
C. R. Mecanique 337 (2009) 141–149

On the heat and mass transfer analogy for natural convection
of non-dilute binary mixtures of ideal gases in cavities

Hua Sun, Guy Lauriat ∗

Université Paris-Est, laboratoire de modélisation et simulation multi-échelle (MSME FRE-CNRS 3160), 5, boulevard Descartes,
Champs sur Marne, 77454 Marne-la-Vallée cedex 2, France

Received 14 November 2008; accepted after revision 1 April 2009

Presented by Sébastien Candel

Abstract

An extension of a slightly compressible flow model to double-diffusive convection of a binary mixture of ideal gases enclosed
in a cavity is presented. The problem formulation is based on a low Mach number approximation and the impermeable surface
assumption is not invoked. The main objectives of this paper are the statement of a new problem formulation, and the analysis
of some significant results showing the influence of density variations on transient solutions for pure thermal or pure solutal
convection. At steady-state, it is shown that the heat and mass transfer analogy may be applied for non-dilute mixtures at parameter
ranges larger than those usually considered. To cite this article: H. Sun, G. Lauriat, C. R. Mecanique 337 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Sur l’analogie transfert de chaleur et de matière pour la convection naturelle de mélanges binaires non-dilués de gaz
parfaits. Le modèle d’écoulement faiblement compressible est étendu à la convection doublement diffusive d’un mélange binaire
de gaz parfaits contenus dans une cavité. L’écriture des équations de conservation et de la loi d’état du mélange s’appuie sur
une approximation “bas Mach” en tenant compte des vitesses de diffusion sur les parois. Les objectifs de cet article sont de
proposer une nouvelle formulation du problème et de discuter quelques résultats significatifs. Les cas de convection thermique et
de convection solutale sont considérés successivement. On montre que l’analogie transfert de chaleur–transfert de matière reste
applicable dans des domaines de paramètres plus étendus que ceux habituellement admis. Pour citer cet article : H. Sun, G.
Lauriat, C. R. Mecanique 337 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Double-diffusive (or thermosolutal) convection occurs when buoyancy forces are due both to temperature and
concentration gradients. Many flow structures are possible depending on how temperature and concentration gradients
are oriented relative to gravity. Double diffusive natural convection in enclosures filled with dilute binary mixtures
has been investigated extensively both experimentally and numerically. The main objectives of many of the works
published in the heat and mass transfer literature were the analysis of the flow structure, and the Nusselt and Sherwood
numbers as functions of dimensionless parameters. Thermal natural convection in gas filled cavities in which large
density gradients exist was solved by employing weakly compressible flow models by Leonardi and Reizes [1], and
Zhong et al. [2], amongst others. The more recent numerical study by Vierendeels et al. [3] as well as the solutions
compared within the framework of a benchmark problem (Le Quéré et al. [4,5]) were based on the low-Mach number
formulation, first introduced by Paolucci [6].

In the present study, this formulation is applied to non-isothermal, non-dilute binary mixture cavity flows subjected
to large variations in density for ideal gas mixtures. The impermeable surface assumption is not invoked in order to
account for the mass flux advected at the vertical walls. The heat and mass transfer analogy and the influences of the
initial thermodynamic conditions on steady-state solutions are discussed.

2. Problem formulation

The geometry investigated is illustrated in Fig. 1. Natural convection is driven by thermal and/or solutal horizontal
gradients. The flow is assumed to be laminar, there are no chemical reactions, heat generation or heat dissipation, and
radiative heat transfer across the enclosure is neglected. The heat flux driven by mass fraction gradients (Dufour effect)
and the mass flux driven by temperature gradients (Soret effect) as well as species interdiffusion are neglected. Since
the present study is focused on the effects of density variations, the changes in the other thermophysical properties of
the mixture with temperature and mass fraction are not accounted for in order to reduce the number of parameters. At
initial state, the cavity is assumed to be filled with a mixture at uniform temperature and concentration fields.

Various boundary conditions may be applied for the energy and species conservation equations, as stated in the
current literature (see for example Weaver and Viskanta [7] and Bird et al. [8]). For the momentum equation, the
impermeable surface model is restricted to dilute binary mixture for which mass transfer–heat transfer analogy is
relevant. This assumption is by definition an approximation because mass diffusion always produces convection.

