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A modified Shkadov’s model for thin film flow of a power law fluid
over an inclined surface
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Abstract

A new evolution equation coherent up to order one in the long wave parameter is derived to describe the non-linear behavior of
a thin film flow down an inclined plane of a power law fluid for small to moderate Reynolds numbers. The method we have used
combines the lubrication theory and the weighted residual approach, with a suitable weighting function. That approach was first
developed by Ruyer-Quil and Manneville (2000) for Newtonian fluids. The model has the advantages of both the Shkadov type
approach far from criticality and that of Benney close to criticality. To cite this article: M. Amaouche et al., C. R. Mecanique 337
(2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Modèle de Shkadov modifié pour l’écoulement de film mince de fluide en loi de puissance sur une plaque inclinée. Un
modèle non linéaire, cohérent à l’ordre un et combinant les avantages de l’approche asymptotique de Benney et de la méthode
intégrale de Shkadov est proposée pour décrire le comportement d’un film mince de fluide en loi de puissance pour des nombres
de Reynolds petits et modérés. La procédure utilisée est inspirée de la méthode des résidus pondérés développée par Ruyer-Quil et
Manneville (2000) dans le cadre des fluides Newtoniens. Pour citer cet article : M. Amaouche et al., C. R. Mecanique 337 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Falling films on inclined planes are driven by a gravitational pressure gradient and become unstable when inertia
overcomes hydrostatic pressure effects. The disturbance originates at the free surface where vorticity is produced by
the base flow shear stress. Because of its advection by the base flow, the perturbation vorticity becomes out of phase
with the disturbed interface so as to cause the amplification of the interface disturbance. The instability manifests itself
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in surface waves whose wavelength is, except for very small inclination, much larger than the film thickness. Thus,
long wave asymptotics of the Benney [1] type allow a description of the flow development near criticality; the flow
variables are then all enslaved to the local interface shape. Even though the Benney equation (BE) contains different
physical mechanisms and is potentially capable of describing the near critical non-linear behavior, it loses its physical
relevance when the convective effects become significant, because of the production of shorter wave components.
The solutions of the BE then depart from those of the full Navier–Stokes equations and, at some distance beyond the
stability threshold, they exhibit non-physical finite time catastrophic behavior. To overcome some of the drawbacks
associated to the BE, several improvements were recently proposed. The regularized procedure developed by Ooshida
[2] allows to avoid the occurrence of time blow ups but fails to serve as an accurate model at moderate Reynolds
numbers. Another single evolution equation including the second order dissipative effects via a suitable scaling was
proposed by Panga and Balakotaiah [3]. Ruyer-Quil and Manneville [4] have shown that Panga and Balakotaiah model
can be modified such that its inertial terms correspond to Ooshida’s equation. The failure of the long wave models to
correctly describe non-linear behaviors far from criticality is partly due to their incapacity to capture all of the inertia
effects. The way to improve the modelling would be, according to Ruyer-Quil and Manneville [4] to incorporate
the flow rate which becomes a genuine variable just after the wave formation. Such a model was first introduced by
Shkadov [5] by using an integral boundary layer (IBL) approach. This theory combines the long wave assumption
with the depth averaging method of Karman Pohlhansen type. In spite of its success to describe non-linear regimes
for moderate Reynolds numbers the IBL approach does not accurately predict the flow behavior close to the stability
threshold as the BE does. This defect is, as we will see later on, due to the fact that the IBL is coherent only up
to zeroth order in the long wave parameter near criticality. A better account of the first order convective terms near
criticality is therefore required to remove this drawback. The remedy was found by Ruyer-Quil and Manneville [6] by
using a weighted residual integral boundary layer (WRIBL) approach.

In the present work, we are concerned with the related problem of thin film flow of a non-Newtonian fluid. There
are several practical situations such as plastic manufacturing, coating processes, biological fluid motions, geological
flows in which non-Newtonian effects are present and the power law model is quite suitable to describe the rheological
behavior of these fluids. Hence, it is important to understand how these specific effects affect the dynamics of such film
flows. As for Newtonian fluids, a number of investigations have been made in that area by using the lubrication theory
of Benney [7,8] as well as Shkadov’s method [9,10]. However, similar limitations to those described above were also
encountered when non-Newtonian effects are included. To cure these limitations, we extend the idea developed in [6]
for Newtonian fluids to derive a new system of two evolution equations valid up to moderate Reynolds numbers. It
will be seen that the derived system is similar to that of Shkadov with slightly different coefficients and is nothing but
the BE close to the instability threshold. Marginal stability results will be presented to illustrate the accuracy of the
modelling.

