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Abstract

We describe a periodic homogeneous elastic waveguide of a particular shape of beads connected by ligaments of diameter O(h)

such that the essential spectrum contains gaps, the number of which grows unboundedly when h tends to +0. To cite this article:
S.A. Nazarov et al., C. R. Mecanique 337 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Gaps dans le spectre essentiel d’un guide d’onde élastique, infini et périodique, ayant la forme d’un collier. Nous décrivons
un guide d’ondes élastique homogène et périodique, ayant la forme particulière de collier constitué de grains reliés par des ligaments
de diamètre O(h) de telle sorte que le spectre essentiel contienne des gaps dont le nombre augmente infiniment quand h tend vers
zéro. Pour citer cet article : S.A. Nazarov et al., C. R. Mecanique 337 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. The waveguide

Let � be a convex domain in R
3, with a smooth boundary ∂� and a compact closure � = � ∪ ∂� , such that

� ⊂ {
x = (y, z): y = (y1, y2) ∈ R

2, |z| < H/2
}
, O± = (0,0,±H/2) ∈ ∂� (1)
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Fig. 1. The periodic waveguide and the limit case of disjoint beads.

Let also ω be a domain in R
2 such that ω is compact and ∂ω is smooth, and let Ωh = ωh × R and ωh = {y ∈

R
2: η := h−1y ∈ ω}. The ratio h/H is small and after rescaling we set H = 1 so that h ∈ (0,1] and the Cartesian

coordinates x = (x1, x2, x3) become dimensionless. The periodic waveguide Πh = Ωh ∪ ⋃
j∈Z

�
j
h (Fig. 1a) consists

of thin infinite straight needle Ωh and the periodic family of beads

�(j) = {
x: (y, z − j) ∈ �

}
, j ∈ Z := {0,±1,±2, . . .} (2)

The set �h = {x ∈ Πh: |z| < 1/2} is called the periodicity cell of the quasi-cylinder Πh. At h = 0 the set Πh turns
into the union of disconnected domains (2) (Fig. 1b).

For h ∈ (0, h0] we consider the spectral elasticity problem

L(∇x)u
h := μ�xu

h − (λ + μ)∇x∇x · uh = 
Λhuh in Πh, N(x,∇x)u
h := σ (ν)(u) = 0 on ∂Πh (3)

where λ � 0, μ � 0 are the Lamé constants, 
 > 0 is the constant material density, and Λh is a spectral parameter
(square of the oscillation frequency). Furthermore, ∇x = grad, ∇· = div, �x = ∇x ·∇x is the Laplacian in the variables
x, uh = (uh

1, uh
2, uh

3) stands for the displacement vector,

σ
(ν)
j (u) =

3∑

k=1

νk(x)σjk

(
uh

)
, σ (ν) = (

σ
(ν)
1 , σ

(ν)
2 , σ

(ν)
3

)

ν = (ν1, ν2, ν3) is the unit vector of the outward normal defined for almost all points of the piecewise smooth surface
∂Πh, and the strains and stresses are given by

εjk

(
uh

) = 1

2

(
∂xk

uh
j + ∂xj

uh
k

)
, σjk

(
uh

) = 2μεjk

(
uh

) + λδj,k

(
ε11

(
uh

) + ε22
(
uh

) + ε33
(
uh

))

with Kronecker’s symbol δjk . Here ∂xk
= ∂/∂xk and further ∂z = ∂/∂z.

2. The operator formulation of the problem

The problem (3) admits the variational formulation [1,2] with the elastic energy quadratic form 1
2a,

a(u, v;Πh) =
3∑

j,k=1

(
σjk(u), εjk(u)

)
Πh

(4)

where (·,·)Πh
is the natural scalar product in the Lebesgue space L2(Πh). The form (4) is closed and positive Hermi-

tian in the Sobolev space H 1(Πh). The Birman–Krein–Vishik theory (cf. [3] and [4, Ch. 10]) can therefore be applied
to transform (3) to the abstract formulation

T huh = Λhuh (5)

where T h is an unbounded self-adjoint positive operator in L2(Π). The spectrum Σ(T ) lies in R+ = [0,∞). Since
the embedding H 1(Πh) ⊂ L2(Πh) is not compact, the essential spectrum Σess(T ) is not empty (cf. [4, Th. 10.1.5].
Moreover, it is known (see [5–7] and others) that the spectrum gets the band-gap structure, namely

Σ
(

T h
) = Σess

(
T h

) =
∞⋃

p=1

Υ h
p (6)

where Υ h
p = {Mh

p(η): η ∈ [0,2π)} are closed segments and
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0 � Mh
1 (η) � Mh

