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Nonlinear waves in a multilayer system
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Abstract

The joint action of buoyant and thermocapillary mechanisms of instability in a multilayer system, is investigated. The nonlinear
convective regimes are studied by the finite difference method. The periodic boundary conditions on the lateral boundaries, are con-
sidered. It is found that the competition of both mechanisms of instability may lead to the appearance of a buoyant–thermocapillary
traveling wave and a modulated traveling wave. To cite this article: I.B. Simanovskii et al., C. R. Mecanique 337 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Convective phenomena in fluid systems with an interface have been a subject of an extensive investigation (for a
review, see [1,2]). The description of the interfacial convection is based on different models. The simplest, “one-layer”
model, considers the air/liquid interface as a “free surface”. In reality, “the free surface” is a simplified description
of an interface between a liquid and a gas. When the “one-layer” approach is applied, the full problem for the liquid
motion and for the heat/mass transfer is formulated only in the liquid phase, whereas the influence of the gas phase is
described in a phenomenological way by means of the Biot number.

The one-layer approach is insufficient for the description of many phenomena caused by processes in fluids on both
sides of the interface [2]. These phenomena cannot be understood without an analysis of the interfacial hydrodynamic
and thermal interaction between both fluids. The more exact approach is the “two-layer approach” when equations
and boundary conditions are written on both sides of the interface. This approach is used in the present Note.

There are two basic physical phenomena that produce convective instability in systems with an interface: buoyancy
and thermocapillary effect. When heating is from below, the buoyancy instability generates the Rayleigh–Bénard
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convection [3], while the thermocapillary effect is the origin of the Marangoni–Bénard convection [4,1]. The case
where both effects act simultaneously, is the most typical.

One of the interesting phenomena caused by the joint action of buoyancy and thermocapillary effect is the appear-
ance of the oscillatory instability of the mechanical equilibrium by heating from below. This phenomenon was first
discovered in the case of a two-layer system [5,1,6]. A similar phenomenon under the joint action of both mechanisms
of instability in the multilayer system with free or rigid heat-insulated lateral boundaries, has been studied in [7]. Only
regimes of standing waves have been found in [7].

In the present Note, we investigate the joint action of buoyant and thermocapillary mechanisms of instability in
multilayer system air–ethylene glycol–fluorinert FC75 with periodic boundary conditions on lateral boundaries. It
is found that the competition of both mechanisms of instability may lead to the development of nonlinear buoyant–
thermocapillary traveling wave and modulated traveling wave.

2. General equations and boundary conditions

Let the space between two rigid horizontal plates be filled by three immiscible viscous fluids with different physical
properties (see Fig. 1). The equilibrium thicknesses of the layers are am, m = 1,2,3. The mth fluid has density
ρm, kinematic viscosity νm, dynamic viscosity ηm = ρmνm, thermal diffusivity χm, heat conductivity κm and heat
expansion coefficient βm. The surface tension coefficients on the upper and lower interfaces, σ and σ∗, are linear
functions of temperature T : σ = σ0 −αT , σ∗ = σ∗0 −α∗T . The acceleration due to gravity is g. The horizontal plates
are kept at different constant temperatures. The system is heated from below, and the overall temperature drop is θ .

We define

ρ = ρ1

ρ2
, ν = ν1

ν2
, η = η1

η2
= ρν, χ = χ1

χ2
, κ = κ1

κ2
, β = β1

β2
, a = a2

a1

ρ∗ = ρ1

ρ3
, ν∗ = ν1

ν3
, η∗ = η1

η3
= ρ∗ν∗, χ∗ = χ1

χ3
, κ∗ = κ1

κ3
, β∗ = β1

β3
, a∗ = a3

a1
, ᾱ = α∗

α

As the units of length, time, velocity, pressure and temperature we use a1, a2
1/ν1, ν1/a1, ρ1ν

2
1/a2

1 and θ . The
complete nonlinear equations governing convection are then written in the following dimensionless form:

∂vm

∂t
+ (vm · ∇)vm = −em∇pm + cm�vm + bmGTme (1)

