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Abstract

Heating of solids, e.g. by friction or welding, plays an important role in the thermomechanical behaviour of materials. An
analytical model to compute the three-dimensional temperature distribution in a solid, subjected to a moving rectangular heat
source with surface cooling is proposed in this article. A frequential integral transform and a finite cosine Fourier integral transform
are used to solve the advection–diffusion equation related to this problem. The obtained solution is explicit and does not impose
any restriction on the speed, the dimensions and the heat convection coefficient. It is presented in series form which converges
rapidly. To cite this article: T. Osman, A. Boucheffa, C. R. Mecanique 337 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Solution analytique pour la conduction en régime permanent 3D dans un solide soumis à une source de chaleur rectan-
gulaire mobile et à un refroidissement surfacique. L’échauffement des solides sous l’action du frottement ou du soudage par
exemple joue un rôle important dans le comportement thermomécanique des matériaux. Nous proposons dans cet article un modèle
analytique pour le calcul de la répartition tridimensionnelle de la température dans un solide soumis à une source de chaleur rec-
tangulaire mobile et à un refroidissement surfacique. On utilise une transformée intégrale fréquentielle et une transformée intégrale
de Fourier cosinus finie pour résoudre l’équation d’advection–diffusion associée à ce problème. La solution obtenue est explicite
et n’impose aucune restriction en termes de vitesse, de dimensions et de coefficient d’échange. Elle se présente sous la forme de
séries qui convergent rapidement. Pour citer cet article : T. Osman, A. Boucheffa, C. R. Mecanique 337 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

The temperature distribution in a solid, subjected to localised heating, plays an important role in its thermomechan-
ical behaviour. Indeed, the temperature gradients due to such heating lead to mechanical stresses which can damage
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Fig. 1. Physical model.

Fig. 1. Modèle physique.

the concerned systems (fissures, . . . ). This is the case, e.g., in braking systems or material forming (rolling processes,
forging, . . . ). Other industrial applications, such as welding or laser treatment necessitate a good control of the tem-
perature distribution. Therefore, the temperature determination for given operating conditions is needed for the design
of systems as well as the interpretation of their behaviour.

Some models to determine the temperature of solids subjected to a moving heat sources have been developed in
the literature [1–6]. The influence of geometry has been also examined [7]. For fast phenomena, some precautions are
needed to carry out the numerical computation [8,9]. Some authors are concerned with the effect of thermal contact
between solids through a rough interface [10–13]. In certain industrial applications, the solids are covered with a thin
film. The effect of coating nature and the source speed were studied in Ref. [14]. Inverse techniques were used to
estimate the heat flux generated by friction and its location at the interface [15].

The models developed in the literature are often applied to semi-infinite solids with one or more heat sources, but
without surface cooling. This cooling should be taken into consideration, since it plays an important role on the solid
surface temperature levels.

An analytical solution is proposed in this article to compute the three-dimensional temperature field in a solid,
subjected to a moving rectangular heat source and surface cooling. A circular or elliptical shaped source can be easily
approached by using, respectively, a square or a “long” rectangle geometry. No restrictions are imposed on the source
speed, the dimensions and the heat convection coefficient.

2. Description of the problem

Consider a solid of width d and dimensions 2A×2B in the xy-plane as shown on Fig. 1. This solid is subjected to a
rectangular heat source of dimensions 2a × 2b, located at z = 0. The source dissipates a uniform heat flux of constant
density ϕ. The solid is moving in the x-direction with a constant speed V relative to the source. The surface 2A× 2B ,
at z = 0, is entirely cooled by convection of coefficient h. This surface is subjected to an ambient temperature T = 0
whereas the surface z = d is maintained at the same temperature T = 0. The side surfaces y = ±B are adiabatic
while the surfaces x = ±A are subjected to periodic conditions. This is the case, e.g., of rolling processes and roller
bearings.

The solid thermal conductivity λ and thermal diffusivity α are assumed to be independent of the local temperature.



