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Abstract

Elastic materials are governed by a constitutive law relating the second Piola–Kirchhoff stress tensor Σ and the right Cauchy–
Green strain tensor C = FT F . Isotropic elastic materials are the special cases for which the Cauchy stress tensor σ depends solely
on the left Cauchy–Green strain tensor B = FFT . In this Note we revisit the following property of isotropic hyperelastic materials:
if the constitutive law relating Σ and C is derivable from a potential φ, then σ and lnB are related by a constitutive law derived
from the compound potential φ ◦ exp. We give a new and concise proof which is based on an explicit integral formula expressing
the derivative of the exponential of a tensor. To cite this article: C. Vallée et al., C. R. Mecanique 336 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Variable duale du tenseur des contraintes de Cauchy dans le cas des matériaux hyperélastiques isotropes. Les matériaux
élastiques sont régis par une loi de comportement reliant le second tenseur des contraintes de Piola–Kirchhoff Σ et le tenseur de
Cauchy–Green droit C = FT F . Les matériaux élastiques isotropes sont les seuls matériaux pour lesquels le tenseur des contraintes
de Cauchy σ ne dépend que du tenseur des déformations B = FFT . Dans cette Note nous revisitons la propriété suivante des
matériaux isotropes hyperélastiques : si la loi de comportement reliant Σ et C dérive d’un potentiel φ, alors σ et lnB sont reliés
par une loi de comportement dérivant du potentiel composé φ ◦ exp. Nous donnons une preuve nouvelle et concise qui est basée
sur une formule intégrale explicite exprimant la dérivée de l’exponentiel d’un tenseur. Pour citer cet article : C. Vallée et al., C. R.
Mecanique 336 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

According to the mass conservation principle, the mass density per unit volume ρ and its initial value ρ0 are in the
ratio

ρ0

ρ
= detF = (detC)

1
2 = (detB)

1
2

with F as the deformation gradient and C = FT F (respectively B = FFT ) as the right (respectively left) Cauchy–
Green strain tensor.

The relation

(detF)σ = FΣFT

between the Cauchy stress tensor σ and the second Piola–Kirchhoff stress tensor Σ can be rewritten

σ

ρ
= F

Σ

ρ0
FT

Let us formulate the elastic materials constitutive laws as:
Σ

ρ0
= g(C)

The polar decomposition F = RU of the deformation gradient (as the product of a rotation tensor R and a stretch
tensor U , [1]) implies:

B = FFT = RU2RT = RCRT or C = RT BR

This allows us to transform the above relation between Σ and C in a law satisfied by σ :
σ

ρ
= RUg

(
RT BR

)
URT = (

RURT
)
Rg

(
RT BR

)
RT

(
RURT

)
where we have separated the tensor RURT which is nothing else than the square root B

1
2 of the positive definite

symmetric tensor B . A priori, for elastic materials, the tensor σ
ρ

is a function of B and R:

σ

ρ
= B

1
2 Rg

(
RT BR

)
RT B

1
2

It will depend solely on B in a single case: when the tensor Rg(RT BR)RT does not depend on the rotation R. The
rotations forming a group, the only possible tensorial functions g are those satisfying the relations of isotropy with
respect to B:

Rg
(
RT BR

)
RT = g(B) or RT g(B)R = g

(
RT BR

)
Because of the relation C = RT BR, the isotropy of the function g can alternatively be expressed with respect to C:

Rg(C)RT = g
(
RCRT

)
or RT g

(
RCRT

)
R = g(C)

To summarize: if the law Σ
ρ0

= g(C) is isotropic, then σ
ρ

depends only on B , and it is the sole case; furthermore, under
this isotropy condition

σ

ρ
= B

1
2 g(B)B

1
2

In this Note, we revisit the property of isotropic hyperelastic materials for which the existence of a potential expressing
the constitutive law between Σ

ρ0
and C implies the existence of a potential relating σ

ρ
and lnB .

2. Coaxiality of B and g(B)

Theorem 2.1. The isotropy of g implies that the symmetric tensors B and g(B) are coaxial (i.e. they have the same
eigenvectors).
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Proof 2.2. Let n be an eigenvector of B chosen unitary, and let us consider the rotation of angle π around n:

S = (cosπ)I + (1 − cosπ)nnT = 2nnT − I

with I as the identity tensor. Such a symmetry S leaves n unchanged and changes any orthogonal vector to n in its
opposite. The tensor B being symmetric, its other eigenvectors are orthogonal to n, as a consequence ST BS = B .

The isotropy condition implies ST g(B)S = g(ST BS) or g(B)S = Sg(B), therefore g(B)[Sn] = S[g(B)n] or
S[g(B)n] = g(B)n. Since the sole vectors unchanged by S are the vectors parallel to n, the last equality is possi-
ble only when the vector g(B)n remains parallel to the vector n, that is to say when n is also an eigenvector for
g(B). �

We easily deduce from this coaxiality property the next corollary, which will reveal important in the following:

Corollary 2.3. B and g(B) commute. Moreover, for every real number s, g(B) commutes with the power Bs of B .

