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A mixed damage model for unsaturated porous media
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Abstract

The aim of this study is to present a framework for the modeling of damage in continuous unsaturated porous geomaterials.
The damage variable is a second-order tensor. The model is formulated in net stress and suction independent state variables. Cor-
respondingly, the strain tensor is split into two independent thermodynamic strain components. The proposed framework mixes
micro-mechanical and phenomenological approaches. On the one hand, the effective stress concept of Continuum Damage Mechan-
ics is used in order to compute the damaged rigidities. On the other hand, the concept of equivalent mechanical state is introduced
in order to get a simple phenomenological formulation of the behavior laws. Cracking effects are also taken into account in the
fluid transfer laws. To cite this article: C. Arson, B. Gatmiri, C. R. Mecanique 337 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Un modèle d’endommagement mixte pour les milieux poreux non saturés. Cette étude a pour objectif de présenter un cadre
théorique pour la modélisation de l’endommagement dans les géomatériaux non-saturés, considérés comme des milieux continus.
Le modèle est formulé en variables d’état indépendantes : contrainte nette et succion. Conjointement, le tenseur des déformations est
écrit comme la somme de deux composantes thermodynamiques indépendantes. Le cadre théorique proposé combine les approches
micro-mécanique et phénoménologique. D’une part, le concept de contrainte effective de la Mécanique de l’Endommagement en
Milieu Continu est utilisé, de manière à calculer les rigidités endommagées. D’autre part, le concept d’état mécanique équivalent
est introduit pour obtenir une formulation phénoménologique simple des lois de comportement. Les effets de la fissuration sont
également pris en compte dans les lois de transfert des fluides. Pour citer cet article : C. Arson, B. Gatmiri, C. R. Mecanique 337
(2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

This study is motivated by the necessity to predict the behavior of the Excavation Damaged Zone surrounding
nuclear waste disposals. The geological barriers, often made of quasi-brittle material like granite or clay-rock, undergo
damage during the excavation phase. Hydro-mechanical interactions may occur in the neighborhood of the engineered
barrier, which is generally made of unsaturated compacted clay. Fluids flow inside the gallery. The span of the transient
regime depends on the relative values of the involved conductivities. The complex couplings involved in the geological
massif before the waste disposal make it necessary to study rock-like quasi-brittle materials as multi-phase media. Up
to now, almost all the damage models dedicated to non-dry materials have been formulated by means of a concept of
effective stress. This choice is questionable for unsaturated soils [1]. That is why the present Note aims at developing
a fully coupled damage model formulated in independent stress state variables, in order to study the behavior of
cracked unsaturated porous geomaterials. Section 2 presents the physical and mathematical representations of damage.
Section 3 is devoted to the phenomenological aspects of the model. The thermodynamic split of the strain tensor is
explained, and the stress/strain relations are derived from a postulated expression of the free energy. This latter is
chosen in accordance with the representation of damage exposed in Section 2. The micro-mechanical developments
of the proposed damage model are presented in Section 4. The damaged rigidities are computed, and the damaged
transfer rules are established.

2. Damage representation

2.1. Micro-mechanical meaning of the damage tensor

It is assumed that the studied Representative Elementary Volume (REV) contains a network of non-interacting
micro-cracks. If the REV is damaged by N micro-cracks, the variation of the elastic deformation energy is:

�We = 1

2VREV

N∑
k=1

nk · σ · 〈bk〉
Sk (1)

in which Sk and nk are the surface of the kth crack and the normal vector of the kth crack plane, respectively.
VREV is the volume of the Representative Element, σij is Cauchy stress tensor, and 〈bk〉 is the kth crack opening
displacement. In three dimensions, crack openings have two shearing components. The corresponding micro-crack
compliance tensors thus encompass fourth-order terms. However, the shearing contribution to the crack compliance
tensor may be neglected [2]. As advocated by Kachanov, the second-order crack density tensor will be used in order
to represent damage in the proposed model. This tensor may be expressed in its principal base as:

Ωij =
3∑

k=1

dknk
i n

k
j (2)

Stress and damage are assumed to have the same principal directions. Physically, the damaged behavior of the REV
is modeled by three meso-cracks representing three main families of fissures. Each meso-crack is characterized by a
direction nk (normal to the crack plane) and a volumetric fraction dk . Assuming that the cracks are penny-shaped,
with a radius lk and a thickness ek :

dk = 1

VREV
ekπ

(
lk

)2 (3)

The radius and thickness of cracks may be related by a linear dilatancy rule [3] of the type: dek = χ dlk , with χ =
0.005 for brittle rocks.