2 (η) � · · · � Mh
p(η) � · · · → +∞ (7)

constitutes the eigenvalue sequence for the following model spectral problem on the periodicity cell �h:

L(∇y, ∂z + iη)V h = 
Mhvh in �h

N(x,∇y, ∂z + iη)V h = 0 in υh

V h(y,1/2) = V h(y,−1/2), ∂zV
h(y,1/2) = ∂zV

h(y,−1/2) for y ∈ ωh

(8)

where υh = ∂�h \ (ω+
h ∪ ω−

h ) is the lateral side of the cell. Notice that the periodicity conditions are imposed only on
the small cross-sections ω± = ωh × {±1/2} of the needle Ωh.

The model problem (8) is derived from (3) using the Gelfand transform

v(y, z) 	→ V (y, z;η) = 1√
2π

∑

m∈Z

exp
(−iη(z + m)

)
v(y, z + m) (9)

(see [8] and, e.g. [6,7] for its properties). Note that (y, z) ∈ Πh on the left of (9), but (y, z) ∈ � on the right. For any
real η, the problem (8) is associated with the Hermitian positive closed sesquilinear form

aη(U,V,�h) = a
(
exp(iηz)U, exp(iηz)V ;�h

)
, u,V ∈ H 1

per(�h)

where H 1
per(�h) is the subspace of H 1(�h) of functions 1-periodic in z. Hence, (8) is associated with a self-adjoint

semi-bounded operator in L2(�h) (see [3], [4, Ch. 10] again) and in view of the compact embedding H 1
per(�h) ⊂

L2(�h), the problem has the discrete spectrum (7) only. It is known that the functions R � η 	→ Mh
p(η) are continuous

and 2π -periodic so that (6) indeed consists of closed segments.

Remark. The authors do not know, if it is possible in (8) that

Mh
q (η) = Mh

q0
= const for η ∈ [η0, η1) ⊂ [0,2π), η1 > η0 (10)

Under the condition (10), the operator T h in (5) gets the eigenvalue Mh
q0

of infinite multiplicity. If (10) does not occur
for any q , the spectrum Σ(T h) is fully continuous.

3. Opening gaps

The structure (6) does not necessarily provide gaps because the bands Υ h
p may cover the ray [0,+∞). However,

plenty of examples of opened gaps have been discovered for scalar equations and Maxwell’s system in periodic
media, infinite in all directions (see [9,10] and others). To open a gap, one usually considers differential operators
with piecewise constant contracting coefficients and tunes the parameters.

An approach based on parameter-dependent Korn-type inequalities [11] was proposed in [12]. It permits to detect
a gap for periodic homogeneous elastic waveguide of a specific shape with partly clamped surface. This approach was
modified in [13] to cover waveguides with traction-free surfaces of various shapes and elastic properties, in particular,
the one in Fig. 1a. However, the method [12,13] is able to ensure the detection of only one gap. In this Note we develop
a new approach which enables to open as many gaps as we wish when h → +0.

In order to simplify the demonstration here, we have made many assumptions on the waveguide Πh. In general, the
elastic material could be anisotropic and periodically inhomogeneous. The boundaries ∂� and ∂ω could be Lipschitz,
except that ∂ω should be smooth in the vicinity of the points O± (see (1)).

Our result on gaps provokes to formulate a hypothesis about the origin of the experimentally known effect of
“backward wave”, describing the splintering of a brittle rod by a wave reflected from the free end. Indeed, moving
from the embedded end the wave may produce a family a salvage cracks (see Fig. 2) which on the way back create
gaps in the spectrum. These are inhibitory for waves at certain frequencies, and, thus, cause an energy concentration
which usually leads to fracture. Of course, the result below does not yet prove this phenomenon, and a numerical
simulation becomes the next task for the authors.
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Fig. 2. Family of salvage cracks.

4. The limit model problem

At h = 0 the ligaments vanish so that the problem (8) loses the periodicity conditions and turns into

L(∇y, iη + ∂/∂z)V = MV in �, N(x,∇x, iη + ∂/∂z)V = 0 on ∂� (11)

We observe that Mp(η) = Mp , v(p)(x;η) = exp(−iηz)V(p)(x) (recall here the Remark), where V(p) is the eigenvalue
of the problem (11) at η = 0 corresponding to the eigenvalue Mp in the sequence

0 = M1 = · · ·M6 < M7 � M8 � · · · � Mp � · · · → +∞ (12)

Note that (8) is nothing but the standard spectral problem for the isolated elastic body � , and the six null eigenvalues
in (12) correspond to rigid motions. The eigenvectors V(p) can be subject to the conditions

(V(p),V(q)) = δp,q, p, q = 1,2, . . . (13)

The max–min principle (see, e.g., [4, Th. 10.2.2]) gives the formula

Mj(η) = Mj = max
Hj

inf
U ∈Hj \{0}

aη(U , U ;�)


‖U ;L2(�)‖2
(14)

where Hj stands for any subspace in H 1(�) of codimension j − 1 and hence H1 = H 1(�).

