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Abstract

The high order homogenization technique generates the so called infinite order homogenized equation. Its coefficients were
widely discussed in composite mechanics literature because they are closely related to the so called high order strain gradients
theories. However, it was not clear what is the correct mathematical setting for this equation and what are the asymptotically
exact boundary conditions. In the present Note we give a variational formulation for the high order homogenized equation by the
projection of the initial problem on the “ansatz subspace”. This formulation generates the appropriate boundary conditions for
the high order homogenized equation. The error estimates for the solution of the original problem and the homogenized one are
obtained. To cite this article: G. Panasenko, C. R. Mecanique 337 (2009).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Conditions aux limites pour l’équation homogénéisée d’ordre élévé : barres, plaques et composites stratifiés. La technique
d’homogénéisation d’ordre élévé mène à l’équation homogénéisée d’ordre élévé. Ses coefficients ont été largement discutés dans
la literature de la mécanique des composites parce qu’ils sont liés aux théories des gradients des déformations d’ordre élévé. Nean-
moins, la nature mathématique de cette équation n’a pas été complètement clarifiée et les conditions aux limites asymptotiquement
exactes n’ont pas été définies. Dans cette Note nous donnons la formulation variationnelle de l’équation homogénéisée d’ordre
élévé. Cette formulation est dérivée par la projection du problème initial sur l’espace du dévéloppement asymptotique. Elle en-
gendre les conditions aux limites appropriées pour l’équation homogénéisée d’ordre élévé. L’estimation de la difference entre la
solution exacte et la solution approchée est obtenue. Pour citer cet article : G. Panasenko, C. R. Mecanique 337 (2009).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

The high order homogenized equations are well known in the structural mechanics and mechanics of composites
in the form of theories involving higher derivatives (gradients) of the unknown function, for example, displacement
(see [1–3]). These theories are expected to be more precise than the classical ones; they may describe some special
properties of the continuum such as, the dispersion or the dissipation. These models can be constructed phenomeno-
logically; however the derivation of these theories at the macroscopic scale from the standard microscopic models is
still a very delicate question. On the other hand, in the plate theory there were proposed some special boundary condi-
tions called “artificial” which better take into account the higher asymptotic approximations of the three-dimensional
solution (see [4,5] where the second order accuracy has been obtained). These two questions can be related, because
the arbitrary high order macroscopic approximation for a microstructured composite material is exactly the high or-
der homogenized equation proposed by N. Bakhvalov in [6], see also [7]. This approach has been then extended
for the thin structures in [8,9] and in [10]. It leads to the infinite order homogenized equation which formally is a
pseudo-differential equation with small higher order coefficients. This equation has not been interpreted mathemat-
ically although there were a lot of mechanical interpretations of the infinite order equation and its coefficients. In
particular, one can find the variational properties of the infinite order formally homogenized equations [10], the nu-
merical study of the sign of the coefficients, [11,12], the discussion how to truncate this equation [13]. The problem
is that the sign of the coefficient of the elder derivative after truncation may be “wrong” from the point of view of the
well-posedness of the truncated equation. A part of this problem there is a question about the appropriate boundary
conditions associated to the high order differential equation. For the equation set in the whole space a well-posed trun-
cation procedure was proposed in [14]; it corresponds to some projection of the variational formulation on the “ansatz
space”. This approach automatically adds to the truncation some small stabilizing terms. However, to our knowledge,
the problem is still open in the case of the boundary value problems: what should be the appropriate boundary condi-
tions to the high order homogenized equation? Can they be local or they are always non-local? We will answer these
questions by constructing a special representation for the boundary layer ansatz. We emphasize that the well posed
setting of the boundary value problem for the high order homogenized equation is closely related to similar questions
in high order strain gradient theories [15] where they are still open.

2. Model setting

Consider the model equation set in the half-strip Gε+ = {x ∈ R
2, x1 > 0, x2 ∈ (− ε

2 , ε
2 )}

− ∂

∂xk

(
Akj

(
x2

ε

)
∂uε

∂xj

)
= f, x ∈ Gε+ (1)

where x = (x1, x2) ∈ Gε+ and f = f (x1) is C∞−smooth and it satisfies the inequality∣∣∣∣ dl

dxl
1

f (x1)

∣∣∣∣ � c1e−c2x1, c1, c2 > 0, l = 0,1, . . . ,K

ε is a small positive parameter. The coefficients Akj (ξ2) are piecewise-smooth in the interval [− 1
2 , 1

