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Abstract

We present a simple algorithm to refine a finite volume bidimensional mesh admissible to solve elliptic or parabolic partial
differential equations. The approximation of the Laplace operator reduces to the one of the normal fluxes along the edges of control
volumes. These normal fluxes can be computed in a consistent way by a classical two points flux approximation simple if the
mesh is admissible in the finite volume sense. The originality of the mesh refinement technique that we propose, is to preserve
the admissibility property of the meshes. Therefore it can be used in a wide classic context. To cite this article: F. Hubert, M.-C.
Viallon, C. R. Mecanique 337 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Algorithme de raffinement de maillage volumes finis admissible. On présente un algorithme simple de raffinement de
maillage bidimensionnel de type volumes finis adapté à la résolution d’équations aux dérivées partielles elliptiques ou parabo-
liques. L’approximation du Laplacien se ramène à celle de flux normaux sur les arêtes des volumes de contrôle. Le calcul du flux
est simple si on choisit les centres des mailles de telle sorte que la droite qui joint deux centres voisins soit toujours orthogonale
à leur arête commune (maillage admissible). Le processus de raffinement proposé est original car il permet la construction d’un
maillage admissible pouvant être utilisé dans un cadre classique très répandu. Pour citer cet article : F. Hubert, M.-C. Viallon,
C. R. Mecanique 337 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

We are interested in two-dimensional boundary value problems in which the Laplace operator is used, that is to say
elliptic or parabolic problems. For simplicity, let us consider the Laplace problem:

−�u(x, y) = f (x, y), (x, y) ∈ Ω (1)

(we don’t give any boundary condition to be short), where Ω is an open bounded polygonal subset of R
2, f is a

regular function defined on Ω . We discretize (1) by the finite volume method. Let T be a mesh of Ω such that
Ω̄ = ⋃

K∈T K̄,K being open polygonal convex subsets of Ω . We denote by P a family of points of Ω, P = (xK)K∈T .
We will refer to xK as the center of K .

The principle of the finite volume method is to integrate (1) over each cell K of the mesh. This yields:

−
∫

∂K

gradu.nK =
∫

K

f (2)

where nK is the normal to the boundary ∂K , outward to K . Let uK denote an approximation of u(xK). If K and L are
two adjacent control volumes, if σK/L is the common edge and m(σK/L) its length, and dK/L is the distance between
the center of the cells K and L, then, the approximation of the normal flux

−
∫

σK/L

gradu.nK � −m(σK/L)
uL − uK

dK/L

(3)

gives a conservative and consistent approximation of the flux if the mesh is admissible, that means xK �= xL and the
straight line going through xK and xL is orthogonal to σK/L (see [1,2]). This two point flux approximation (TPFA) is
not consistent along any edge that does not satisfy the orthogonality condition see [3,9]. If theses “atypical edges” are
located along a curve, it is proved in [4] that this TPFA still converges with an order 1

2 instead of the order 1 classically
obtained on admissible mesh. In general the scheme no more converges. In particular, the meshes refined by AMR
(Automatic Mesh Refinement) are in general not admissible (see [5,6]) and can not be used with a TPFA scheme.

To cope with this problem, several finite volume approach have been developed within the last 10 years. These
methods are all computationally more expensive because of the use of additional unknowns. In return these methods
can be used to approximate anisotropic diffusion. A comparison of all these new techniques can be found in [7].

We present in Section 2 a new refinement technique (NRT) of unstructured meshes that connects a coarse Cartesian
grid and a fine Cartesian grid and respects the admissibility of the mesh. The refined mesh that we obtain is an
admissible mesh and can be used to approximate a diffusion problem with the TPFA scheme with a low cost. Note
that the NRT can be used to connect any kind of meshes, even unstructured meshes. We compare in Section 3 the
TPFA method on the NRT mesh, on Voronoi meshes and on non-admissible meshes. The NRT meshes reveal to be
very efficient for the diffusion approximation.

2. The New Refinement Technique – NRT meshes

Let (h, l, s) ∈ R
∗3+ , h � l. Let F = (−l,− l

2 ] × (− l
2 , l

2 ), R = (− l
2 ,0] × (− l

2 , l
2 ), and C = (0, s) × (− l

2 , l
2 ). We

assume F ∪ R ∪ C ⊂ Ω . The fine zone F is discretized with a fine grid (mesh size equal to h) whereas C is meshed
with a coarse grid (mesh size l). We want to connect these two grids with an admissible mesh in the buffer zone R.
For sake of simplicity, we assume l (resp. s) is divisible by h (resp. l) and l

h
is an even integer. We set l

h
= 2n,n ∈ N

∗.
We will construct the cells in a symmetrical way on both sides of the x axis. That is why in the sequel, we will just
consider one part of R corresponding to y > 0.