2.1. Thermal convection in a rectangular 2D-cavity

Thermal convection in a vertical, differentially heated cavity is investigated first. Fig. 1(a) shows a schematic
diagram of the cavity and applied boundary conditions. Uniform hot and cold temperatures, Th and Tc are specified
at the vertical walls and the horizontal boundaries are adiabatic. The scales for length, velocity and temperature
difference are chosen as the cavity width, L, the thermal diffusion velocity ud = ar/L (where ar = kr/ρrCp,r is the
reference thermal diffusivity) and the maximum temperature difference �T = Th − Tc, respectively. The governing
equations are thus cast in dimensionless form by using the following dimensionless variables

Fig. 1. Schematic diagram of the rectangular cavity. (a) thermal natural convection, (b) solutal natural convection.
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where Tr is assumed to be the average of the vertical wall temperatures for t > 0. p′
m is the motion pressure and P

the thermodynamic pressure. Based on the constant thermophysical property assumption except density, the resulting
dimensionless conservation equations are:
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where FrT = a2
r /gL3 is the thermally based Froude number, Pr = μrCp,r/kr is the Prandtl number, γ = Cp/Cv is

the ratio of specific heats. εT = �T/Tr characterizes the thermal deviation from the Boussinesq approximation. For
a cavity filled with an ideal gas, the dimensionless thermodynamic pressure may be written as

P ∗(τ ) = A∫ A

0

∫ 1
0 ( 1

εT θ+1 )dx∗ dy∗ (5)

In the above expression, A = H/L is the cavity aspect ratio. The local dimensionless fluid density is obtained from
the perfect gas law as follows

ρ∗ = P ∗(τ )

1 + εT θ
(6)

The dimensionless initial and boundary conditions are

u∗ = v∗ = 0, θ = θ0 at τ = 0, ∀x∗, y∗ (7)

u∗ = v∗ = 0, θ = ±0.5 at x∗ = 0,1 for τ > 0, ∀y∗ (8)

u∗ = v∗ = 0, ∂θ/∂y∗ = 0 at y∗ = 0,A for τ > 0, ∀x∗ (9)

The local Nusselt number at the hot wall is defined as

Nu(y∗) = − ∂θ

∂x∗

∣∣∣∣
x∗=0

(10)

At steady-state, the average Nusselt numbers at the hot and cold walls must be equal whatever the initial conditions.

2.1.1. Effects of initial conditions on the steady-state solution.
Since the overall mass of fluid is constant, the reference density should be evaluated at a well-defined reference

state. The average density is generally not known at Tr . Therefore, care should be taken when assuming constant
thermal properties except density if the initial temperature is not the average of wall temperatures (i.e. Tr �= T0 or
θ0 �= 0). Although the Prandtl number may be assumed constant over a large temperature range for ideal gases, the
Froude number must be calculated by using data for the thermal conductivity and specific heat at the average wall
temperature (i.e. Tr ), while the reference density is that at the initial thermodynamic conditions (i.e. for T0 and P 0).
It follows that

ρr = ρ0, P r = P 0 and P ∗(τ ) = A∫ A

0

∫ 1
0 (

εT θ0+1
εT θ+1 )dx∗ dy∗ if θ0 �= 0 (11)

For the present non-Boussinesq formulation based on a constant thermophysical property assumption, except density,
the solution depends thus on six dimensionless parameters (A, FrT , Pr, γ , εT , θ0).
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2.2. Solutal convection in a rectangular 2D-cavity

Solutal convection in a vertical cavity with different uniform mass fractions of species “2” suddenly imposed at the
vertical walls is investigated in what follows. An inert carrier gas (species “1”) which does not diffuse into the walls
is present in the cavity. Fig. 1(b) shows a schematic diagram of the cavity and applied boundary conditions. Uniform
mass fractions, W2,h and W2,c, are specified at the vertical left-hand side and right-hand side walls. It is assumed here
that W2,h > W2,c. Zero species fluxes are prescribed at the horizontal boundaries. Depending on the molecular weight
ratio, M∗ = M2/M1, the solutal body force produces either a clockwise fluid circulation (M∗ < 1) or a trigonometric
circulation (M∗ > 1). The scale for mass fraction difference is the maximum mass fraction difference, �W2 = W2,h −
W2,c. The velocity scale is based on the solutal diffusion velocity ud = D12/L. The governing equations are thus cast
in dimensionless form by using the following set of dimensionless variables
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where W2,r is the average of the vertical walls values for t > 0. It should be emphasized that the overall mass of fluid
present into the cavity cannot be known whatever t > 0, owing to the different mass flux rates at the walls in transient
régime (except for extremely dilute binary mixtures for which the mass may be assumed constant and equal to the
one of the carrier gas). Therefore, the reference density cannot generally be defined at the reference conditions used
for the other physical properties. We retained thus the density at initial state. Based on the constant thermophysical
property assumption except mixture density, the resulting dimensionless conservation equations are:

∂ρ∗

∂τ
+ ∇ · (ρ∗ �V ∗) = 0 (13)
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where FrS = D2
12/gL3 is the solutal Froude number and Sc = μr/ρ0D12 is the Schmidt number. The mass diffusion

coefficient depends on the thermodynamic pressure (see the Chapman–Enskog formula [8], for example). On the other
hand, the results of the kinetic gas theory show that the Schmidt number may be assumed constant since μ is pro-
portional to

√
T . Consequently, the two dimensionless parameters involved in the steady-state conservation equations

for thermal (FrT and Pr) and solutal (FrS and Sc) convection behave similarly. The dimensionless thermodynamic
pressure based on mass conservation may be written as

P ∗(τ ) = 1∫ A

0

∫ 1
0 (

εmW ∗
2,0+1

εmW ∗
2 +1 )dx∗ dy∗

{
A + �M2(τ )

}
(16)

In the above expression, subscript “0” refers to the initial conditions and εm characterizes the solutal deviation from
the usual assumption of binary dilute solutions. It reads

εm = (1 − M∗)�W2

M∗ + (1 − M∗)W2,r

(17)

The term �M2(τ ) denotes the mass of species “2” added within the cavity between times τ = 0 and τ due to mass
diffusion at the walls. It is zero if both species diffuse into the walls while it is given by

�M2(τ ) = − 1
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τ∫ A∫
ρ∗ ∂W ∗

2
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0 0 0 0
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provided that the mass of species “1” present in the enclosure is constant. It is worth noting that �M2(τ ) vanishes at
steady state. In the right-hand side of Eq. (18), Cw = (1 − W2,r )/�W2. The local dimensionless mixture density is
obtained from the ideal gas law as follows

ρ∗ = P ∗(τ )

1 + εmW ∗
2

(19)

The dimensionless initial and boundary conditions are

u∗ = v∗ = 0, W ∗
2 = W ∗

2,0 at τ = 0, ∀x∗, y∗ (20)

u∗ = − 1

Cw ∓ 0.5

∂W ∗
2

∂x∗

∣∣∣∣
0,1

, v∗ = 0, W ∗
2 = ±0.5 at x∗ = 0,1 for τ > 0, ∀y∗ (21)

u∗ = v∗ = 0,
∂W ∗

2

∂y∗ = 0 at y∗ = 0,A for τ > 0, ∀x∗ (22)

It should be underlined that the introduction of non-zero initial conditions (W ∗
2,0 �= 0) automatically implies a depen-

dence of the steady-state solution with the initial state as it can be deduced from Eqs. (16) and (20). The mass fluxes
at the vertical walls are the sum of a diffusion term and an advection term due to the normal velocities produced by
the mass fluxes at the surfaces. Hence, the local Sherwood number at the LHS-wall is defined as

Sh(y∗) = −ρ∗ ∂W ∗
2

∂x∗

∣∣∣∣
x∗=0

+ ρ∗u∗W ∗
2 (0, y∗) = Shdiff + Shadv (23)

At steady-state, the average Sherwood numbers at the vertical walls must be equal owing to the boundary conditions
applied at the horizontal surfaces. It should be noted that the average Sherwood number can be related to the total
dimensionless mass flux through a vertical wall ṁ∗ = ∫ A

0 ρ∗u∗ dy∗ as

Sh = Cwṁ∗ (24)

while the advective part of the average Sherwood number is related to the mass flux as follows

Shadv = 1

2
ṁ∗ (25)

For the present non-Boussinesq solutal formulation based on a constant thermophysical property assumption, except
mixture density, the solutions depend on six dimensionless parameters (A, FrS , Sc, εm, Cw , W ∗

2,0).

2.3. Thermosolutal convection in a rectangular 2D-cavity

The non-Boussinesq formulation for thermosolutal convection can be readily derived by combining the above
systems of conservation equations. The dimensionless thermodynamic pressure and density may be obtained from the
following relationships:

P ∗(τ ) = 1∫ A

0

∫ 1
0 (

εT θ0+1
εT θ+1 )(

εmW ∗
2,0+1

εmW ∗
2 +1 )dx∗ dy∗

{
A + �M2(τ )

}
(26)

ρ∗ = P ∗(τ )

(1 + εT θ)(1 + εmW ∗
2 )

(27)

The relationship for the local Sherwood number (Eq. (23)) is not modified. On the other hand, an advective term must
be added into the local Nusselt number such as:

Nu(y∗, τ ) = − ∂θ

∂x∗

∣∣∣∣
x∗=0

+ 0.5ρ∗u∗ = Nudiff + Nuadv (28)