2. Governing equations

The physical model of the problem is depicted in Fig. 1. A power law liquid of constant density ρ, consistency K

and index n, flows under gravity along an infinitely long flat plate which is inclined at an angle β to the horizontal.
A coordinate system (x, y) is adopted with x as the downstream coordinate and y being measured normal to the plate.
The surface tension coefficient between the liquid and the surrounding passive medium (with presume pa = 0), is σ

Fig. 1. Schematic of the problem.
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and the acceleration due to gravity is g. Denoting by v = (u, v), p and τ the velocity field, the pressure and the stress
tensor, conservation of mass and momentum then read:

div v = 0 (1)

ρ(∂t + v · grad)v = −gradp + divτ + ρg (2)

where τ = 2Kγ̇ n−1d with γ̇ = √
2dij dij being the second invariant of the strain rate tensor d. The index n indicates

the degree of the non-Newtonian behavior and the greater is the departure from unity the more pronounced are the
non-Newtonian effects, n < 1 corresponds to shear thinning (pseudoplastic) behavior while n > 1 represents shear
thickening (dilatant) behavior. The above equations are subject to the boundary conditions

on y = 0, u = v = 0 (3)

on y = h(x, t), ht + uhx − v = 0 (4)

(−p + σ div n)n + τ · n = 0 (5)

Expressing no slip on the rigid plate, the impermeability of the free surface y = h(x, t) and equilibrium of all forces
acting on it respectively, n being the unit normal vector to the free surface. To remove dimensions, we scale lengths
transverse to the film by the mean film thickness h0 and distances downslope by a typical wavelength l. The streamwise
velocity u and the transverse velocity v are referred to the depthwise average velocity um and εum respectively,
ε = h0/l being the small gradient parameter. Time and pressure are in units of l/um and Kun

m/εhn
0 respectively. We

then set

x̂ = x/l, ŷ = y/h0, û = u/um, v̂ = v/εum, t̂ = tum/l, p̂ = εphn
0/

(
Kun

m

)
Making use of the shallow flow approximation which amounts to taking ε � 1 and keeping the other parameters order
one or higher, Eqs. (1), (2) become, after a little algebra

ux + vy = 0 (6)

Re ε(ut + uux + vuy) = −px + (
un

y

)
y

+ G (7)

py + εG cotβ = 0 (8)

where only terms up to first order in ε are retained, the hat decoration is dropped for convenience, Re = ρhn
0u2−n

m /K

is the Reynolds number and G = ( 2n+1
n

)n. Introducing the flow rate q = ∫ h

0 udy, the kinematic free surface condition
may be rewritten in the form

qx + ht = 0 (9)

The normal and tangential balances at the free surface are then reduced to

uy = 0 (10)

p = −εWhxx (11)

where W is the surface tension parameter defined as W = ε2 ReWe, We = σ/ρh0u
2
m being the Weber number. Note

that We is large in practical applications so that W = O(1). Integrating Eq. (8) and using the condition (11) allows to
eliminate the pressure in Eq. (7) which then takes the form

ε
{
Re(ut + uux + vuy) + G cotβhx − Whxxx

} = (
un

y

)
y

+ G (12)

The problem at hand is now described by the system (6), (9) and (12) along with the boundary conditions (3) and (10).

3. Derivation of the model

First, we note that the base flow velocity corresponding to the undisturbed flat film has the form

ub = n
G1/n

{
1 − (1 − y)1+1/n

}
(13)
n + 1
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and the dimensional depthwise average velocity is found as

um =
(

ρg sinβ

KG

)1/n

h
1+1/n

0 (14)

Since q appears in Eq. (9) as a basic variable in the same way as the film thickness, it seems quite natural to transform
Eq. (12) to obtain another equation for these two variables. This can be done in the following manner. First, let us
substitute to the coordinate y the similarity variable z = 1 − y/h(x, t) which maps the film into a strip and assume
the velocity profile in the form

u = a(x, t)f0(z) + εu∗
1 (15)

where f0(z) = 1 − z1+1/n and u∗
1 indicates the first order correction of u. As it will be seen later on, the explicit form

of u∗
1 is not required at all. Then, integrating Eq. (15) through the film depth allows to eliminate the coefficient a(x, t)

in favor of q and to rewrite Eq. (15) as

u = u0 + εu1 (16)

where u0 = 2n+1
n+1

q
h
f0(z) and u1 = u∗

1 − ( 2n+1
n+1

∫ 1
0 u∗

1 dz)f0(z). Note that u0 and u1 are such that
∫ h

0 u0 dy = q and∫ h

0 u1 dy = 0. Following the Shkadov procedure, a direct integration of Eq. (12) transforms the dissipative term into
−τn

w , τw being the wall shear which, according to (16), reads

τw = 1

h

(
2n + 1

n

q

h
− εu1z|z=1

)
(17)

Note that the viscous term is the only one where that correction must be taken into account for consistency. In the
Shkadov model, the first order correction of the wall shear is neglected, which makes the model inaccurate near the
stability threshold. The way to correct this defect is to introduce a suitable weighting function F(z) in order to avoid
an explicit introduction of u1. Hence, integrating Eq. (12) and performing two successive integrations by parts of the
viscous term gives

