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Vortex identification and tracking in unsteady flows
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Abstract

The present Note deals with the identification and tracking of vortices in a time-resolved unsteady flow. The approach is based
on the combination of two existing post-processing tools that are Galilean invariant functions: feature flow field f and vortex
identification algorithm γ2. An analytical development shows that the joint use of γ2 and the streamlines of f allows to identify
and track the location of the center of a vortex core with a non-zero convection velocity. We discuss the applicability of this
procedure to actual flows for which the assumptions of the analytical approach may not be strictly valid. The procedure is validated
using PIV measurements performed in an oscillating flow in a model of thermoacoustic refrigerator. This method proves to be
efficient for the automated analysis of convection processes when large numbers of vortices are involved. To cite this article:
A. Berson et al., C. R. Mecanique 337 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

The tracking of some remarkable points, such as critical points, remains an important issue when dealing with
unsteady flows (oscillating flows, instabilities in shear layers, flow separation) [1–3]. According to Chong et al. [1],
critical points are points in the flow where all three velocity components are zero and the streamline slope is inde-
terminate. For example, the center of a vortex core with zero velocity is a critical point (node point). However, in
most practical applications, critical points of interest in the flow domain are advected, i.e. they have non-zero velocity
components. Moreover, due to the large amount of experimental data (e.g. provided by phase-locked PIV in periodic
flows, or time-resolved PIV in rapidly changing flows), it is necessary to track the locations of vortices with auto-
mated procedures. The present paper focuses on the study of time-resolved flows including a large number of vortices
advected with non-zero velocities. For that purpose, we study the link between two different post-processing tools:
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– the first one is named feature flow field f and has been previously used for the tracking of critical points in a
two-dimensional flow;

– the second one, the so-called γ2 function, is used for the identification of vortical structures in two-dimensional
flows.

In Section 2, we investigate the case of a two-dimensional time-dependent velocity field using an analytical derivation.
In Section 3, the applicability of the method is demonstrated using actual PIV measurements in an unsteady flow.
Conclusions are given in Section 4.

2. Theoretical developments

2.1. Feature flow field and tracking of critical points

For the tracking of critical points in a time-dependent velocity field, the concept of feature flow field as introduced
by Theisel and Seidel [4] is very useful. Given a two-dimensional velocity field u(x, y, t), these authors define a
three-dimensional vector f (x, y, t) as:

f (x, y, t) = grad(u) × grad(v) (1)

where u and v are velocity components in the (x, y) plane and the × operator refers here to a vector product. As
the velocity field varies with time, f (x, y, t) is defined so that it points towards the direction of minimal change for
both velocity components. This direction is given by the intersection of the planes perpendicular to the gradients of
each velocity components, in a first-order approximation. Thus, the streamlines of f integrated from a given critical
point of u define the trajectory and behavior of this point in time. For this reason, f is called feature flow field
(hereafter denoted FFF) of u. Eq. (1) can be rewritten in a more practical form as:

f (x, y, t) = (uyvt − utvy, utvx − uxvt , uxvy − uyvx)
T (2)

where x, y and t subscripts denote partial derivatives with respect to these variables, T superscript is the transpose.
Note that FFF requires a velocity field that is continuous in time. Practically, given two velocity fields u0(x, y) and
u1(x, y), which are, for instance, extracted from PIV measurements at two successive discrete time steps t0 and t1,
Theisel and Seidel [4] compute f in Eq. (2) from an interpolated time-dependent velocity field u(x, y, t) given at any
time t between t0 = 0 and t1 = 1 by:

u(x, y, t) = (1 − t)u0(x, y) + tu1(x, y) (3)

The streamlines of f describe the trajectory of critical points in the three-dimensional space (x, y, t). Depardon et
al. [3] apply this procedure to the study of flow separation around a wall-mounted cube. In a first step, these authors
identify critical points of three types at t0 and t1 using three scalar functions: Γ1 (initially defined by Graftieaux et
al. [5]) for a node point, K1 (which is a modified version of the definition of Γ1) for a focus point and G1 for a saddle
point. In a second step, the authors associate the location of the critical points at t0 and t1 using streamlines of f .

2.2. Identification of vortex cores: Γ2 and γ2 functions

When dealing with the identification of vortex cores, the main drawback of the approach of Depardon et al. [3] is
that scalar functions like Γ1 are not Galilean invariant: Γ1 fails to identify the location of the center of a vortex that
is convected with a large velocity, whereas it is correctly identified in a reference frame moving with this convection
velocity. To overcome this difficulty, Favelier et al. [6] proposed a modified definition of Γ1. This new function, called
Γ2, is defined at any location x inside the flow domain (Fig. 1) by:

Γ2(x) = 1

S

∮
x′∈S

sin(θ)dx′
1 dx′

2 (4)

where S is a circle with center x and θ denotes the angle between x′ − x and the relative velocity u(x′) − u(x) in a
reference frame moving with the local velocity u(x). The radius R of the circle is an adjustable parameter, which is
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Fig. 1. Definition of angle θ for Γ2.