2.2. Equivalent mechanical state of the damaged material

The proposed model is dedicated to unsaturated quasi-brittle geomaterials, such as granite or clay rock. In such
materials, frictional sliding induces crack opening. Gouge may be produced. The resulting asperities generate residual
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strains, remaining after unloading [4]. Only mode I failures will be investigated in the following frame. It is thus
assumed that damage grows with tensile strains. Such an assumption on the physical origin of damage enables the
description of the splitting effects due to traction, and of the crossing effects due to compression [5]. As recalled by
Swoboda and Yang [4], the concentrated forces τ k

i opening the kth tensile micro-crack may be represented micro-
scopically by a stress tensor τ̃ k

ij . This latter representation is named equivalent mechanical state by the authors. In the
equivalent mechanical state, the micro-cracks are open, and the REV is subjected to an equivalent stress, defined as:

σ eq = σ +
N∑

k=1

τ̃k = σ + τ̃ (4)

in which σ is the far-field stress. τ̃ is the “homogenized crack-related stress”. Since the cracks are assumed to grow
with tensile strains, the homogenized crack-related stress tensor τ̃ and the homogenized damage tensor Ω are sup-
posed to have the same principal directions, so that τ̃ = gΩ . With the general mechanics convention, g is positive
and has the dimension of a rigidity. In absence of external load, σ is null, and the damaged material is thus subjected
to a residual equivalent traction, generating residual tensile strains. The concept of equivalent mechanical state thus
enables the introduction of residual phenomena which are only due to damage, without using the concept of plasticity.
This provides a relative simple theoretical frame, encompassing only one dissipative potential.

3. Phenomenological aspects of the damage model

3.1. Independent state variables

The pores of the solid matrix are assumed to be filled by two continuous fluid phases: liquid water and gaseous
air. The behavior law is formulated in independent stress state variables [1]. Net stress σ ′′

ij is defined as the difference
between the total Cauchy stress tensor σij and the isotropic air pore pressure paδij : σ ′′

ij = σij − paδij . δij denotes the
second-order identity tensor. Suction is the difference between air and water pore pressures: s = pa − pw . According
to the notations adopted in the models of Gatmiri [6,7], the incremental behavior law is expressed in the following
form:

dσ ′′
ij = Deijkl

(Ωpq)dεe
Mlk

= Deijkl
(Ωpq)

(
dεMlk

− dεd
Mlk

)
(5)

εMij
is the mechanical strain tensor, which is thermodynamically conjugated to net stress. It encompasses an elastic

part εe
Mij

and an inelastic part εd
Mij

. The same approach is used to define a capillary strain εSij
, thermodynamically

conjugated to suction. Pore pressure effects are assumed to be isotropic, so that only the knowledge of the volumet-
ric capillary strains is necessary to characterize the geomaterial behavior [6,7]: εSij

= 1
3εSvδij . Volumetric capillary

strains have also an elastic (εe
Sv) and an inelastic (εd

Sv) component. The total incremental strain tensor is finally split
as follows:

dεij = dεe
Mij

+ dεd
Mij

+ 1

3
εe
Svδij + 1

3
εd
Svδij (6)

Assuming that both liquid and gaseous phases saturate the pores of the matrix, and adopting the standard notations,
the Inequality of Clausius–Duhem writes:

σij dεji + pw d(nSw) + pa d
(
n(1 − Sw)

) − dΨs

(
εpq, nSw,n(1 − Sw),Ωpq

)
� 0 (7)

in which n is the porosity, Sw is the saturation degree of the liquid phase and Ψs is Helmholtz free energy. With the
notations adopted in this paper, Eq. (7) can be written:

σij dεMji
− pw dεSv + pa d(n + εSv) − dΨs(εMpq , εSv, n + εSv,Ωpq) � 0 (8)

The condition of solid grain incompressibility writes dεMv = −dn, so that the expression of the ICD used in the
following is:

σ ′′
ij dεMji

+ s dεSv − dΨs(εMpq , εSv,Ωpq) � 0 (9)

In elasticity, the combination of Eqs. (5) and (6) leads to:
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dσ ′′
ij = Deijkl

(Ωpq)

(
dεe

lk − 1

3
δlk dεe

Sv

)
(10)

in which capillary strains and suction are related by a damage-dependent capillary rigidity:

dεe
Sv = ds

βs(Ωpq)
(11)

Therefore, the elastic incremental behavior law (10) may be expressed as:

dσ ′′
ij = Deijkl

(Ωpq)

(
dεe

lk − 1

3βs(Ωpq)
δlk ds

)
(12)

which induces a coupling in the state equations.