ε

{
Re

h∫
0

(u0t + u0u0x + v0u0y)F dy + (G cotβhx − Whxxx)

h∫
0

F dy

}

= G

h∫
0

F dy + [
un

yF
]h

0 − [
(u0 + nεu1)u

n−1
0y Fy

]h
0 +

h∫
0

(u0 + nεu1)
(
un−1

0y Fy

)
y

dy (18)

The integration is carried out by writing, owing to (16), un
y = un−1

0y (u0y +nεu1y)+ O(ε2). Now, it can be seen that
the correction u1 can be eliminated from the calculation by simply choosing a suitable function F , such that

F |y=0 = 0, un−1
0y Fy

∣∣
y=h

= 0,
(
un−1

0y Fy

)
y

= −w(x, t) (19)

where w(x, t) is some convenient function that will be specified later on. With the relations
∫ h

0 u0 dy = q and∫ h

0 u1 = 0 in mind, the right-hand side of (18) then reduces to G
∫ h

0 F dy − qw. From the second and third condi-
tions in (19), one obtains, owing to expression of u0

n + 1

n
G1−1/n qn−1

h2n
Fy = wf0y (20)

This equation is satisfied by setting w = n+1
n

G1−1/n qn−1

h2n and therefore F = f0. Thus Eq. (18) takes the final form

qn

h2n
− h

{
1 + ε

(
W

G
hxxx − cotβhx

)}
+ 2ε

Re

G

2n + 1

3n + 2

{
qt + 11n + 6

4n + 3

qqx

h
− 3

2n + 1

4n + 3

q2

h2
hx

}
= 0 (21)

When added to (9), Eq. (21) completes our first order modified Shkadov model for the two unknowns h and q . It has
the same structure as the Shkadov’s one that writes (see [9])

qn

h2n
− h

{
1 + ε

(
W

G
hxxx − cotβhx

)}
+ 2ε

Re

G

2n + 1

3n + 2

{
qt +

(
q2

h

) }
= 0 (22)
x
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but with slightly different coefficients arising from a better account of inertia terms. Now, assume q = q0 + εq1, we
obtain at zeroth and first order respectively

q0 = h2+1/n (23)

q1 = h2+1/n

n

{(
2

ReG2/n−1

3n + 2
h1+2/n − cotβ

)
hx + W

G
hxxx

}
(24)

which, when replaced in Eq. (9) gives the following Benney equation (see [8])

ht +
{
h2+1/n + ε

n

[(
W

G
hxxx − cotβhx

)
h2+1/n + 2 Re

3n + 2
G2/n−1h3/n+3hx

]}
x

= 0 (25)

4. Conclusion

A system of two evolution equations is given for a thin film flow of a power law liquid down an inclined plane. The
derivation is based on an expansion at first order in streamwise gradient in order to recover asymptotic results close to
the instability threshold. The model however ignores some important physical effects such as dispersion introduced by
viscosity and therefore is inappropriate to describe solitary waves. For that reason, a second order model is required.
This investigation is in progress.

References

[1] D.J. Benney, Long waves on liquid films, J. Math. Phys. 45 (1966) 150–155.
[2] T. Ooshida, Surface equation of falling film flows with moderate Reynolds number and large by finite Weber number, Phys. Fluids 11 (1999)

3247–3269.
[3] M.K.R. Panga, V. Balakotaiah, Low dimensional models for vertically falling viscous films, Phys. Rev. Lett. 90 (15) (2003) 1–3.
[4] C. Ruyer-Quil, P. Manneville, Improved modeling of flows down inclined planes, Eur. Phys. J. B 15 (2000) 357–369.
[5] V.Y. Shkadov, Wave conditions in the flow of thin layer of a viscous liquid under the action of gravity, Izv. Akad. Nauk SSSR Mekh. Zhidk.

Gaza 1 (1967) 43–51.
[6] C. Ruyer-Quil, P. Manneville, Comment on ‘Low dimensional models for vertically falling viscous films’, Phys. Rev. Lett. (2004) 199401.
[7] J.S. Lin, C.C. Hwang, Finite amplitude long-wave instability of power-law liquid films, Int. J. Non-Lin. Mech. 35 (2000) 769–777.
[8] S. Miladinova, G. Lebon, E. Toshev, Thin-film flow of a power-law liquid falling down an inclined plate, J. Non-Newtonian Fluid Mech. 122

(2004) 69–78.
[9] B.S. Dandapat, A. Mukhopadhyay, Waves on the surface of a falling power-law fluid film, Int. J. Non-Lin. Mech. 38 (2003) 21–38.

[10] G.M. Sisoev, B.S. Dandapat, K.S. Matveyev, A. Mukhopadhyay, Bifurcation analysis of the travelling waves on a falling power-law fluid film,
J. Non-Newtonian Fluid Mech. 141 (2007) 128–137.


	A modified Shkadov's model for thin film flow of a power law fluid over an inclined surface
	Introduction
	Governing equations
	Derivation of the model
	Conclusion
	References