T. Osman, A. Boucheffa / C. R. Mecanique 337 (2009) 107–111 109
3. Mathematical model and solution

A steady state three-dimensional heat advection–diffusion model is considered with the following governing equa-
tions:
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In Eq. (1), the term V
α

∂T
∂x

represents the energy transport phenomena due to the solid movement in the x-direction
relative to the source. This term plays an important role on the heat diffusion in the solid. Indeed, when the speed
V = 0, the problem becomes symmetric and the diffusivity α does not interfere. When V �= 0, the diffusivity becomes
an important parameter in the solution. When V → ∞, it can be seen from Eq. (1) that the temperature becomes
independent of the movement direction x: ∂T

∂x
→ 0.

Taking into account the periodic conditions expressed by Eq. (2), a frequential integral transform can be applied to
Eqs. (1)–(4) such as:

T̃m = 1

2A

A∫
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T e−jmπx/A dx (5)

where j is an imaginary unit.
The symmetry conditions in the y-direction, expressed by Eq. (3), allow us to use the finite cosine Fourier integral

transform:
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The double transformation of T leads to the following simple second order differential equation:
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Two cases should be noted to build up the solution of Eq. (1a). The first one is that when m = 0 and n = 0 (i.e. γ = 0).
In this case, the solution is linear and represents the bulk temperature. The second case is concerned with m �= 0 and/or
n �= 0 (i.e. γ �= 0), which represents the fluctuating term.

The solution of Eq. (1a), with the boundary conditions (4a), is given by:
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Fig. 2. Dimensionless temperature at y = 0 and z = 0 for: A/B = 1, a/b = 1, a/A = 0.01, d/A = 1.

Fig. 2. Température adimensionnelle en y = 0 et z = 0 pour : A/B = 1, a/b = 1, a/A = 0.01, d/A = 1.

The expression for T (x, y, z) can then be obtained by using the following inverses integral transforms:
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with: εk = 1 (for: k = 0) and εk = 2 (for: k = 1,2, . . . ,∞).
We get:
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The analytical solution given by Eq. (1d) is explicit and does not necessitate any iterative calculation. It contains two
simple series and one double series, all of them are infinite. The number of terms necessary to ensure the convergence
of these series depends on the geometric ratios a/A and b/B . This number increases if the geometric ratios are small.
For example, if the surface ratio is less than 10−4 so, about 1000 terms would be needed to attain the convergence.
On the other hand, only 50 terms are needed if the surface ratio is greater than 10−2.

When V = 0, γmn and ˜̃
T mn become real. In this case, the solution is the same as that given by Eq. (1d) with the two

terms �e{ ˜̃
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jmπx/A} and �e{ ˜̃
T mne

jmπx/A} respectively replaced by ˜̃
T m0 cos(mπx/A) and ˜̃
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When V → ∞, the two terms �e{ ˜̃
T m0e

jmπx/A} and �e{ ˜̃
T mne

jmπx/A} approach zero. The temperature becomes
independent of the x-direction. This situation is similar to a solid subjected to a strip source of width 2b covering the
range [−A,+A].

Fig. 2 shows an example of the dimensionless surface temperature evolution at y = 0 for different dimensionless
speed V a/α. The other parameters are fixed as follows: A/B = 1, a/b = 1, a/A = 0.01, d/A = 1, ha/λ = 0.05.
It can be noted that the dimensionless surface temperature T/(ϕa/λ) is higher for small values of V a/α. Also, by
increasing V a/α, the maximum dimensionless surface temperature moves towards the contact exit, i.e. x/a = 1. This
tendency is coherent with the results presented in [5].
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4. Conclusions

Many industrial systems such as those of power transmission, braking, material forming, machining, etc. are
subjected to local friction and surface cooling. The analytical solution presented in this paper allows – in a simple
way – the determination of temperatures and their gradients at any point in the solid, without restriction on the speed
and the surface exchange. In this solution, the difficulties related with a 3D numerical calculations, are avoided.
Indeed, a numerical solution necessitates particular precautions due to the relative motion and the relatively small
dimensions of the heat source. The infinite series converges rapidly, usually with small number of terms. Due to the
simplicity of this solution, it can be implemented in a thermomechanical computational code to calculate the stress
and deformation fields in a solid.
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