Let S be the set of squared cells of size h, and H be the set of rectangular isosceles triangles of size h. We denote
by S -cell an element of S , and HS-cell an element of H (“half” S-cell). Let us define S− = (0,− l

2 ), S+ = (0, l
2 ). Let

K0 be the isosceles triangle ((−h,0), S−, S+). Let A be the set of triangles whose S+ is one vertex, with an horizontal
or vertical side or a side parallel to the bisecting line.

The NRT algorithm strategy consists in using in the buffer zone R as many S - and HS-cells as possible near the
fine zone F .
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Fig. 1. From left to right: Non-admissible (a) and admissible (b) construction of an S -cell. Non-admissible (c) and admissible (d) construction of
an HS-cell.

2.1. Admissible connexion between an A-cell and S - or HS-cells

We first try to connect K0 to a S -cell or to a HS-cell through a A-cell. We choose xK0 = (0,0).

Definition 2.1. Let K ∈ A, xK ∈ K . We say that the cell K can be connected to J ∈ S ∪ HS in an admissible way
through a A-cell J1, if K and J have a common vertex S, K (resp. J ) and J1 have a common edge σKJ1 (resp. σJJ1 ),
and there exist xJ ∈ J and xJ1 ∈ J1 such that the construction is admissible.

Lemma 2.2. Let K ∈ A and xK ∈ K its center and J ∈ S ∪ HS. Assume that S is a common vertex of K and J and
note σ an edge of K such that S ∈ ∂σ . We introduce DKσ the line going through the point xK perpendicular to σ and
D0

S the horizontal line going through the point S. The point I denotes the intersection DKσ ∪ D0
S . We set r = h

SI
and

αKσ the angle between D0
S and DKσ . The cell K can be connected through a A-cell J1, to J ∈ S (resp. J ∈ HS) if

αKσ � Arctan(r) (resp. if Arctan( r
2 ) � αKσ < Arctan(r)).

If the cell K ∈ A can not be connected to an S -cell or HS-cell (i.e. αKσ < Arctan( r
2 )), we construct a new cell

J1 ∈ A with an horizontal side of size h and try again to connect this cell to an S - or HS-cell.
In Figs. 1(a) and 1(c), the cell K0 can not connected neither to a S nor a HS, the angle αK0σ0 is too small. The

examples Figs. 1(b) and 1(d), exhibit successful connections.
In particular in the case n = 5, we can not be connected, at the very beginning of the process, the cell K0 to an

S -cell nor to an HS-cell (indeed r0 = 1 and αK0σ0 < Arctan(1/2)). We introduce a new cell K1 in A whose vertice
are (−2h,0), S+, (−h,0) (see Fig. 2(a) and notations of Lemma 2.2). For any choice of the point xK1 ∈ DK0σ0 , we
observe that the new angle αK1σ1 is still small (but r1 = 5

6 with for instance xK1 = (− 8
5h, 8

25h)). So we construct
another cell K2 in A on the left of K1 and so on. We remark at each step the angle αKiσi

increases while the ratio
ri becomes smaller. Remark, on Fig. 2(a), that Arctan( r2

2 ) � αK2σ2 < Arctan(r2) so that K2 can be connected to an
HS-cell.

2.2. Refinement algorithm

Let us define A
j
i = (−ih, jh) for i = 1, . . . ,2n and j = −n, . . . , n. K0 is the triangle (A0

1, S−, S+).

– Initialization step. We define K0
0 = K0. Set i0

max = 0, j = 1.

– Main step. While i
j−1
max � n − 2, we proceed as follows:

• Step 1. Set i = i
j−1
max for short. Assume that K

j−1
i and its center x

K
j−1
i

are already constructed. We natu-

rally introduce an angle α
j−1 and a ratio r

j−1 following Lemma 2.2. If K
j−1 can be connected to an S -
i i i
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Fig. 2. Comparison of the NRT refined grid and the Voronoi mesh associated to the same nonconformal grid.

or HS-cell then we pass to step 2. Otherwise, if α
j−1
i < Arctan(

r
j−1
i

2 ), we construct K
j−1
i+1 ∈ A, the triangle

(S+,A
j−1
i+1 ,A

j−1
i+2 ), and define its center x

K
j−1
i+1

to be any point of D
j−1
i ∩ K

j−1
i+1 and set i

j−1
max = i + 1.

• Step 2. Thanks to step 1, the cell K
j−1

i
j−1
max

can be connected to an S - or HS-cells through the new cell K
j

i
j
max

. Set

again i = i
j−1
max for short.

� If Arctan(
r
j−1
i

2 ) � α
j−1
i < Arctan(r

j−1
i ), then i

j
max = i + 1, K

j

i
j
max

= (S+,A
j−1
i+1 ,A

j

i+2) and K
j−1
i is con-

nected to the HS-cell HS
j−1
i+1 = (A

j−1
i+1 ,A

j−1
i+2 ,A

j

i+2).

