus, the aim of the present note is to develop a yield criterion for such behavior
in closed form. A similar attempt has recently been made by Monchiet et al. [12,13] who used a more restricted set
of trial velocity fields. In addition, here we develop a numerical method to determine upper-bound yield loci through
limit-analysis and using a large number of velocity fields. The numerically determined yield loci are quasi-exact for
transversely isotropic materials under axisymmetric loading, and thus serve as a reference to assess the validity of the
new analytical criterion.

2. Problem definition and approach

A spheroidal RVE of volume Ω is considered, which is made of a rigid perfectly plastic orthotropic matrix. Let
(e1, e2, e3) be an orthonormal basis associated with the principal directions of matrix anisotropy. A spheroidal coordi-
nate system associated with the orthonormal basis (eλ, eβ, eφ) is used for the analysis, for convenience of expressing
the boundary conditions. In a cylindrical frame (er , eθ , ez), with ez aligned with the void axis, the base vectors of the
spheroidal coordinate system are expressed as

eλ = {a sinβ er + b cosβ ez}/√gλλ, eβ = {b cosβ er − a sinβ ez}/√gλλ, eφ = eθ (1)

gλλ ≡ a2 sin2 β + b2 cos2 β,

{
a = c coshλ, b = c sinhλ (p)

a = c sinhλ, b = c coshλ (o)
(2)

where (p) and (o) are shorthand notations for “prolate” and “oblate”, respectively, and c denotes half the focal distance.
The current confocal spheroid has a and b as the axial and transverse semi-axes, respectively, and e = 1/ coshλ

as the eccentricity. The RVE contains a confocal spheroidal void occupying volume ω. By convention, and where
appropriate, subscripts 1 and 2 will refer to variable values at the void and RVE boundaries, respectively. Thus, with
the choice of coordinates above, void and external RVE boundaries correspond to constant values of λ, designated λ1
and λ2, respectively. Alternatively, the geometry is characterized by two parameters, namely the porosity f ≡ ω/Ω =
a1b1

2/a2b2
2 and the void aspect ratio, a1/b1.

A kinematic approach of homogenization theory is used to arrive at the macroscopic constitutive relations, in an
Eulerian setting. The macroscopic stress, Σ , and rate of deformation, D, are obtained as volume averages over the
RVE of the microscopic stress, σ , and rate of deformation, d, respectively:

Σ = 〈σ 〉Ω, D = 〈d〉Ω (3)

Using the Hill–Mandel lemma [14,15] in conjunction with a limit-analysis theorem, which strictly applies to infinites-
imal transformations [16], the macroscopic yield surface in stress space is admittedly defined by

Σ = ∂Π
(D) (4)
∂D
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Here, Π(D) is the macroscopic plastic dissipation defined as the infimum of the volume-average of the plastic dissi-
pation π(d), the infimum being calculated over all admissible microscopic deformation fields. Formally,

Π(D) = inf
d∈K(D)

〈
π(d)

〉
Ω

K(D) =
{

d | ∃v,∀x ∈ Ω, dij = 1

2
(vi,j + vj,i) and ∀x ∈ ∂Ω, v = D.x

}
(5)

For a given deviator d, the microscopic plastic dissipation is defined as

π(d) = sup
σ ∗∈C

σ ∗ : d (6)

the supremum being taken over all microscopic stresses that fall within the microscopic convex C of elasticity (or
rigidity more precisely).

A quadratic Hill-type yield criterion [17] is assumed for the matrix material as in [6]. Thus, to the neglect of
elasticity and hardening

π(d) =
{

σ1deq (in the matrix)
0 (in the voids)

(7)

where σ1 is the yield stress in any arbitrarily chosen principal direction of orthotropy, say e1, and deq is the Hill
equivalent strain rate defined as

deq =
√

2

3
d : ĥ : d (8)

where the fourth-order tensor ĥ is the formal inverse of Hill’s anisotropy tensor, h; i.e., p̂ : p = p : p̂ = J where p and
p̂ are given by J : h : J and J : ĥ : J respectively and J is the deviatoric projector [6]. In general, deq is defined up to
a multiplicative constant, which is set consistent with the choice of σ1. In the frame of material orthotropy, ĥ may be
represented by a diagonal 6 × 6 matrix, thanks to Voigt reduction, with the diagonal elements, designated ĥi , as the
anisotropy factors.