chosen according to the characteristic length of the vortices and the size of the PIV mesh grid. However, Favelier et
al. [6] demonstrated that Γ2 varies very slowly with R and in practice R is chosen as twice the size of the PIV mesh
grid. With this definition, it is clear that Γ2 is Galilean invariant, dimensionless and ranging between −1 and 1. It is a
top-hat function reaching its maximum value at the center of a vortex, and with large gradients at the boundary of the
vortex. Assuming that the radius R is small, Favelier et al. [6] used a first-order Taylor expansion of the velocity field
around x. They found that Γ2 tends towards a local function called γ2, which is independent of the initial arbitrary
choice of R, given by:

γ2(x) = sign(ω)

π

{(
1 − |μ|)F

[
2
√|μ|

1 + |μ|
]

+ (
1 + |μ|)E

[
2
√|μ|

1 + |μ|
]}

(5)

In Eq. (5), F and E denote the complete elliptic integrals of the first and second order respectively and μ = λ/ω is
the ratio between the local straining rate λ and rotation rate ω in the principal axes of the straining rate tensor at x.

For two-dimensional incompressible flows, the inner core of a vortex is usually defined by the condition
ω2 − λ2 � 0 (see for example the popular criteria λ2 (Jeong and Hussain [7]) or Q (Hunt et al. [8], Chong et al. [1])).
It can be shown that this condition is strictly equivalent to |γ2| � 2/π . Therefore, the boundary of a vortex is a closed
curve along which |γ2| = 2/π .

2.3. Relation between γ2 and feature flow field

In the present work, we address two problems that are not clear in the literature:

– when do streamlines of f go forward or backward in time?
– can any point located inside a vortex core with a non-zero convection velocity be tracked with FFF?

For the sake of simplicity, we assume that t0 = 0 and t1 = 1. We consider a point x = (x, y) where the fluid velocity
is u = (u, v). The fluid velocity at time t0 and at any location x′ = (x′, y′) in the vicinity of x is given by a first-order
Taylor expansion:(

u0(x
′, y′)

v0(x
′, y′)

)
=

(
u − λ(x′ − x) + ω(y′ − y)

v − ω(x′ − x) + λ(y′ − y)

)
(6)

We investigate the pattern of the streamlines of f originating at t0 from points x′, for the specific case where u1 is a
translation of u0 by a given spatial shift x0 along direction x (pure advection):

u1(x
′, y′) = u0(x

′ − x0, y
′) (7)
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Fig. 2. Streamlines of f for an arbitrary small advection of a vortex: if x′ is located inside a vortex core (2/π < |γ2| < 1), the streamline is a
straight line that relates exactly the original location of x′ at t0 to its new location at t1.

The Taylor expansion of the velocity field at t1 gives:(
u1(x

′, y′)
v1(x

′, y′)

)
=

(
u − λ(x′ − x0 − x) + ω(y′ − y)

v − ω(x′ − x0 − x) + λ(y′ − y)

)
(8)

which implicitly assumes that the spatial shift x0 is much smaller than the characteristic length scale of the vortex
core.

Combining Eqs. (2), (3), (6) and (8) straightforwardly leads to the expression of f (x′, y′, t):

f (x′, y′, t) = (
x0

(
ω2 − λ2),0,

(
ω2 − λ2))T (9)

Since, as previously mentioned, the sign of ω2 −λ2 is the same as the sign of |γ2|−2/π , we draw three conclusions
from Eq. (9):

– f and its streamlines are independent of both x and x′ coordinates, and of velocity components u and v (f is
Galilean invariant); f (x′, y′, t) depends only on the spatial shift (x0) between velocity fields u0 and u1 and on
ω2 − λ2.

– A streamline of f seeded at t = 0 from any point x′ located inside a vortex core (2/π < |γ2| < 1) evolves in the
half-space t > 0. On the contrary, if x′ is not located inside a vortex core (|γ2| < 2/π ), the streamline is directed
towards negative t’s.

– The streamlines of f are straight lines inclined with a uniform angle tanα = x0 relative to the time axis (Fig. 2).
Therefore, streamlines relate exactly the original location at t0 of any point x′ inside a vortex core to its new
location at t1.

2.4. Model limitations and application to actual flows

In the previous section, the two main assumptions are that the vortex only experiences a uniform spatial shift be-
tween t0 and t1, and that velocity gradients are uniform and time-independent in the region where the Taylor expansion
is used. Since an actual vortex core is of finite size, parameters λ and ω are in practice not uniform inside the vortex
core. Moreover, for a finite time delay t1 − t0, the vortex core is also subjected to stretching processes and λ and ω

are time-dependent. Nevertheless, if velocity fields u0 and u1 are nearly time-resolved, without substantial stretching
of the vortex to be tracked, the previous results remain valid in a small region surrounding the center of the vortex
core where the Taylor expansion of the velocity field is justified. Therefore, for each vortex identified at t0 in an actual
flow, only one streamline is computed from a single seeding point x′ located at the center of the vortex. x′ is simply
defined as the spatial average of the vortex boundary identified by the condition |Γ2| = 2/π . Indeed, Γ2 is preferred
to γ2 used in the theoretical derivations in Section 2.3, since it is a non-local function, less sensitive to measurement
noise.
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Fig. 3. Schematic drawing of a standing-wave thermoacoustic resonator and example of vorticity field obtained behind the stack. Note that our
experimental setup is devoid of heat-exchangers.