3.2. Stress/strain relations

In the equivalent mechanical state described in Section 2, the equivalent stress variables are conjugated to the strain
state variables by means of a degraded elastic potential Ψe [4]:⎧⎨⎩σ

′′ eq
ij = ∂Ψe(εMpq ,εSv,Ωpq)

∂εMij

seq = ∂Ψe(εMpq ,εSv,Ωpq)

∂εSv

(13)

Ψe may be expressed in a very general form:

Ψe(εMpq , εSv,Ωpq) = 1

2
εMji

Deijkl
(Ωpq)εMlk

+ 1

2
εSvβs(Ωpq)εSv (14)

Following the approach described in Section 2, the stress fields of the real mechanical state may described as:{
σ ′′

ij = σ
′′ eq
ij − τ̃Mij

= σ
eq
ij − gMΩij

sδij = seqδij − τ̃Sij
= seqδij − gSΩij

(15)

gM and gS are scalar material parameters, with the dimension of a rigidity. Eqs. (13), (14) and (15) provide the
following partial derivatives of the free energy:⎧⎨⎩σ ′′

ij = ∂Ψs(εMpq ,εSv,Ωpq)

∂εMij
= Deijkl

(Ωpq)εMlk
− gMΩij

s = ∂Ψs(εMpq ,εSv,Ωpq)

∂εSv
= βs(Ωpq)εSv − gS

3 Ωij δji

(16)

The postulated expression of the free energy is defined more or less a constant, which may be set to zero. Without any
additional assumption on the derivative of the free energy to damage, the following expression may thus be used:

Ψs(εMpq , εSv,Ωpq) = 1

2
εMij

Deijkl
(Ωpq)εMlk

+ 1

2
εSvβs(Ωpq)εSv − gMΩij εMji

− gS

3
Ωij δjiεSv (17)

The damage-conjugated stress Yd can now be computed:

Ydij
= −∂Ψs(εMpq , εSv,Ωpq)

∂Ωij

= −1

2
εMmn

∂Denmij
(Ωkl)

∂Ωqp

εMpq − 1

2
εSv

∂βs(Ωkl)

∂Ωij

εSv + gMεMij
+ gS

3
εSvδij (18)

Expression (17) is an extension of the expression used by Dragon and Halm for dry materials [8]. The proposed frame
is more general. Instead of depending on two material parameters (denoted α and β in the models of Dragon), each
damaged rigidity is computed by introducing the concept of damaged stress state variable (Section 4). The incremental
inelastic strains are computed by deriving stress/strain relations (16) and combining them with Eqs. (5) and (11):{

dεd
Mij

= [−De(Ω)−1 : ∂De(Ω)
∂Ω : εM + gMDe(Ω)−1] : dΩ

dεd
Sv

= [− εSv

βs(Ω)
∂βs(Ω)

∂Ω + gS

3βs(Ω)
δ] : dΩ

(19)

According to the assumption of tensile cracking (Section 2), only the part of the damage-conjugated stress which is
related to tensile residual strains is involved in the damage yield function [8]:
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fd(Yd ij ,Ωij ) =
√

1

2
Y+

d1 ij
Y+

d1 ji
− C0 − C1δijΩji (20)

in which:

Y+
d1ij

= gMε+
Mij

+ gS

3
ε+
Svδij (21)

C0 is the initial damage-stress rate that is necessary to trigger damage. C1 controls the damage increase rate. The dam-
age increment is computed by an associative flow rule, which completes the expressions of the incremental inelastic
strains (19).

4. Micro-mechanical aspects of the damage model

4.1. Damaged rigidities

The damaged material is assumed to have lost a part of its effective surface. Mechanically, applying the real stress
fields to reduced material surfaces is thus equivalent to applying “damaged stress fields” on intact surfaces. “Damaged
stress variables” σ̂ij (named effective stress variables in Continuum Damage Mechanics) are defined by using a fourth-
order operator depending on damage: σ̂ij = Mijkl(Ωpq)σlk . In the proposed model, the concept of damaged stress is
extended to both independent stress state variables, by using the operator of Cordebois and Sidoroff [9]:{

σ̂ ′′
ij = (δ − Ω)

−1/2
ik σ ′′

kl(δ − Ω)
−1/2
lj

ŝ = s
3 (δ − Ω)−1

kl δlk

(22)

The damaged rigidities Deijkl
(Ωpq) and βs(Ωpq) are computed by applying the Principle of Equivalent Elastic Energy

(PEEE) [10]. The PEEE postulates that the elastic deformation energy of the damaged material subjected to the real
stress equals the elastic deformation energy of the corresponding fictitious intact material subjected to the damaged
stress. Applying this principle to each of the two elastic potentials involved in the expression of the elastic energy Ψe

