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Abstract

We study the asymptotic behavior, as ε → 0, of uε solutions to a nonlinear elliptic equation with nonstandard growth con-
dition in domains containing a grid-type microstructure F ε that is concentrated in an arbitrary small neighborhood of a given
hypersurface Γ . We assume that uε = Aε on ∂F ε , where Aε is an unknown constant. The macroscopic equation and a nonlocal
transmission condition on Γ are obtained by the variational homogenization technique in the framework of Sobolev spaces with
variables exponents. This result is then illustrated by a periodic example. To cite this article: B. Amaziane et al., C. R. Mecanique
337 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Une condition de transmission non locale dans l’homogénéisation du pε(x)-Laplacian dans des domaines perforés. On
étudie le comportement asymptotique, lorsque ε → 0, des solutions uε d’une équation elliptique non linéaire de croissance non
standard dans des domains qui contiennent une microstructure ayant la forme d’une grille. Cette microstructure est concentrée
dans un petit voisinage arbitraire d’une hypersurface Γ . On suppose que uε = Aε sur ∂F ε , où Aε est une constante inconnue.
L’équation macroscopique et une condition de transmission non locale sur Γ sont obtenues par la technique de l’homogénéisation
variationnelle dans le cadre des espaces de Sobolev avec des exposants variables. On présente un exemple périodique pour illustrer
le résultat obtenu. Pour citer cet article : B. Amaziane et al., C. R. Mecanique 337 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

In this Note we study the homogenization of the following nonlinear boundary value problem:⎧⎪⎪⎨⎪⎪⎩
−div

(∣∣∇uε
∣∣pε(x)−2∇uε

) + ∣∣uε
∣∣σ(x)−2

uε = g(x) in Ωε

uε = Aε on ∂F ε; uε = 0 on ∂Ω;
∫

∂F ε

∣∣∇uε
∣∣pε(x)−2 ∂uε

∂ν
ds = 0 (1)

where ε > 0; Ωε = Ω \ F ε is a perforated domain in R
n (n � 3) with Ω being a bounded Lipschitz domain and F ε

being an open connected subset of Ω like a net that is concentrated near a hypersurface Γ � Ω ; Aε is an unknown
constant; the growth functions pε and σ satisfy some conditions that will be specified in Section 2; g is a given
function. These equations are known as pε(x)-Laplacian equations.

In recent years, there has been an increasing interest in the study of such equations (in the case where there is
non dependance on the small parameter) motivated by their applications to the mathematical modeling in continuum
mechanics. These equations arise, for example, from the modeling of non-Newtonian fluids with thermo-convective
effects (see for instance [1]), the modeling of electro-rheological fluids (see, e.g., [2]), and the motion of a compress-
ible fluid in a heterogeneous anisotropic porous medium obeying to the nonlinear Darcy law (see, e.g., [3,4]).

In this Note we deal with the variational problem corresponding to the nonlinear equation (1). For a review of
homogenization problems of the Lagrangians with variable exponents and rapidly oscillating coefficients, we refer for
instance to [5] and the bibliography therein. The Dirichlet homogenization problem for Lagrangians of pε(x) growth
in perforated domains has been studied recently in [6].

Following the approach developed in [7–9], instead of a classical periodicity assumption on the structure of the
perforated domain, we impose certain conditions on the so-called local energy characteristics of Ωε . It will be shown
that the asymptotic behavior of uε solution of (1) (as ε → 0) is described by an elliptic boundary value problem with a
nonlocal transmission condition on the hypersurface Γ . Note that various transmission conditions were constructed in
[9] by the method of local energy characteristics. Let us also mention that nonlocal homogenized models were already
obtained for a class of nonlinear elliptic equations in divergence form with non-uniformly bounded coefficients, the
elasticity equations, and for some linear problems in the electrostatics, see for instance [10–12,9] and the references
therein.

The proof of the main result is based on the variational homogenization technique which is nowadays widely used
in the homogenization theory (see, e.g., [13,9,14] and the references therein).

2. Statement of the problem and the main result

Let Ω be a bounded domain in R
n (n � 3) with sufficiently smooth boundary and let F ε be an open subset in Ω .