Corollary 2.4. The expression σ
ρ

= B
1
2 g(B)B

1
2 simplifies in σ

ρ
= g(B)B.

Proof 2.5. It follows from Corollary 2.3 with s = 1
2 . �

3. Isotropy of the constitutive law relating σ
ρ and B

Theorem 3.1. The isotropy of the constitutive law relating Σ
ρ0

and C is transferred to the constitutive law relating σ
ρ

and B .

Proof 3.2. Let Ω be a rotation, if we change B into ΩT BΩ , then σ
ρ

is changed in:

g
(
ΩT BΩ

)
ΩT BΩ = ΩT g(B)ΩΩT BΩ = ΩT g(B)BΩ = ΩT σ

ρ
Ω �

4. Hyperelastic materials

4.1. Existence of a potential between the second Piola–Kirchhoff stress tensor Σ and the right Cauchy–Green strain
tensor C

Let us consider a differentiable function φ of C, its Fréchet derivative Dφ(C) is a linear mapping from the space
of symmetric tensors to R. Thus, there exists a symmetric tensor denoted ∂φ

∂C
such that for every variation δC of C:

Dφ(C)δC = tr

(
∂φ

∂C
δC

)

Hyperelastic materials are those for which there exists a function φ such that

Σ

ρ0
= ∂φ

∂C

In this assumption, we will say that the constitutive law relating the tensors Σ
ρ0

and C is derivable from the potential φ.

4.2. Derivative of the exponential of a matrix

Let us consider a square matrix A and a real number t , the exponential exp(tA) is the unique solution of the
matricial ordinary differential equation

d
exp(tA) = A exp(tA)
dt
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which is equal to I at t = 0. The exponential exp thus defined is an invertible mapping. Its inverse is known as
logarithmic mapping and denoted ln. Hence, we have

exp(lnB) = (exp◦ ln)(B) = B

This relation will be used later on.
Let δA be a variation of A, in the equation

d

dt
D(exp)(tA)(tδA) = δA

[
exp(tA)

] + AD(exp)(tA)(tδA)

let us introduce the square matrix M(t) defined by

D(exp)(tA)(tδA) = [
exp(tA)

]
M(t)

The above equation becomes[
d

dt
exp(tA)

]
M(t) + [

exp(tA)
]dM

dt
= δA

[
exp(tA)

] + A
[
exp(tA)

]
M(t)

and simplifies itself into the ordinary differential equation

dM

dt
= [

exp(−tA)
]
δA

[
exp(tA)

]
which can be integrated by quadrature. Because M(0) vanishes, we easily deduce from it the value of M(1) and
thereafter the variation of the exponential of a matrix [2]:

D(exp)(A)(δA) = [
exp(A)

] 1∫
0

[
exp(−sA)

]
δA

[
exp(sA)

]
ds

In the special case where A is the logarithm of the positive definite tensor B , this formula allows us to claim that for
every variation δB of B:

D(exp)(lnB)δB = B

1∫
0

B−sδBBs ds

4.3. Existence of a potential between the Cauchy stress tensor and the Hencky strain tensor

Theorem 4.1. If the tensor Σ
ρ0

is derivable from a potential φ of the tensor C, then the tensor σ
ρ

is derivable from the

potential 2φ ◦ exp of the Hencky strain tensor h = 1
2 lnB .

Proof 4.2. By deriving the compound function φ ◦ exp, we find successively:

D(φ ◦ exp)(lnB)δB = Dφ(B)
(
D(exp)(lnB)δB

)

= tr

(
∂φ

∂B

[
D(exp)(lnB)δB

]) = tr

(
g(B)B

1∫
0

B−sδBBs ds

)

=
1∫

0

tr
[
g(B)BB−sδBBs

]
ds

To simplify the last integral, it is necessary to pay attention on the switchings because the matrix δB does not commute
with the others. However, under the trace, we can make cross at the beginning the last term of the product of 5 matrices.
Then from Corollary 2.3, we can switch this term Bs with g(B) and afterwards with B , it ends up just before B−s .
The product of the two matrices Bs and B−s reduces to the identity tensor I , and the integral simplifies itself into

tr
(
g(B)BδB

) = tr

(
σ

δB

)

ρ
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The final value of the integral allows to conclude to the constitutive law:

σ

ρ
= ∂(φ ◦ exp)

∂(lnB)
= ∂(2φ ◦ exp)

∂h
�

5. Conclusion

Without resorting to the Taylor expansion of the logarithm [3] or of the exponential [4] of a symmetric tensor, nor
to its spectral decomposition [5], we have given an intrinsic proof of the existence of the compound potential φ ◦ exp
between σ

ρ
and lnB . Numerous isotropic hyperelastic constitutive laws expressing directly σ in term of lnB have

been proposed [6–10] and numerically implemented [11].
When the compound potential φ ◦ exp is convex, the consideration of its Legendre–Fenchel–Moreau transform is

a tool to perform the inversion of the constitutive law [12–15], i.e. to express the Hencky logarithmic strain tensor h

in term of the Cauchy stress tensor σ .
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