2 ] having only the
discontinuities of the first kind; for all ξ2 ∈ [− 1

2 , 1
2 ] and for all i, j ∈ {1,2}, Akj (ξ2) = Ajk(ξ2); we assume that there

exists a positive constant κ > 0 such that, for any (η1, η2) ∈ R
2, for all ξ2 ∈ [− 1

2 , 1
2 ],

Akj (ξ2)ηjηk � κηjηj

We admit here the repeating indices convention, i.e. the summation is taken from 1 to 2 over the repeating indices.
We set the boundary conditions

A2j

(
x2

ε

)
∂uε

∂xj

= 0, x2 = ±ε

2
, x1 > 0 (2)

uε = 0, x1 = 0 (3)
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Let us define the space H 1
0,∞ = {w ∈ H 1

loc, w|x1=0 = 0, ∇w ∈ (L2(Gε+)2} and consider problem (1)–(3) with a

more general right hand side f = f0,ε − ∂fj,ε

∂xj
defined in Gε+ and satisfying∣∣fi,ε(x1, x2)

∣∣ � c1e−c2x1 , c1, c2 > 0, i = 0,1,2

where fi,ε are piecewise-continuous functions.
Let us give the variational formulation, that is, find uε ∈ H 1

0,∞ such that for any w ∈ H 1
0,∞∫

Gε+

Akj

(
x2

ε

)
∂uε

∂xj

∂w

∂xk

dx =
∫

Gε+

(
f0,ε(x)w(x) + fj,ε(x)

∂w

∂xj

)
dx (4)

Theorem 2.1. There exists a unique solution of problem (4). It satisfies the estimate ‖∇uε‖L2(Gε+) �
C(‖ ∫ +∞

x1
f0,ε(t)dt‖L2(Gε+) + ∑2

j=1 ‖fj,ε‖L2(Gε+)), where constant C is independent of ε.

The proof of this theorem is analogous to [16]. The solution stabilizes at infinity to a constant [22].

3. Asymptotic expansion of the solution

Consider now problem (1)–(3) with f = f (x1). An asymptotic expansion of the solution can be constructed by
the method of boundary layer in homogenization [17,18,9] (another ansatz has been proposed by E. Sanchez-Palencia
in [19]and J.L. Lions in [20]):

ua (K)
ε =

K+1∑
l=0

εlNl

(
x2

ε

)
Dl

1v
(K)
ε (x1) +

K+1∑
l=1

εlNBL
l

(
x

ε

)
Dl

1v
(K)
ε (x1) (5)

where Nl(ξ2) are solutions of the sequence of cell problems:

∂

∂ξ2

(
A22

∂Nl

∂ξ2

)
= − ∂

∂ξ2
(A21Nl−1) − A12

∂Nl−1

∂ξ2
− A11Nl−2 + hl, ξ2 ∈

(
−1

2
,

1

2

)
(61)

A22
∂Nl

∂ξ2
+ A21Nl−1 = 0, ξ2 = ±1

2
(62)

〈Nl〉 = 0 for l > 0, N0 = 1 (63)

hl =
〈
A12

∂Nl−1

∂ξ2
+ A11Nl−2

〉
(7)

where 〈 〉 = ∫ 1/2
−1/2 dξ2, and by convention, Nl with negative subscripts l vanishes. Functions NBL

l exponentially decay
and tend to zero as ξ1 → +∞ and they are described in [9,7], h0 = h1 = 0, h2 > 0:

h2 =
〈
A12

∂N1

∂ξ2
+ A11

〉
= 〈

A12A
−1
22

〉〈
A−1

22

〉−1〈
A−1

22 A21
〉 + 〈

A11 − A12A
−1
22 A21

〉
(8)

〈Nl〉 = 0 for l > 0, N0 = 1, D1 = ∂
∂x1

.
However, for our objective we will construct below another ansatz modifying the boundary layer part as follows:

ua (K)
ε =

K+1∑
l=0

εlNl

(
x2

ε

)
Dl

1v
(K)
ε (x1) +

K+1∑
l=1

εlNBL0
l

(
x

ε

)
Dl

1v
(K)
ε

∣∣
x1=0 (9)

v(K)
ε (x1) =

K+1∑
j=0

εj vj (x1) (10)

where NBL0
l are solutions of the following boundary value problems set in the half-strip Π+ = {ξ ∈ R