Here ε > 0 is a small parameter characterizing the scale of the microstructure. We set Ωε = Ω \ F ε . We assume
that F ε is distributed in an asymptotically regular way in an arbitrary small neighborhood of a hypersurface Γ � Ω ,
i.e., for any ball B(y, r) of radius r centered at y ∈ Γ and ε > 0 small enough (ε � ε0(r)), B(y, r) ∩ F ε �= ∅ and
B(y, r) ∩ Ωε �= ∅.

Let pε be a continuous function defined in Ω . We assume that, for any ε > 0, it satisfies the conditions:

(i) pε is bounded in Ω , i.e., 1 < p− � p−
ε ≡ minx∈Ω pε(x) � pε(x) � maxx∈Ω pε(x) ≡ p+

ε � p+ � n.
(ii) pε is log-continuous, i.e., for any x, y ∈ Ω , |pε(x) − pε(y)| � ωε(|x − y|), where limτ→0ωε(τ) ln( 1

τ
) � C.

(iii) pε converges uniformly in Ω to a function p0, where p0 is log-continuous.
(iv) pε satisfies the inequality: pε(x) � p0(x) in Ω .

Let σ be a log-continuous function in Ω such that, for any ε > 0,

(v) 1 < σ− ≡ minx∈Ω σ(x) � σ(x) � maxx∈Ω σ(x) ≡ σ+ � np0(x)/(n − p0(x)) in Ω .

In what follows we refer to [3] (see also the bibliography therein) for the properties of Sobolev spaces with variable
exponents. Following [3], for any ε > 0, we introduce the Sobolev space W 1,pε(·)(Ωε) with a variable exponent
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pε defined by W 1,pε(·)(Ωε) = {φ ∈ Lpε(·)(Ωε): |∇ φ| ∈ Lpε(·)(Ωε)}. Here by Lpε(·)(Ωε) we denote the space of
measurable functions φ in Ωε such that Υpε(·),Ωε (φ) = ∫

Ωε |φ(x)|pε(x) dx < +∞. This space equipped with the norm
‖φ‖Lpε(·)(Ωε) = inf{λ > 0: Υpε(·),Ωε (φ/λ) � 1} is a Banach space.

Consider the variational problem:

J ε[u] ≡
∫
Ωε

Fε(x,u,∇u)dx −→ inf, uε ∈ W 1,pε(·)(Ωε
); uε = Aε on ∂F ε and uε = 0 on ∂Ω (2)

where Fε(x,u,∇u) = 1
pε(x)

|∇u|pε(x) + 1
σ(x)

|u|σ(x) − g(x)u; Aε is an unknown constant; g ∈ C(Ω). It is known from

[3] that, for each ε > 0, there exists a unique solution uε ∈ W 1,pε(·)(Ωε) of problem (2).
We extend uε by the equality uε = Aε in F ε and we keep for it the same notation. Thus, we obtain the family

{uε} ⊂ W 1,pε(·)(Ω). We study the asymptotic behavior of the family {uε} as ε → 0.
Instead of the classical periodicity assumption on the microstructure of the perforated domain Ωε , we impose a

condition on the local (or mesoscopic) characteristic of massiveness of the sets F ε (for more details see [9], p. 336).
To this end, for any piece S of Γ , we introduce a layer Th(S) generated by the surfaces Γ −

h (S), Γ +
h (S). These surfaces

are formed by the ends of the normal vectors of the length h > 0 taken on the both sides of S. Consider the functional:

cε,h(S) = inf
vε

∫
Th(S)

{
1

pε(x)

∣∣∇vε
∣∣pε(x) + h−p+−γ

∣∣vε − 1
∣∣pε(x)

}
dx (3)

where γ > 0 and the infimum is taken over vε ∈ W 1,pε(·)(Th(S)) that equal zero in F ε .
We make the following further assumption:

(C.1) for any arbitrary piece S ⊂ Γ , there exist the limits:

lim
h→0

lim
ε→0

cε,h(S) = lim
h→0

lim
ε→0

cε,h(S) =
∫
S

c(x)dS (4)

where c is a nonnegative continuous function on Γ .