The non-Boussinesq thermosolutal formulation based on a constant thermophysical property assumption, except mix-
ture density, involves thus ten dimensionless parameters: A, Cw , Fr, Le, Pr, γ , εT , εm, θ0 and W ∗

2,0. Such a number
of parameters together with the possibility of combined or opposed buoyancy effects is therefore a severe limitation
for a complete analysis of thermosolutal natural convection in cavities.
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As can be seen from Eqs. (5) and (16), the dimensionless steady-state thermodynamic pressure tends towards unity
if εT → 0 or if εm → 0. Therefore, the Boussinesq approximation is recovered for εT � 1 and εm � 1 and it can be
readily shown that this approximation leads to constant thermodynamic pressure and density (except in the buoyancy
term). For subcritical laminar flows, the dimensionless steady-state velocity, temperature and mass fraction fields are
thus independent on the initial conditions.

For large values of εm and εT , the constant property assumption is highly questionable. However, the changes to
bring to the above problem formulation is straightforward: all the dimensionless parameters must be evaluated at the
same thermodynamic state, and appropriate dimensionless functions must be introduced in the diffusion terms. For
the specific case of wet walls with liquid water, relevant formulas can be found in Tsilingiris [12], for example.

2.4. Numerical resolution

The finite volume method was employed to discretize the system of conservation equations on staggered, non-
uniform Cartesian grids with a second-order central difference scheme for the convective terms. The IDEAL algorithm
recently proposed by Sun et al. [9] for incompressible fluid flow and heat transfer was used to solve the velocity–
pressure coupling. In the present work the IDEAL algorithm was extended to weakly compressible, thermosolutal
flows without under-relaxation factors for u∗, v∗ and p∗. The time integration was conducted with an Alternating
Direction Implicit scheme (ADI), and at each time step there existed an inner doubly iterative process for obtaining
the pressure field solution. The time step was chosen such that the maximum value of the Courant–Friedrichs–Lewis
number (CFL) was of the order of one. A mesh study was conducted by using non-uniform grids having from 64 ×
64 to 512 × 512 nodes. For the range of parameters considered in the present work, a 256 × 256 grid represents
a good compromise between accuracy and computational costs. The adopted convergence criterion required that
relative maximum mass and field variable residuals were less than 10−9. A coarse estimate of the leading order
of the truncation error can also readily be calculated as N−1.97

x , showing an overall second-order spatial accuracy of
the scheme. Comparisons of the results obtained for large temperature difference (εT = 1.2) and RaT = 106 was made
with those by Vierendeels et al. [3] and with the recent benchmark solutions reported in Le Quéré et al. [4,5]. The
most accurate results were recovered within three digits for the average quantities reported in [3,5].

3. Results and discussion

For a specified geometry, the full analogy exists only if the energy and mass species conservation equations and
boundary conditions are similar in dimensionless form. Since the pressure term in the energy equation is zero at
steady-state, it is relevant to determine the conditions for which Nu = Sh for non-dilute flow solutions in a cavity with
uniform but different temperatures or mass fractions at the walls.

To this end, we investigated the time evolutions of Nu and Sh for various values of εT and εm in the case of pure
thermal and pure solutal flows by starting from the same zero initial conditions for a fluid at rest (θ0 = W ∗

2,0 = 0,
i.e. T0 = Tr and W2,0 = W2,r ). When using the low Mach number formulation, the Froude number was varied as
FrT = 10−6εT /Pr for the thermal cases (Pr = 0.71) and as FrS = 10−6εm/Sc for the solutal cases with Sc = Pr .
When the Boussinesq approximation is invoked, RaT = Ram = 106 and the average Nusselt numbers at the vertical
walls are equal in the transient regime owing to the zero initial conditions.

In the thermal boundary layer regime, it is well established that the Boussinesq steady-state flows are not reached
by a monotonous transition if the computations are started from a fluid at rest. The flow displays an oscillatory
behaviour which corresponds to a typical time-periodic motion, as it has been investigated in detail by Patterson
and Imberger [10] who presented a scale analysis which agrees very well with many published numerical works.
For a square differentially heated vertical cavity, the dimensionless period of the oscillatory behaviour is close to
p̃ = 2π

√
2/RaT Pr.

Figs. 2 and 3 display the effect of the non-Boussinesq parameters on the evolutions of the mean Nusselt and
Sherwood numbers for purely thermal or solutal convection. In the range of εT -variation considered, Fig. 2 and Table 1
show that the steady-state Nu does not differ much from the Boussinesq value (Nu = 8.83). As it has been shown in
Laaroussi and Lauriat [11], this result is directly linked to the choice of the initial thermodynamic conditions used
for these computations (θ0 = 0, P ∗(0) = 1). On the other hand, although the frequency of the oscillatory behaviour
is not significantly modified when varying εT , the mean Nusselt numbers at the cold and hot walls exhibit large
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Fig. 2. Transient variations of the average Nusselt numbers at the cold and hot walls as a function of εT (RaT = 106, Pr = 0.71, A = 1, γ = 1.4,
θ0 = 0).