2 | ξ1 ∈
(0,+∞), ξ2 ∈ (− 1 , 1 )}:
2 2
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LξξN
BL0
l = 0, ξ ∈ Π+ (11)

A2j

∂NBL0
l

∂ξj

= 0, ξ2 = ±1

2
(12)

NBL0
l (0, ξ2) = −Nl(ξ2) + hBL0

l (13)

where the constants hBL0
l such that,

NBL0
l (ξ ) → 0, ξ1 → +∞ (14)

Lξξ = ∂
∂ξk

(Akj (ξ2)
∂

∂ξj
) and vj are solutions of the chain of problems

h2D
2
1vj = fj (x1), x1 ∈ (0,+∞); vj (0) = g0

j , vj (x1) → const, x1 → ∞ (15)

where

fj (x1) = −
j−1∑
p=0

hj−p+2D
j−p+2
1 vp(x1) + δj0f (x1), g0

j = −
j−1∑
p=0

hBL0
j−pD

j−p

1 vp

∣∣
x1=0

These relations as well as problems for Nl and NBL0
l are obtained by the standard substitution of the ansatz (9), (10)

into equation and the boundary conditions. The technique is similar to that of [9], Chapter 2, Section 2.2. Together
with the assertion of Theorem 1.1 it justifies the following theorem:

Theorem 3.1. The estimate holds ‖∇(uε − u
a (K)
ε )‖L2(Gε+) = O(εK

√
ε).

4. Projection of the problem on the “ansatz subspace”

Consider now the following subspace H 1
(0,∞),K+1 of the space H 1

0,∞:

{
ϕ ∈ H 1

0,∞
∣∣∣∣ ϕ(x) =

K+1∑
l=0

εl

(
Nl

(
x2

ε

)
Dl

1w(x1) + NBL0
l

(
x

ε

)
Dl

1w
∣∣
x1=0

)
, w ∈ HK+2

loc ;

D1w ∈ HK+1((0,+∞)
); w(0) +

K+1∑
l=1

εlhBL0
l Dl

1w
∣∣
x1=0 = 0

}
(16)

where NBL0
0 = 0. The last relation of (16) is a direct consequence of the relation ϕ|x1=0 = 0 and relation (13).

Let us consider the projection of problem (4) on the subspace H 1
(0,∞),K+1 as in the method of asymptotic partial

decomposition of domain [9], Chapter 6, Section 6.2, [21]:
– find ūε ∈ H 1

(0,∞),K+1 such that for any ϕ ∈ H 1
(0,∞),K+1∫

Gε+

Akj

(
x2

ε

)
∂ūε

∂xj

∂ϕ

∂xk

dx =
∫

Gε+

f (x1)ϕ(x)dx (17)

Let EK+2 be the space {w ∈ HK+2
loc ;D1w ∈ HK+1((0,+∞)); w(0) + ∑K+1

l=1 εlhBL0
l Dl

1w|x1=0 = 0}. Then taking
into account (11), (12) we get that (17) is equivalent to the following problem:

– find v̄ε ∈ EK+2 such that, for any w ∈ EK+2,

+∞∫
0

K+2∑
l,m=1

εl+m−1h̃lmDl
1vDm

1 w dx1 −
K+1∑
m=1

εmh̃ib
m0v

∣∣
x1=0D

m
1 w

∣∣
x1=0 −

K+1∑
l=1

εlh̃ib
0lD

l
1v

∣∣
x1=0w

∣∣
x1=0

−
K+1∑

εl+m
(
h̃ib

lm + h̃ib
ml

)
Dl

1v
∣∣
x1=0D

m
1 w

∣∣
x1=0 +

K+1∑
εl+mh̃BL0

lm Dl
1v

∣∣
x1=0D

m
1 w

∣∣
x1=0
l,m=1 l,m=1
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= ε

+∞∫
0

f (x1)w(x1)dx1 + ε2
K+1∑
m=1

εmg̃BL0
mε Dm

1 w
∣∣
x1=0 (18)

where

h̃lm =
〈
Akj (ξ2)

(
∂Nl

∂ξj

+ δj1Nl−1

)(
∂Nm

∂ξk

+ δk1Nm−1

)〉

the derivative ∂Nl

∂ξj
is dropped if l = K + 2, and ∂Nm

∂ξk
is dropped if m = K + 2; these coefficients were introduced in

[14] (up to some space averaging over the translation parameter) and they are the same as in the method of partial
homogenization [9], Chapter 6, Section 6.4, [21];

h̃ib
lm =

〈
A1k(ξ2)