To formulate the homogenization result for the variational problem (2) we introduce the functional:

Jhom[v,B] ≡
∫
Ω

F0(x, v,∇v)dx +
∫
Γ

c(x)|v − B|p0(x) dS

where F0(x, v,∇v) = 1
p0(x)

|∇v|p0(x) + 1
σ(x)

|v|σ(x) −g(x) v. It is clear that the functional Jhom[v,B] is strictly convex

in v,B . Moreover, it is continuous in the space W
1,p0(·)
0 (Ω) with respect to the variable v.

The main result of the Note is the following:

Theorem 2.1. Let uε be a solution of (2) extended by the equality uε = Aε in F ε . Let assumptions (i)–(v) and (C.1)
hold. Then uε converges weakly in W 1,p0(·)(Ω) to a function u such that the pair {u(x),A}, where A = limε→0 Aε , is
a solution of

Jhom[v,B] −→ inf, {v,B} ∈ W
1,p0(·)
0 (Ω) × R (5)

Remark 1. It is important to notice that the constant A in (5) remains unknown. When p0, σ � 2 in Ω , Euler’s
equation for the functional in (5) reads:⎧⎪⎪⎨⎪⎪⎩

−div
(|∇u|p0(x)−2∇u

) + |u|σ(x)−2u = g(x) in Ω \ Γ

u = 0 on ∂Ω; [u]±Γ = 0,

[
|∇u|p0(x)−2 ∂u

∂ν

]±

Γ

= c′
u(x,u − A) and

∫
Γ

c′
u(x,u − A)dS = 0 (6)

where ν is a normal vector to Γ , [·]±Γ is the jump of the corresponding function on Γ , c(x,u−A) = c(x)|u−A|p0(x),
c′
u is the partial derivative of c with respect to u. This means that problem (5) contains a nonlocal transmission

condition.
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3. Sketch of the proof of Theorem 2.1

It follows from the definition of J ε that the solution of (2) satisfies the bound: ‖uε‖W 1,pε(·)(Ωε) � C, where C is a
constant that does not depend on ε. We extend uε by Aε to F ε and consider {uε} as a sequence in W 1,pε(·)(Ω). It is
clear that ‖uε‖W 1,pε(·)(Ω) � C. Now the condition (iv) implies that ‖uε‖W 1,p0(·)(Ω) � C. Following the ideas of [12],
one can also prove that |Aε| � C, where C does not depend on ε. Therefore, there is a subsequence {uε, ε = εk → 0}
that converges weakly to a function u in the space W 1,p0(·)(Ω) and A = limε=εk→0 Aε . We will show that the pair
{u,A} is a solution of the variational problem (5). The proof will be done in two mains steps.

Step 1. Upper bound. Let us cover Γ by a finite number of sets S′
i (i = 1, . . . ,N ) with nonintersecting interiors. We

suppose that the diameters di(N) of S′
i are small such that δ = maxi di(N) → 0 as N → +∞. For any i = 1, . . . ,N ,

we introduce a convex set S̃i with a piecewise smooth boundary that satisfies the following properties: (a) Si ⊂ S′
i ⊂ S̃i ,

where Si = S′
i \ (

⋃
i �=j S̃j ); (b) diam S̃i � C δ; (c) the number of intersections S̃i ∩ S̃j is bounded by an integer M that

does not depend on N ; (d)
∑N

i=1 meas(S̃i \ Si) = o(1) as δ → 0.
We associate with the covering {S̃i} a partition of unity {ϕi(x), x ∈ Γ } satisfying the following conditions: 0 �

ϕi(x) � 1 in Γ ; ϕi(x) = 0 for x /∈ S̃i ; ϕi(x) = 1 for x ∈ Si ;
∑

i ϕi(x) ≡ 1 in Γ ; |Dβϕi(x)| � Cρ−1−γ /p+
, where ρ is

the distance between ∂Si and ∂S̃i .
Let now w be a smooth function in Ω such that w = 0 on ∂Ω and let B be an arbitrary constant. Denote by Lθ a

subset of layers Th(S̃i) covering Γ such that |w(x) − B| > θ > 0 for any x ∈ Th(S̃i). We set bi = w(xi) − B , where
xi ∈ Si , for Th(S̃i) ∈ Lθ and bi = 1 for Th(S̃i) /∈ Lθ .