∂Tm

∂t
+ vm · ∇Tm = dm

P
�Tm (2)

∇vm = 0, m = 1,2,3 (3)

Fig. 1. Geometrical configuration of the three-layer system and coordinate axes.
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where e1 = c1 = b1 = d1 = 1, e2 = ρ, c2 = 1/ν, b2 = 1/β , d2 = 1/χ , e3 = ρ∗, c3 = 1/ν∗, b3 = 1/β∗, d3 = 1/χ∗;
� = ∇2, G = gβ1θa3

1/ν2
1 is the Grashof number, and P = ν1/χ1 is the Prandtl number, e is the unit vector of the

axis z.
The boundary conditions on the rigid boundaries are:

v1 = 0, T1 = 0 at z = 1 (4)

v3 = 0, T3 = 1 at z = −a − a∗ (5)

We assume that the interfaces between fluids are flat and situated at z = 0 and z = −a, and put the following system
of boundary conditions: at z = 0:

∂v1x

∂z
− η−1 ∂v2x

∂z
− M

P

∂T1

∂x
= 0,

∂v1y

∂z
− η−1 ∂v2y

∂z
− M

P

∂T1

∂y
= 0 (6)

v1x = v2x, v1y = v2y, v1z = v2z = 0 (7)

T1 = T2 (8)
∂T1

∂z
− κ−1 ∂T2

∂z
= 0 (9)

at z = −a:

η−1 ∂v2x

∂z
− η−1∗

∂v3x

∂z
− ᾱM

P

∂T3

∂x
= 0, η−1 ∂v2y

∂z
− η−1∗

∂v3y

∂z
− ᾱM

P

∂T3

∂y
= 0 (10)

v2x = v3x, v2y = v3y, v2z = v3z = 0 (11)

T2 = T3 (12)

κ−1 ∂T2

∂z
− κ−1∗

∂T3

∂z
= 0 (13)

Here M = αθa1/η1χ1 is the Marangoni number.
The boundary value problem given above has a solution:

vm = 0, m = 1,2,3 (14)

T1 = T 0
1 = − (z − 1)

1 + κa + κ∗a∗
(15)

T2 = T 0
2 = − (κz − 1)

1 + κa + κ∗a∗
(16)

T3 = T 0
3 = −κ∗z − 1 + (κ∗ − κ)a

1 + κa + κ∗a∗
(17)

corresponding to the mechanical equilibrium.

3. Nonlinear approach

In the present Note, we simulate two-dimensional finite-amplitude flows in a finite region −l/2 � x � l/2, −a2 −
a3 � z � a1 (see Fig. 1). We introduce the stream function ψm and the vorticity φm,

vm,x = ∂ψm

∂z
, vm,z = −∂ψm

∂x

φm = ∂vm,z

∂x
− ∂vm,x

∂z
(m = 1,2,3)

and rewrite Eqs. (1) and (2) in the following form:

∂φm

∂t
+ ∂ψm

∂z

∂φm

∂x
− ∂ψm

∂x

∂φm

∂z
= dm�φm + bmG

∂Tm

∂x
(18)

�ψm = −φm (19)
∂Tm + ∂ψm ∂Tm − ∂ψm ∂Tm = cm

�Tm (m = 1,2,3) (20)

∂t ∂z ∂x ∂x ∂z P
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At the interfaces normal components of velocity vanish and the continuity conditions for tangential components of
velocity, viscous stresses, temperatures, and heat fluxes also apply:

z = 0: ψ1 = ψ2 = 0,
∂ψ1

∂z
= ∂ψ2

∂z
, T1 = T2 (21)

∂T1

∂z
= 1

κ

∂T2

∂z
,

∂2ψ1

∂z2
= 1

η

∂2ψ2

∂z2
+ M

P

∂T1

∂x
(22)

z = −a: ψ2 = ψ3 = 0,
∂ψ2

∂z
= ∂ψ3

∂z
, T2 = T3 (23)