∂NBL0
l

∂ξk

∣∣∣∣
ξ1=0

Nm(ξ2)

〉
, h̃BL0

lm =
〈
Akj (ξ2)

∂NBL0
l

∂ξj

∂NBL0
m

∂ξk

〉
Π+

g̃BL0
mε = 〈

f (εξ1)N
BL0
m (ξ)

〉
Π+

In what follows we assume that there exists a solution of this problem which belongs to the space H 1
(0,∞),K+1. In

particular, a sufficient condition is the uniform (with respect to ε) equivalence of the norm( ∫
Gε+

Akj

(
x2

ε

)
∂Φ(wε)

∂xj

∂Φ(wε)

∂xk

dx

)1/2

,

Φ(wε) =
K+1∑
l=0

εl

(
Nl

(
x2

ε

)
Dl

1w(x1) + NBL0
l

(
x

ε

)
Dl

1w
∣∣
x1=0

)
(19)

and the norm ‖w‖K+2,ε = (
∑K+1

l=0 ε2l‖Dl+1
1 w‖2

L2(0,+∞)
)1/2 for w ∈ H 1

(0,∞),K+1.

5. Derivation of the high order homogenized equation and the high order boundary conditions

Varying w ∈ H 1
(0,∞),K+1 and integrating by parts in (18) we derive:

– the high order homogenized equation of order 2K + 4, the same as in [14], and [21]

K+2∑
l,m=1

εl+m−2(−1)mh̃lmDl+m
1 v(x1) − f (x1) = 0, x1 ∈ (0,+∞) (20)

– and K + 2 boundary conditions at x1 = 0 (here r stands for the order of the derivative of w in the trace terms
containing Dr

1w|x1=0):

K+2∑
l=1

K+2∑
m=r+1

εl+m−1(−1)m−r h̃lmDl+m−r
1 v

∣∣
x1=0 −

K+2∑
l=1

K+2∑
m=1

εr+l+m−1(−1)mh̃lmhBL0
r Dl+m

1 v
∣∣
x1=0

−
K+1∑
l=1

εr+l
(
h̃ib

lr + h̃ib
rl

)
Dl

1v
∣∣
x1=0 +

K+1∑
l=1

εr+l h̃ib
r0h

BL0
l Dl

1v
∣∣
x1=0 +

K+1∑
l=1

εr+l h̃ib
0l h

BL0
r Dl

1v
∣∣
x1=0

+
K+1∑
l=1

εr+l h̃BL0
lr Dl

1v
∣∣
x1=0 = εr+2g̃BL0

rε , r = 1, . . . ,K + 1 (21)

and

v|x1=0 +
K+1∑
l=1

εlhBL0
l Dl

1v
∣∣
x1=0 = 0 (22)
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In order to get (21), after integrating by parts in (18) we take into account that

w(0) = −
K+1∑
l=1

εlhBL0
l Dl

1w
∣∣
x1=0

we replace as well v(0) by the analogous sum from (22). That is why (21) contains neither value v(0) nor terms with
r = 0.

We seek for a bounded at infinity solution having the derivative from HK+1((0,+∞)).

Theorem 5.1. Let v = v̄ε be a solution of problem (18). The estimate holds∥∥∥∥∥∇
(

uε −
K+1∑
l=0

εlNl

(
x2

ε

)
Dl

1v̄ε +
K+1∑
l=1

εlNBL0
l

(
x

ε

)
Dl

1v̄ε

∣∣
x1=0

)∥∥∥∥∥
L2(Gε+)

= O
(
εK

√
ε
)

It should be noted that the constructed boundary conditions as well as the equation are “local”, i.e. without non-local
terms. The analogous boundary conditions could be written for the high order homogenized equation in the case of the
Neumann condition at x1 = 0 instead of the Dirichlet one, for the problem set in a thin rectangle (0,1) × (−ε/2, ε/2)

(then the boundary conditions similar to (21), (22) appear at x1 = 1), for the three-dimensional laminated rod with
layers parallel to the axis of the rod, for a thin laminated plate, for the elasticity equation instead of Eq. (1), for
Eq. (1) set in the layer (0,1) × R

2 with coefficients depending on x2, x3 only. The same procedure of projection
on the “ansatz subspace” generated by the “standard” ansatz (5) [17] also leads to some high order homogenized
model but with coefficients depending on the distance from the boundary, which is not natural for a macroscopically
homogeneous medium.
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