(Eq. (14)), 1
2εMij

Deijkl
(Ωpq)εMlk

and 1
2εSvβs(Ωpq)εSv , leads to the following expressions for the damaged rigidities:⎧⎨⎩Deijkl

(Ωrs) = M−1
ijnm(Ωrs)D

0
emnpq

MT
qpkl(Ωrs)

βs(Ωrs) = 9β0
s

[(δ−Ω)−1
ij δji ]2

(23)

in which Mijkl(Ωrs) stands for the operator of Cordebois and Sidoroff used in expressions (22). As stated in [4], the
use of the operator of Cordebois and Sidoroff ensures that De(Ω) is symmetric and positive definite, and that it is an
isotropic function of the damage tensor.

4.2. Transfer rules

Liquid water transfer is assumed to be diffusive. The water relative velocity Vw thus follows Darcy’s law, which
depends on a permeability tensor Kw. This conductivity tensor is split in a relative part (kR) related to capillary effects,
and in an intrinsic part (Kint) related to the solid matrix [7]. Only this latter component may depend on damage:

Vw = −Kw · ∇
(

pw

γw

+ z

)
= −kR(Sw)Kint(n,Ωpq) · ∇

(
pw

γw

+ z

)
(24)

in which γw is the volumetric weight of liquid water and z is the elevation. The intrinsic liquid water permeability is
split in a reversible part and an irreversible component. The first one quantifies water flow in the reversibly damaged
porous matrix, and the second one (k2(n

frac,Ωrs)) controls the flow in the meso-crack network:

Kintij (n,Ωpq) = kw010αwerev
δij + k2ij

(
nfrac,Ωpq

)
(25)

kw0 is the reference water permeability of the saturated isothermal porous medium (in m s−1), and erev is the void
ratio of the reversibly damaged porous material. Following the approach of Shao’s research team [3], k2(n

frac,Ωpq)

is computed by assuming that the flow in each micro-crack is laminar. The flow is then homogenized in order to
evaluate water transfers in the meso-cracks damaging the REV:
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k2ij

(
nfrac,Ωpq

) = π−2/3γw

12μw(Tref )
χ4/3b2

3∑
k=1

(
dk

)5/3(
δij − nk

i n
k
j

)
(26)

b plays the role of an internal length parameter, and may be determined if k2(n
frac,Ωpq) is known for a certain

damage state, which can be measured experimentally.
Air flow is also assumed to be diffusive:

Va = −Ka · ∇
(

pa

γa

+ z

)
(27)

The flow is assumed to be too fast to be oriented by the fracture network. The expression of the air permeability tensor
Ka is thus kept unchanged from the intact configuration [7]:

Kaij
= ca

γa

μa

[
e(1 − Sw)

]αa δij (28)

μa is the dynamic viscosity of gaseous air. ca and αa are material parameters. Ka depends on the void ratio e, and
thus on total volumetric strains, which encompass an inelastic component. As a result, the effect of damage is taken
into account, though considered isotropic.

5. Conclusion

In this Note, phenomenological and micro-mechanical concepts are used in order to develop a damage model for
unsaturated porous media. The model is formulated in net stress and suction independent state variables. Correspond-
ingly, the strain tensor is split in a mechanical part and a capillary component. The damage variable is the second-order
homogenized crack density tensor. Frictional sliding on crack faces is taken into account without requiring to plas-
ticity. The residual strains induced by crack opening are governed by a homogenized crack-related stress, which is
assumed to have the same principal directions as damage. The damaged material may be represented in an equivalent
mechanical stress in which it is subjected to the far field stress and to this homogenized crack-related stress. Such a
representation leads to assume that Helmholtz free energy may be written as the sum of degraded elastic energies and
of residual strain potentials. The incremental inelastic strains depend on the increment of damage, which is determined
by an associative flow rule. The degraded rigidities are computed by applying the Principle of Equivalent Elastic En-
ergy to each of the elastic potentials involved in the definition of the free energy. An internal length parameter is
introduced in order to assess the cracking effects on liquid water permeability. Air flow is assumed to be subjected to
an isotropic influence of damage, through a dependency of air permeability on volumetric strains. The representation
of damage-induced anisotropy is limited to the configurations in which stress and damage have the same principal
directions. The model could thus be improved in order to take into account the possible rotation of the principal crack
directions. Swoboda and Yang used a conjugate-force-based damage evolution law [4]. Desmorat advocates a Kelvin
decomposition of the compliance tensor [11].
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