3. Application to the study of the flow field behind a stack of parallel plates in an oscillating flow

As an example of the applicability of feature flow field combined with Γ2 to experimental data, we investigate
the flow behind a stack of parallel plates subjected to an acoustic standing wave. Such geometries are common in
the domain of thermoacoustic refrigeration, a technology alternative to vapor-compression systems [9]. A schematic
drawing of a typical thermoacoustic refrigerator is given in Fig. 3. It consists of a standing-wave acoustic resonator
driven by an electro-dynamic loudspeaker. The core of the setup is a stack of plates (hereafter referred to as stack)
located adequately inside the resonator. The interaction of the acoustic wave with the solid plates of the stack leads to
the pumping of heat from one side of the plates to the other. This heat flux is exploited by heat-exchangers located on
both sides of the stack.

Recently, several experimental studies investigated the flow field behind the stack of a thermoacoustic refriger-
ator using Particle Image Velocimetry (PIV) [10–14]. The latest research efforts focus more particularly on vortex
shedding, at high acoustic level, which is expected to affect the efficiency of heat transport from the stack to the
heat-exchangers [15,16]. In such flows, a large number of vortical structures is observed because of the spatial period-
icity of the stack. A complete description of the flow thus requires an automated procedure for the detection of these
vortices and the characterization of their trajectories, which is provided by the joint use of Γ2 and feature flow field f .

The present experimental dataset is extracted from previous measurements that are described in [12]. Measurements
focus on the area behind the stack of parallel plates. The plate thickness is 1 mm and the interplate spacing is 1 mm.
The amplitude of velocity oscillations is uac = 3.6 m s−1. Note that PIV measurements are phase-locked with the
electrical signal feeding the loudspeaker in order to perform phase-averaging. Results are presented in Fig. 4 for four
successive phases of an acoustic period, when the fluid flows out of the stack channels. Each plot represents two-
dimensional vorticity fields and isolines of |Γ2| = 2/π for a given phase (t0 = 0) and the following one (t1 = 1).
Streamlines of f evolve in the three-dimensional (x, y, t) space. Only the flow behind the stack is plotted in Fig. 4,
the plates being located at x < −1. As the fluid wraps around the edges of the plates, pairs of symmetrical counter-
rotating vortices are generated. Vortices are convected away from the stack. Vortices with negative vorticity (in blue)
move faster than those with positive vorticity (in red), thus breaking the symmetry of the flow. Eventually, as new
vortices are generated, a vortex street appears before all the structures are sucked back into the stack channels when
flow reverses (after 180◦, see [12]).

Streamlines of f originate at t0 from seeding points located at the vortex center and are directed towards positive
t’s. Vortices are convected away from the stack and streamlines of f end at t = 1 inside the corresponding vortices
that have been shifted between the two phases. Streamlines of f highlight the difference between the convection
velocities of vortices with negative (blue streamlines) and positive vorticity (red streamlines). Therefore, it is clear
that the flow loses its initial symmetry and evolves into two staggered arrays of counter-rotating vortices. It is also
interesting to observe two isolated vortices located at x > 2 mm in Fig. 4(a) for a phase equal to 90◦. These structures
are in fact generated by measurement noise in the velocity field and are not connected to any other vortices at the
following phase. Fig. 4(c) shows that a new row of vortices appears at the end of the blowing phase (157.5◦) near
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Fig. 4. Streamlines of FFF function linking vortices for two successive vorticity fields behind a stack of plates. For each case, the vorticity field and
|Γ2| < π/2 isolines are drawn for two successive phases, the first phase being in a plane located at t0 = 0 and the second one in a plane at t1 = 1.
The streamlines of FFF function evolve between these two planes. (a): from 90◦ to 112.5◦ . (b): from 112.5◦ to 135◦ . (c): from 135◦ to 157.5◦ .

x = 3 mm. These vortices do not exist at the previous phase (135◦) and are not connected to any streamlines. Hence,
measurement noise and vortices that appear only in one snapshot are automatically discriminated by feature flow field.
Such results have already been observed by Depardon et al. for the analysis of critical points in a separated flow over a
wall-mounted cube. The present results show that the joint use of Γ2 function and of feature flow field f is a suitable
tool for the automated tracking of vortices convected with non-zero velocities.

4. Conclusion

Combining the concept of Feature Flow Field and either functions γ2 or Γ2, we have shown that it is theoretically
possible to identify and track the location of vortices in a flow, provided that time-resolved velocity data are available
and that vortices do not undergo substantial stretching between successive velocity fields. Since f and both functions
γ2 or Γ2 are Galilean invariant, the tracking of vortices is possible even if they have large convection velocities, which
is an improvement compared to the work of Depardon et al. The applicability and interest of the method have been
demonstrated for experimental PIV measurements performed in a thermoacoustic refrigerator model. In the future,
we intend to study the influence of the combined effects of vortex translation and stretching on the topology of the
streamlines of f .
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