5. Comparing eigenvalues in �h and �

We again have

Mh
j (η) = max

Hh
j

inf
U h∈Hh

j \{0}
aη(U h, U h;�h)


‖U h;L2(�h)‖2
(15)

where Hh
1 = H 1

per(�h) and other notation is similar to (14). Eigenvectors V h
(p) of the model problem (8) in �h fall

into H 1(�) and satisfy the orthogonality and normalization conditions
(
V h

(p),V
h
(q)

)
�h

= δp,q, p, q = 1,2, . . . (16)

A result on trimming rough surfaces in [11, Ch. 2] provides the following inequality of Korn’s type:
∥∥V ;L2(�h \ �)

∥∥2 � CKh2(a(V,V ;�h) + ∥∥V ;L2(�h)
∥∥2)

, V ∈ H 1(�h) (17)

where CK is independent of h ∈ (0,1] and V . Let us fix j and choose h > 0 such that

CKh2(1 + Mh
j (η)

)
� (2j)−1 for η ∈ [0,2π) (18)

Then the eigenvectors V h
(1), . . . , V

h
(j) still remain linearly independent in L2(�), and thus any subspace Hj contains

a non-trivial linear combination U h
(j)

of them. Inserting exp(−iηz)U h
(j)

into (14) with η = 0, we use (16)–(18) to
conclude that

Mj(η) = Mj � Mh
j (η)

(
1 + 2CKhj2(1 + Mh

j (η)
))

(19)

Consider the products V h
(p)(x;η) = χh(x)V(p)(x;η), where V(p) is taken from (4) and χh is a smooth plateau

function which is equal to 1 for min |x − Opm| > 2cχh and 0 for min |x − Opm| < cχh and cχ > 0 is such that the



S.A. Nazarov et al. / C. R. Mecanique 337 (2009) 119–123 123
extension of V h
(p) to �h by null remains smooth. The inequalities |V(p)(x)| � c� (1 + Mp)3/2 and |∇xV(p)(x)| �

c� (1 + Mp)2 follow from local estimates in [14] and the normalization condition (13) with q = p, and they can be
used to derive the estimates

∥∥V(p) − V h
(p);L2(�)

∥∥2 � C� h3(1 + Mp)3

∥∥∇xV(p) − ∇x V h
(p);L2(�)

∥∥2 � C� h(1 + Mp)3(1 + h2(1 + Mp)
)

Hence, since h � 1 we find that V h
(1), . . . , V h

(j) are linearly independent in L2(�) under the restriction C� h3j (1 +
Mj )

3 � 1/2, and applying (15) in the same way as above we obtain the relation

Mh
j (η) � Mj + C�Cahj (1 + Mj )

3(1 + h2(1 + Mj ))

1 − C� h3j (1 + Mj )3
� Mj + CMhj (1 + Mj )

3

Notice that the latter particularly provides (18) for h ∈ (0, hj ], if δ > 0 is small in the formula

hj = δj−2/3(1 + Mj )
−1 (20)

We are now in the position to conclude our result:

Theorem 5.1. Let Mj > Mj−1 in (12). Then, for h ∈ (0, hj ] with hj as in (20), the bands Υ h
1 , . . . ,Υ h

j−1 and Υ h
j ,

Υ h
j+1, . . . , respectively, belong to the sets [0,Mj−1 + Ahj (1 + Mj−1)

3] and [Mj + Ahj (1 + Mj ),+∞), where
A > 0 depends on neither h, nor j . In the case

h < A−1j−1(Mj − Mj−1)
(
(1 + Mj−1)

3 + (1 + Mj )
)−1

(21)

the spectrum (6) gets a gap between the bands Υ h
j−1 and Υ h

j .

We are not yet able to indicate a gap between the bands corresponding to the same (multiple) eigenvalue in (12)
using the method presented above. In [13] it is proven under certain symmetry restrictions that just Υ h

1 , . . . ,Υ h
6 cover

an intact segment. Notice that the quantities (20) form a monotone decreasing sequence but the bounds in (21) do not.
However, diminishing the parameter h yields any given number of gaps.
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