Let now w be a smooth function in Ω such that w = 0 on ∂Ω and let B be an arbitrary constant. We denote by
vε
i (x) the minimizer of the functional in (3) with S = S̃i . In the domain Ωε we introduce the function:

w
(ε)
h (x) =

(
w(x) +

Nδ∑
i=1

[
w(x) − B

](
vε
i (x) − 1

)
ϕi(x)

)
ψ(x) + w(x)

[
1 − ψ(x)

]
Here ψ ∈ C∞(Ω) is a cut-off function such that 0 � ψ(x) � 1 in Ω , ψ(x) = 1 in Th′(Γ ), ψ(x) = 0 in Ω \ Th(Γ ),
and |∇ψ(x)| � Cr−1, where Th′(Γ ) is the layer with the middle surface Γ and of thickness 2h′ = 2(h − r) with
r = h1+γ .

It follows from the properties of the functions vε
i (x), ϕi , and ψ that wε

h ∈ W 1,pε(·)(Ωε). Moreover, ws
h = 0 on ∂Ω

and ws
h = B on ∂F ε . Since uε is the minimizer of the functional J ε , then we have that J ε[uε] � J ε[wε

h]. Estimating
the right-hand side of this inequality we get:

lim
δ→0

lim
h→0

lim
ε→0

J ε
[
uε

]
�

∫
Ω

F0(x,w,∇w)dx +
∫
Γ

c(x)|w − B|p0(x) dS = Jhom[w] (7)

Inequality (7) is obtained for w ∈ C∞
0 (Ω). Then it follows from density arguments and the continuity of the

functional in W
1,p0(·)
0 (Ω) that it remains true for any w ∈ W

1,p0(·)
0 (Ω).

Step 2. Lower bound. Let u ∈ W
1,p0(·)
0 (Ω) be a weak limit in W 1,p0(·)(Ω) of the sequence {uε} ⊂ W

1,pε(·)
0 (Ω)

(extended by uε = Aε in F ε) by a subsequence ε = εk . For any � > 0, we introduce a function u� ∈ C∞
0 (Ω) such

that ‖u − u�‖W 1,p0(·)(Ω) < �. One can show that there is a sequence {wε
�} ⊂ W

1,pε(·)
0 (Ωε) with wε

� = 0 in F ε that

converges weakly in W 1,p0(·)(Ω) to (u−u�). We set uε
� = uε +wε

� . Then lim�→0 limε=εk→0‖uε
� −uε‖W 1,pε(·)(Ωε) = 0

and it follows from the continuity of the functional in W
1,p0(·)
0 (Ω) that lim�→0 limε=εk→0|J ε[uε

�] − J ε[uε]| = 0 and
lim�→0 Jhom[u�] = Jhom[u]. Now it is clear that the bound,

lim
ε=εk→0

J ε
[
uε

]
� Jhom[u] (8)

immediately follows from the inequality: limε=εk→0J
ε[uε

�] � Jhom[u�] (�-lower bound).
Let us prove the �-lower bound. To this end, we cover the layer Th(Γ ) by the layers Th(S

′
i ) with nonin-

tersecting interiors (see the definition of Th(S
′
i ) in the paragraph “Upper bound”) and introduce the notation:

T ±
θ = {x ∈ Th(Γ ): ±(u� − A) > θ > 0}; Tθ = T +

θ ∪ T −
θ ; T ε

θ = Tθ ∩ Ωε; T̃ ± = {⋃i Th(S
′): Th(S

′) � T ±
θ };
θ,h i i
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T̃θ,h = T̃ +
θ,h ∪ T̃ −

θ,h; T̃ ε
θ,h = T̃θ,h ∩ Ωε; Oθ = Th(Γ ) \ Tθ ; Oε

θ = Oθ ∩ Ωε . Notice that since u� is a smooth function

in Ω , then limh→0 meas(Tθ \ T̃θ,h) = 0.
We rewrite J ε[uε

�] as follows:

J ε
[
uε

�

] =
∫

Ω\Th(Γ )

Fε

(
x,uε

�,∇uε
�

)
dx +

∫
T̃ ε

θ,h

Fε

(
x,uε

�,∇uε
�

)
dx +

∫
T ε

θ \T̃ ε
θ,h

Fε

(
x,uε

�,∇uε
�

)
dx

+
∫

Oε
θ

Fε

(
x,uε

�,∇uε
�

)
dx (9)

Conditions (i)–(iv) imply the inequality:

lim
h→0

lim
ε=εk→0

∫
(T ε

θ \T̃ ε
θ,h)∪Oε

θ

Fε

(
x,uε

�,∇uε
�

)
dx �

∫
Oθ

F0(x,u�,∇u�)dx (10)

Finally, following the lines of [7] and using the definition (3), for any Th(S
′
i ) ⊂ T ±

θ , as h → 0, we have:

lim
ε=εk→0

∫
Th(S′

i )∩Ωε

Fε

(
x,uε

�,∇uε
�

)
dx �

∫
Th(S′

i )

F0(x,u�,∇u�)dx + |bi |p0(x
i ) lim

ε=εk→0
cε,h

(
S′

i

) + o
(
hn

)
(11)

where bi = u�(xi) − A with xi ∈ S′
i .

Taking into account (9)–(11), and the condition (C.1), we pass to the limit first as h → 0, then as � → 0 and δ → 0,
and finally as θ → 0. This leads to the �-lower bound and, therefore, to the lower bound (8).

Now it follows from (7), (8) that Jhom[u] � Jhom[w] for any w ∈ W
1,p0(·)
0 (Ω), where u is the weak limit of the

solution of (2), extended by uε = Aε in F ε . This completes the proof of Theorem 2.1.

4. A periodic example

As an application of the previous general result, we now give an example of a perforated medium, where the set
F ε and the growth function pε are given explicitly.

Theorem 2.1 provides sufficient conditions for the existence of the homogenized problem (5). The goal of this
section is to prove that, for an appropriate example, all the conditions of Theorem 2.1 are satisfied and to compute the
function c(x) in the homogenized problem (5) explicitly.

Let Ω be a bounded Lipschitz domain in R
3. We suppose that the set F ε consists of thin intersecting cylinders of

radius r(ε) = e−1/ε . Moreover, the axes of the cylinders belong to a plane Γ � Ω and form an ε-periodic lattice in R
2.

We set Ωε = Ω \ F ε .
Let {pε}(ε>0) be a class of smooth functions in Ω given by:

pε(x) =
{

2 + ε�(x) in N (F ε, ε2)

2 + �ε(x) elsewhere
(12)

where N (F ε, ε2) denotes the cylindrical ε2-neighborhood of the set F ε and where �, �ε are smooth strictly positive
functions in Ω , moreover, maxx∈Ω �ε(x) = o(1) as ε → 0. It is clear that pε satisfies conditions (i)–(iv), and converges
uniformly in Ω to the function p0 ≡ 2.

We study the asymptotic behavior of the solution of problem (1), where the growth pε is given by (12), the growth
σ satisfies condition (v) of Theorem 2.1 with σ− � 2 and g ∈ C(Ω). We show that the homogenized model in this
case is given by (6), where

c(x) = 4πμ(x), A =
(∫

Γ

μ(x)dS

)−1 ∫
Γ

μ(x)u(x)dS with μ(x) = el(x) − 1

l(x)
(13)

We end this section with the following remark:
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Remark 2. It is known from [9] that in the case of a surface distribution of F ε , with a constant growth pε(x) = 2 +α,
where α > 0 is a parameter independent of ε, there is no 3D lattice for the corresponding problem which leads to
homogenization because the capacity of the lattice goes to infinity as ε → 0. However this gives an example of the
growth pε ∼ 2 + ε (in a small neighborhood of the lattice) which leads to a nontrivial homogenization result.
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