� If α
j−1
i � Arctan(r

j−1
i ), then i

j
max = i, K

j

i
j
max

= (S+,A
j−1
i+1 ,A

j

i+1), and K
j−1
i is connected to the S -cell

S
j−1
i+1 = (A

j−1
i+1 ,A

j−1
i+2 ,A

j

i+2,A
j

i+1).

We complete the connexion at the “level” y = (j − 1)h by the S -cells S
j−1
k+1 = (A

j−1
k+1,A

j−1
k+2,A

j

k+2,A
j

k+1) for
k = i + 1, . . . , n − 2.
We choose the centers x

K
j

i
j
max

in K
j

i
j
max

∩D
j−1
i and the centers of the S -cells of level j −1 to be on the horizontal

line going through x
K

j

i
j
max

(respectively x
HS

j−1
i+1

) if α
j−1
i � Arctan(r

j−1
i ) (respectively if α

j−1
i < Arctan(r

j−1
i ),

and x
HS

j−1
i+1

such that x
K

j

i
j
max

x
HS

j−1
i+1

and A
j−1
i+1 ,A

j

i+2 are orthogonal). j = j + 1.

– Final step. While j � n, we complete the connexion with A-cells K
j

n−1 = (S+,A
j−1
n ,A

j
n) with centers on the

lines D
j−1
n−1 .

Remark 1. Of course, any unstructured mesh may be connected on Fig. 2(a). The method could be generalized in the
tridimensional case by a simple geometric process.

3. Numerical tests

We consider Eq. (1) with homogeneous Dirichlet boundary conditions on the domain Ω = ]−1,1[ × ]−1,1[. The
source term f is chosen in such a way that ue(x, y) = (1 − x2)(1 − y2) is solution of this problem. We compare in
the sequel the TPFA approximation on NRT, Voronoi and non-admissible meshes.

3.1. The meshes

Let N ∈ N
∗. We want to connect a coarse square grid (mesh size 1

N
) on Ω ∩ {x � 0}, to a fine grid on Ω ∩ {x <

− 1 } (mesh size h = 1 ).
2N 2nN
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Fig. 3. The meshes corresponding with N = 2.

In the “buffer” domain Ω ∩ { −1
2N

� x � 0}, we repeat 2N times the NRT construction according to the value of the
parameter n as far the NRT meshes are concerned. For the non-admissible grids, the fine grid is naturally extended
to Ω ∩ {x < 0}. For the Voronoi meshes, recall that the construction of the mesh consists to determine polygonal
regions around some finite set of given point-sites. We construct here the dual mesh whose point-sites coincide with
the vertices of the NRT meshes (see [8]).

The three different meshes corresponding with N = 2, n = 1, n = 2 and n = 5, are shown on Fig. 3. A zoom of the
buffer zone is proposed for the case n = 5 in Figs. 2(a) and 2(b). For n = 1, the Voronoi and NRT meshes coincide.
For n = 2, the cells of the two meshes are the same, but the centers of the cells are different.

3.2. The comparison

We compare in Fig. 4 the relative error between the two functions

uT =
∑
K∈T

uK1K and uT
e =

∑
K∈T

ue(xK)1K

for the above family of meshes (Fig. 3) as a function of the fine mesh size
√

2h.
Table 1 shows that we obtain a similar order of convergence on both NRT and Voronoi meshes, whereas, as

predicted by the theory, the TPFA scheme is less precise on non-admissible meshes. If we compare more carefully the
errors on NRT and Voronoi meshes, Fig. 4 shows that the NRT meshes provided a more precise solution. Note also
that on coarse grids the non admissible meshes gives in L2 norm the more precise results. When n = 5, let remark that
the order of convergence of the scheme is not improved when we use, as shown on Fig. 2(c), the Voronoi mesh with
a larger “buffer” zone Ω ∩ { −1

2N
� x � 1

N
}, by adding the points of the coarse grid whose abscissa is 1

N
in the set of

point-sites (1,438 in H 1 norm).
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Fig. 4. Relative error obtained for the TPFA scheme on the different meshes.

Table 1
Order of convergence.

NRT/Voronoi
n = 1

NRT
n = 2

NRT
n = 5

Non-adm
n = 1

Non-adm
n = 2

Non-adm
n = 5

Voronoi
n = 2

Voronoi
n = 5

L∞-norm 1.936 1.961 1.975 1.229 0.980 0.913 1.902 1.955
L2-norm 1.990 1.990 1.993 1.890 1.571 1.463 1.982 2.056
H 1-norm 1.496 1.483 1.499 0.873 0.814 0.766 1.489 1.477

4. Conclusion

The construction we proposed is very simple and gives better results than a non-admissible mesh. It is a valuable
alternative to Voronoi meshes that are less easy to construct and fit not well narrow “buffer” domains between two
grids of different size.
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