The RVE is subjected to homogeneous deformation rate boundary conditions. The following working assumptions
are made so as to reduce the problem to one that is tractable analytically. First, the macroscopic deformation field
is taken to be axially symmetric about one of the principal orthotropy directions, say e3, and has the form: D =
D11(e1 ⊗ e1 + e2 ⊗ e2) + D33e3 ⊗ e3. Next, the void in the current configuration is supposed to retain a spheroidal
shape and its axis is assumed to be aligned with the axis of symmetry of the imposed deformation, e3. Under such
circumstances, the set of microscopic velocity fields are approximately taken to be axisymmetric, thus allowing to
use the fields introduced by Lee and Mear [18] as trial ones in computing an upper bound of Π(D). These fields are
incompressible and supposedly complete. They are given in terms of infinite double series of associated Legendre
functions of the first and second kinds. Their expressions are provided in [9] along with the constraints imposed by
boundary conditions (5)2 expressed in spheroidal coordinates.

Although, in general, none of the Lee–Mear fields can be an exact solution for anisotropic matrices, their use in (5)
a priori leads to a rigorous upper bound for the macroscopic yield criterion. Furthermore, in the important special
case of transversely isotropic matrices aligned with the voids and subject to axisymmetric loadings, the true velocity
field can indeed be represented as a linear combination of the Lee–Mear fields.

3. Approximate yield criterion

Eqs. (4)–(6) provide a variational definition of the macroscopic yield surface. For the RVE of interest, the plastic
dissipation writes

Π(D) = inf
d∈K(D)

σ1

Ω

λ2∫ π∫ 2π∫
deqbgλλ sinβ dϕ dβ dλ (9)
λ1 0 0
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For a chosen subset of K(D), explicit calculation of Π(D) involves computation of deq, which depends on both plastic
anisotropy and the choice of trial velocity fields. The approach followed in Gurson’s original work [1] and later works
based on it [9,6] was to use two trial velocity fields: a non-homogeneous “expansion” field (vA, dA) responsible for
void growth, and a field vB that corresponds to a uniform deviatoric strain rate, i.e.,

v = AvA + BvB, vB = − r

2
er + zez (10)

The homogeneous boundary conditions, v = D.x in (5)2, lead to linear constraints on the coefficients A and B of the
velocity fields. Thus, irrespective of the specific choice of vA, the two independent components D11 and D33 of the
macroscopic deformation field completely fix the multiplicative factors A and B of the chosen trial fields, eliminating
the need for explicit minimization in Eq. (9). For the expansion field vA, we choose a combination of the Lee–Mear
fields corresponding to coefficients B00,B20,B21 and B22, with B00 = 1 by convention; see [9]. While coefficients
A and B are fixed by the boundary conditions, the remaining B2i coefficients remain free and thus can be used to
“optimize” the yield criterion. Using the above decomposition of v in Eq. (8), along with the incompressibility of vA,
leads to

d2
eq = A2dA2

eq + 2hABdA
33 + hB2, h ≡ (ĥ1 + ĥ2 + 4ĥ3)/6 (11)

with dA
eq defined similar to deq in (8).

Subsequently, a parametric representation of the yield surface is formally obtained. Using Eq. (4), it can be shown
that

∂Π

∂A
= 3c3

a2b
2
2

Σh,
∂Π

∂B
= Σ33 − Σ11

Σh ≡ 2α2Σ11 + (1 − 2α2)Σ33, α2 ≡ DA
11

2DA
11 + DA

33

(12)

The definition of parameter α2 involves the components of D through the expansion field DA = 〈dA〉Ω , and therefore
depends on the unknown coefficients B2i and associated Legendre functions [9]. Eq. (12) defines a representation
of the yield locus in which the ratio A/B acts as the parameter. Explicit calculation of the plastic dissipation and
elimination of the parameter from the above equations yield the closed form expression for the macroscopic yield
function. However, the mathematical complexity involved in performing the above steps necessitates the introduction
of approximations which, in some but not all instances, are similar to those used in [9]. First, deq in (9) is replaced
with its root mean square value over the surface of the current spheroid Sλ confocal with the void. This approximation
actually preserves the upper bound character of the approach. Using the change of variable x = c3/ab2, an upper
bound on Π(D) can be written as, keeping the same notation for convenience:

Π(D) = σ1x2

x1∫
x2

〈
d2

eq

〉1/2
Sλ

dx

x2
,

〈
d2

eq

〉
Sλ

= A2P(x) + hB2 + 2hABQ(x) (13)

where P(x) and Q(x) are single-valued functions; in anticipation of further approximations below, their expressions
are omitted for brevity. Next, employing a unified notation with u = x for prolate (a1 > b1) and u = x

x+1 for oblate
(a1 < b1) cavities, the functions P(x) and Q(x) are replaced with F(u) and G(u), which are defined through P(x) =
F 2(u)u2 and Q(x) = F(u)G(u)u2, so that Eq. (13) now reads

Π(D) = σ1x2

u1∫
u2

√[
AF(u) + hBG(u)

]2
u2 + B2H 2(u)

du

u2

H(u) ≡
√

h
(
1 − hG2(u)u2

)
(14)

In order to reduce the plastic dissipation integral to a Gurson-like form, functions F(u), G(u) and H(u) are respec-
tively replaced by constants F̄ , Ḡ and H̄ , to be specified. This can be further justified considering that, function F(u)

has a low range of variation in the domain of u, despite its complicated expression, and that G(u) and H(u), which
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result from the “crossed” term contribution in (11)1, have little effect on the yield criterion in the isotropic case [9].
Thus,

Π(D) = σ1x2

u1∫
u2

√
A′2u2 + B ′2 du

u2
, A′ ≡ F̄A + hḠB, B ′ ≡ H̄B (15)

Evaluation of the integral in (15), followed by elimination of the parameter A/B between Eqs. (12)1 and (12)2 lead
to the yield criterion:

C

σ 2
1

(Σ33 − Σ11 + ηΣh)
2 + 2(g + 1)(g + f ) coshκ

Σh

σ1
− (g + 1)2 − (g + f )2 = 0 (16)

where

C ≡ 1

H̄ 2
, η ≡ −3x2

hḠ

F̄
, κ ≡ 3

F̄
, g ≡

{
0 (p)

x2 (o)
(17)

Note that the final form of the yield function is identical to that proposed in [9]. However, here the parameters κ , η

and C not only depend upon the porosity and void aspect ratio but also on the anisotropy factors, ĥi .
Determining the criterion parameters amounts to specifying constants F̄ , Ḡ and H̄ , which depend on coefficients

B2i of the expansion velocity field. Here, we constrain these not to depend on material anisotropy. Parameter F̄ is
determined so as to ensure that the analytical yield locus is close to the actual one for purely hydrostatic loading. We
require that use of F̄ in place of F(u) in (14) yield the actual value of the integral for the case of B = 0, i.e.,

F̄ =
(

ln
u1

u2

)−1
u1∫

u2

F(u)
du

u
(18)

For given u1 and u2, the best choice of F̄ is obtained by minimizing the above integral with respect to coefficients B2i ,
following arguments developed in [9]. This minimization is carried out numerically to guide further approximations
aimed at obtaining closed form solutions. First, a variant of function F(u), as obtained in [9], is minimized with respect
to the B2i ’s, for fixed u and subject to the additional constraint that deformation be homogeneous on each surface Sλ.
This results in lengthy expressions B2i (u), which completely define the expansion field vA. These expressions are
then used to determine parameter α2 through (12)4 leading to

α2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1 + e2
2)

(1 + e2
2)

2 + 2(1 − e2
2)

(p)

(1 − e2
2)(1 − 2e2

2)

(1 − 2e2
2)

2 + 2(1 − e2
2)

(o)

(19)

Interestingly, in the prolate case, use of the so-determined B2i (u) expressions results in a function F(u) that gives a
close approximation of the true F(u) that minimizes integral (18), irrespective of bounds u1 and u2 and for all values
of the anisotropy factors ĥi that were investigated. The expression thus obtained for F(u) is yet too complicated and
an approximate fit to this function is actually used in (18) to compute F̄ . The fit is more concise when expressed in
terms of the eccentricity e instead of u:

F(e) =
√

9

5
(4h + 8ha − 7ht )

(1 − e4)

(3 + e4)2
+ 3ht

ht ≡ ĥ1 + ĥ2 + 2ĥ6

4
, ha ≡ ĥ4 + ĥ5

2
(p) (20)

In the oblate case, however, the same approach does not lead to satisfactory minimization of the integral in (18).
Hence, a heuristic function F(u) is used, similar to that proposed in [9], given by

F(u) =
√

4
(h + 2ha + 2ht )

(
1 + u + 2u5/2 − 3u5) (o) (21)
5
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This function is found to give acceptable agreement with the (numerically determined) function that minimizes the
integral in Eq. (18) with respect to the B2i ’s for all values of u1, u2 and ĥi tested.

Therefore, parameter κ can be determined by substituting (20) or (21) into (18), in conjunction with (17)3. For the
prolate case, since the integral cannot be evaluated in closed form, the mean of F 2(e) is evaluated using Eq. (18) and
the square root of this value is assigned to F̄ . It is verified numerically that for all values of e1 and e2, the two values
are close to each other. Thus,

κ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
3

{
1

lnf

[
2

3
ln

1 − e2
2

1 − e2
1

+ 3 + e2
2

3 + e4
2

− 3 + e2
1

3 + e4
1

+ 1√
3

(
tan−1 e2

2√
3

− tan−1 e2
1√
3

)

− 1

2
ln

3 + e4
2

3 + e4
1

]
4h + 8ha − 7ht

10
+ 4(h + 2ha + 2ht )

15

}−1/2

(p)

3

2

(
h + 2ha + 2ht

5

)−1/2{
1 + 1

ln
gf

g1

{
(gf − g1) + 4

5

(
g

5/2
f − g

5/2
1

) − 3

5

(
g5

f − g5
1

)}}−1

(o)

(22)

with gf ≡ g/(g + f ) and g1 ≡ g/(g + 1). In the case of spherical voids, (22) reduces to κ = 3/2
√

5/(h + 2ha + 2ht )

and in the limit of cylindrical voids κ = √
3/ht , which are results established in [6].

The remaining parameters C and η, which are connected to the constants Ḡ and H̄ , are determined by forcing the
approximate yield locus to pass through and be tangent to known exact points on the two-field yield locus. Following
derivations similar to those in [9], this leads to expressions for C and η given by

η = − κQ∗(g + 1)(g + f ) sh

(g + 1)2 + (g + f )2 + (g + 1)(g + f )[κH ∗ sh−2 ch]
C = −κ(g + 1)(g + f ) sh

(Q∗ + ηH ∗)η
, sh ≡ sinh(κH ∗), ch ≡ cosh(κH ∗) (23)

where H ∗ and Q∗ are the values provided in [9] for Σh/σ1 and (Σ33 − Σ11)/σ1, respectively, multiplied by
√

h,
where h is the anisotropy factor given by (11)2.

It may be verified that in the case of an isotropic matrix, the proposed criterion (16) reduces to that of Gologanu
et al. [9] for oblate voids. For prolate voids, the two criteria are different due to the distinct approaches followed in
determining κ . The new isotropic criterion is an improved version of Gologanu et al.’s but the yield loci are very close
to each other. For spherical and cylindrical voids in a transversely isotropic matrix the proposed criterion reduces to
that of Benzerga and Besson [6]. For a general orthotropic matrix, the two criteria differ in the quadratic term of the
yield function. For spherical and cylindrical voids in an isotropic matrix Gurson’s criteria [1] are recovered.

4. Validation

In order to assess the validity of the approximations introduced in deriving the new analytical yield criterion, the
latter is compared, for selected sets of the anisotropy factors, with a criterion determined numerically. To that end,
a numerical method is developed to determine the yield loci for orthotropic materials containing spheroidal voids,
similar to the one developed in [9] for the isotropic case. The method consists of minimizing the macroscopic plastic
dissipation in (5) for axisymmetric radial loading paths, using a large number of velocity fields from the Lee–Mear
expansion, i.e., larger than could be kept in our analytical derivation of the effective yield criterion. While the true
deformation field is admittedly not axisymmetric in the general case of orthotropy, the upper-bound nature of the limit
analysis approach ensures that the yield locus so derived lies external to the true yield surface. Moreover, in the special
case of transverse isotropy and axisymmetric loading the numerical yield locus will be quasi-exact, i.e., exact up to
errors due to a cutoff in the Lee–Mear fields. This is so because of the assumed completeness of the velocity fields and
the fact that higher order terms in the expansion are fast decaying fields. All examples to follow focus on this special
case of transverse isotropy.