1

κ

∂T2

∂z
= 1

κ∗
∂T3

∂z
,

1

η

∂2ψ2

∂z2
= 1

η∗
∂2ψ3

∂z2
+ ᾱM

P

∂T2

∂x
(24)

On the horizontal solid plates the boundary conditions read:

z = 1: ψ1 = ∂ψ1

∂z
= 0, T1 = 0 (25)

z = −a − a∗: ψ3 = ∂ψ3

∂z
= 0, T3 = 1 (26)

For simulations of cellular motions in an infinite layers, the periodic boundary conditions have been used on lateral
walls x = ±L/2, L = l/a1:

ψm(x + L,z) = ψm(x, z); φm(x + L,z) = φm(x, z); Tm(x + L,z) = Tm(x, z) (27)

The boundary value problem formulated above was solved by the finite-difference method. Eqs. (18)–(20) were
approximated on a uniform mesh using a second-order approximation for the spatial coordinates. The nonlinear equa-
tions were solved using the explicit scheme, on a rectangular uniform mesh 56 × 112. We checked the results on
56 × 168 and 112 × 168 meshes. The relative changes of the stream function amplitudes for all the mesh sizes do not
exceed 2.5%. The time step was calculated by the formula

�t = [min(�x,�z)]2[min(1, ν,χ, ν∗, χ∗)]
2[2 + max |ψm(x, z)|]

where �x, �z are the mesh sizes for the corresponding coordinates. The Poisson equations were solved by the iterative
Liebman successive over-relaxation method on each time step: the accuracy of the solution was 10−4 for the steady
motion and 10−5 for the oscillations. The details of the numerical method can be found in the book by Simanovskii
and Nepomnyashchy [1] (see also [8]).

4. Numerical results

Let us consider the system air–ethylene glycol–fluorinert FC75 (fluorocarbon-based fluid, perfluoro (2-butyl-
tetrahydrofuran)) with the following set of parameters: ν = 0.974, ν∗ = 18.767, η = 0.001, η∗ = 0.013, κ = 0.098,
κ∗ = 0.401, χ = 215.098, χ∗ = 606.414, β = 2.62, β∗ = 0.72, ᾱ = 0.080. Fix the ratios of the layers thicknesses
a = a∗ = 1.

In the system under consideration, the flow of the thermocapillary origin takes place mainly near the upper inter-
face, while the flow of the buoyancy origin is developed mainly in the bottom layer. Such an “indirect” interaction
of both mechanisms of instability which is impossible in a system with a single interface, may lead to much more
complex dynamics and unexpected effects.

The general diagram of nonlinear regimes is presented in Fig. 2. We shall start the discussion of the nonlinear results
with the description of two types of stationary flows: (1) Marangoni flow weakly influenced by buoyancy (point A in
Fig. 2) and (2) buoyancy flow weakly influenced by the thermocapillary effect (point B in Fig. 2). Streamlines and
isolines of temperature deviations Tm(x, z)−T 0

m(z) (m = 1,2,3; T 0
m(z) is the equilibrium temperature field) for these

flows are presented in Figs. 3 and 4, respectively. The flow of the thermocapillary origin takes place mainly near the
upper interface (Fig. 3(a)), while the buoyancy convection is realized mainly in the bottom layer (Fig. 4(a)).
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Fig. 2. The general diagram of flow regimes in the plane (M,G); � – equilibrium, F – steady flow (type I), � – steady flow (type II), ∗ –
traveling waves. Lines 1, 2 and 3 correspond to the boundaries of the linear stability theory; lines 4 and 5 separate the nonlinear steady flows and
buoyant–thermocapillary traveling waves.

Fig. 3. (a) Stream lines and (b) isolines of temperature deviations for the steady flow (type I) at M = 5700, G = 0.1, L = 3.4.
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Fig. 4. (a) Stream lines and (b) isolines of temperature deviations for the steady flow (type II) at M = 1000, G = 3.2, L = 2.

Nonlinear results confirm the existence of the oscillatory flow: above the threshold predicted by the linear stability
theory, the nonlinear traveling wave is developed

ψm(x, z, t) = ψm(x − ct, z), Tm(x, z, t) = Tm(x − ct, z) (28)

where c is the phase velocity of the traveling wave.
Snapshots of streamlines for the buoyant–thermocapillary traveling wave at different moments of time are presented

in Fig. 5 (point C in Fig. 2). The traveling wave moves from the right to the left. The maximum values of stream
functions in all the layers ψmax,m = maxψm(x, z) (m = 1,2,3) are constant in time.

Under the conditions of the experiment, when the geometric configuration of the system is fixed while the temper-
ature difference θ is changed, the Marangoni number M and the Grashof number G are proportional. We define the
inverse dynamic Bond number

K = M

GP
= α

gβ1ρ1a
2
1

Comparison of the maximum values of stream function in all the layers shows that the most intensive motion develops
in the middle layer. With the increase of the Marangoni number, the period of the wave decreases, i.e., the phase
velocity grows.

Let us use the following integral quantities, characterizing the intensity of motions in the left and in the right halves
of the layers:

Sl1(t) =
0∫

−L/2

dx

1∫

0

dzψ1(x, z, t), Sr1(t) =
L/2∫

0

dx

1∫

0

dzψ1(x, z, t) (29)

Sl3(t) =
0∫

−L/2

dx

−a∫

−a−a∗

dzψ3(x, z, t), Sr3(t) =
L/2∫

0

dx

−a∫

−a−a∗

dzψ3(x, z, t) (30)

The time evolution of the quantities Slm(t), m = 1,2,3, shows that oscillations keep rather simple almost sinusoidal
form. Even on a large distance from the linear stability boundary (see line 3 in Fig. 2; M � 228 000) the oscillatory
flow keeps its periodicity for the fixed value of K (K = 3682). The phase trajectory presented in Fig. 6 demonstrates
a significant phase delay of the oscillations in the top layer with respect to the oscillations in the bottom layer. For
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Fig. 5. (a), (b) Snapshots of stream lines for a buoyant–thermocapillary traveling wave at M = 5700, G = 2.15, L = 3.4.

Fig. 6. Phase trajectory Sl3(Sl1) for the oscillatory flow at M = 5700, G = 2.15, L = 3.4.
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Fig. 7. Dependence of the wave velocity c on the Marangoni number M for the modulated traveling waves; K = 1944 (line 1); K = 1495 (line 2);
L = 3.4.

Fig. 8. Phase trajectory Sl3(Sl1) for the modulated traveling wave at M = 6140, K = 1495, L = 3.4.

this motion, the thermocapillary convection in the top and middle layers coexists with the buoyancy convection in the
bottom layer.

Let us discuss now the evolution of flow regimes by changing the inverse dynamic Bond number. The decrease of
K (the weakening of the thermocapillary effect) leads to the appearance of a new convective regime: the buoyant–
thermocapillary wave is destabilized, and the modulated traveling wave is developed in the system. The maximum
values of stream function (ψmax,m ) (m = 1,2,3) are not constant in time any more and oscillate in a periodic way.
The dependence of the phase velocities on the Marangoni number for different values of the inverse dynamic Bond
number K , are shown in Fig. 7. One can see that for K = 1495 (line 2 in Fig. 7), the phase velocity changes in a
non-monotonic way. The multi-loop phase trajectory, corresponding to the modulated traveling wave, is presented in
Fig. 8.
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5. Conclusion

The nonlinear regimes of convection in a multilayer system are investigated. The periodic boundary conditions
on the lateral boundaries, are considered. It is shown that the joint action of buoyancy and thermocapillary effect,
leads to the development of nonlinear traveling wave. For this flow, the thermocapillary convection in the top and
middle layers coexists with the buoyancy convection in the bottom layer. The oscillatory flow keeps its periodicity
even on a large distance from the linear stability boundary. The phase diagram on the plane the Grashof number–
the Marangoni number is constructed. The weakening of the thermocapillary effect leads to the development of the
modulated traveling wave in the system. For this flow, the maximum values of the stream function in all the layers
oscillate in a periodic way.
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