The numerical yield loci are generated using seven velocity fields from the Lee–Mear expansion, corresponding to
the field coefficients B00, B2i , i = 0, . . . ,2, and C2i , i = 0, . . . ,2. Based on tests conducted, it is our observation that
using a larger number of velocity fields (up to twenty) in the numerical calculations leads to negligible improvement
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Fig. 1. Approximate yield loci (solid lines) and numerical yield loci (discrete points) for Al (+), Zr (∗) and isotropic matrix (×), using f = 0.001
and (a) prolate voids (a1/b1 = 5); (b) oblate voids (a1/b1 = 1/5). Dotted lines are for loci from [12].

Fig. 2. Approximate yield loci (solid lines) and numerical yield loci (discrete points) for Al (+), Zr (∗) and isotropic matrix (×), using f = 0.1 and
(a) prolate voids (a1/b1 = 5); (b) oblate voids (a1/b1 = 1/5). Dotted lines are for loci from [12].

in the upper-bound obtained. Two sets of transversely isotropic material properties are used based on tabulations in
[5]: {ĥ1 = ĥ2 = ĥ6 = 1.125, ĥ3 = 0.5625, ĥ4 = ĥ5 = 0.2727} and {ĥ1 = ĥ2 = ĥ6 = 0.8571, ĥ3 = 2.571, ĥ4 = ĥ5 =
2.000}. These sets are representative of Aluminum (Al) plates and Zircaloy (Zr) sheets, respectively. For comparison,
calculations are also carried out for the isotropic case.

Fig. 1 summarizes the comparison between analytical and numerical yield loci for a low value of porosity f =
0.001 and two values of the void aspect ratio, a1/b1. The numerical yield loci are shown as discrete points. Each point
corresponds to a numerical minimization performed for a fixed value of the stress ratio Σ33/Σ11. The plots show the
macroscopic effective stress, Σ33 − Σ11, plotted against the mean normal stress, Σm. Evidently, it is desirable that
the approximate yield locus lies outside of the numerical one. While this is not always the case, the correspondence
between the two is quite remarkable. Results corresponding to the criterion developed by Monchiet et al. [12] are also
shown using dotted lines for comparison. Their criterion, which is a significant improvement of previous models, does
not capture well the effect of material anisotropy in the prolate case (Fig. 1(a)) and is found to be too conservative in
the oblate case (Fig. 1(b)).

Fig. 2 shows similar results for a much higher value of the porosity f = 0.1. The yield surfaces show a higher
degree of distortion is this case. While the above observations generally apply, a discrepancy is noted for oblate voids
near the hydrostatic axis between analytical and numerical loci. For applications to ductile fracture, this discrepancy
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is a minor one, however, since (i) for structural materials, void coalescence occurs at values of f smaller than 0.1 [19];
and (ii) most practical loadings fall outside of the extreme stress triaxiality region.

5. Conclusion

The framework of homogenization was used to derive a yield criterion for anisotropic porous materials using an
approximate limit-analysis. The new yield criterion combines the effects of spheroidal voids and matrix anisotropy in
the form of Hill-type orthotropy. A semi-analytical approach was used to arrive at a closed form expression for the
yield function. The new model was shown to yield close agreement with numerically derived, quasi-exact upper-bound
yield loci for transversely isotropic materials. In the general case of orthotropy, the numerical results also represent
an upper bound that could be used as an approximate yield locus. The new model thus constitutes an improvement
of previously available models for anisotropic porous media, which have received little attention in the literature.
Use of the new criterion in finite element simulations of ductile fracture requires, in addition, evolution laws for
the microstructural variables, i.e., porosity and void aspect ratio. These need to be calibrated using finite element
simulations on porous unit cells to obtain reliable estimates of the evolution of the microstructure with deformation.
This work is in progress and results will be presented in future publications.
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