Fig. 3. Transient variations of the average Sherwood numbers at the walls as a function of εm for pure solutal convection (Ram = 106, Sc = 0.71,
A = 1, M∗ = 0.6, W∗

2,0 = 0, Cw = 2.5 for εm = 0.2 and Cw = 0.83 for εm = 0.4).

Table 1
Steady-state average Nusselt number and thermodynamic pressure for various values of the non-Boussinesq parameter εT (A = 1, Pr = 0.71,
FrT = 10−6εT /Pr or RaT = 106, γ = 1.4, θ0 = 0).

Boussinesq εT = 0.1 εT = 0.2 εT = 0.3 εT = 0.4

Nu 8.826 8.827 8.828 8.829 8.831
P ∗ 1.0 0.999 0.996 0.992 0.986

differences, Nuc being larger than Nuh. Plots of any primitive variable at any point within the cavity show that the
period (p̃ = 0.011) agrees well with the theoretical predictions.

Fig. 3 shows the evolutions of the mean Sherwood numbers at the walls for various values of εm in the specific
case M∗ = 0.6 (humid air) and W2,c = 0 (dry right-hand side wall). As expected, Sh = Nu for binary dilute solution
(Boussinesq approximation and Le = 1). Therefore the heat and mass transfer analogy is fulfilled at any time. For
εm �≈ 0.1, the first main difference between thermal and solutal flows lies in the increases in both the wall Sherwood
numbers which are greater than for the dilute case. Second, Shc may be either smaller or larger than Shh according to
the εm and Cw-values. As can be seen, the steady-state values differ all the more since εm increases. The explanation
is that the advective mass fluxes at the walls increase with εm since Cw = [(1 − M∗) − 0.5εm]/εmM∗, if W2,c = 0.
About the oscillatory behaviour, Fig. 3 shows that the frequencies are surprisingly almost the same although the
velocity boundary conditions are not identical when considering pure thermal or pure solutal cases.
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Table 2
Steady-state Sherwood number, thermodynamic pressure, average density and mass flow rates ṁ∗ through the vertical walls for various values of
the solutal non-Boussinesq parameter εm at constant Cw (A = 1, Sc = 0.71, FrS = 10−6εm/Sc or Ram = 106, W∗

2,0 = 0, Cw = 5.83).

Boussinesq εm = 0.1 εm = 0.2 εm = 0.3 εm = 0.4

Sh 8.826 8.826 8.771 8.703 8.619
P ∗ 1.0 0.999 0.992 0.981 0.967
ρ∗ 1.0 0.999 0.996 0.993 0.990
ṁ∗ 0 1.513 1.505 1.493 1.479

Fig. 4. Variation of the mean Sherwood number with the wall-parameter (A = 1, Ram = 106, Sc = 0.71, M∗ = 0.6, W∗
2,0 = 0 and εm = 0.4).

Table 3
Steady-state Sherwood number, thermodynamic pressure, average density and mass flow rates ṁ∗ through the vertical walls for various values of
the solutal non-Boussinesq parameter εm at constant M (A = 1, M∗ = 0.6, Sc = 0.71, FrS = 10−6εm/Sc or Ram = 106, W∗

2,0 = 0, �W2 = 2W2,r ,
Cw = 5.83, 2.5, 1.39, and 0.83).

Boussinesq εm = 0.1 εm = 0.2 εm = 0.3 εm = 0.4

Sh 8.826 8.826 8.864 9.086 10.129
P ∗ 1.0 0.999 0.997 1.002 1.051
ρ∗ 1.0 0.999 0.998 1.002 1.038
ṁ∗ 0 1.513 3.546 6.542 12.154

The results reported in Table 2 show that the Sherwood number decreases slightly as the solutal parameter increases,
unlike to what is predicted for thermal convection. It should be noted that the computations were carried out for a
quite large Cw value in order to consider small effects of the mass flux rates at the walls. The advective part of the
Sherwood number (Eq. (25)) is therefore small in comparison with its diffusive part. The small variations with the
non-Boussinesq parameters both in Nu and Sh leads to conclude that the heat and mass transfer analogy still holds
within the range of changes in εm and εT considered.

For a fixed set of the other solutal parameters, blowing and suction effects at the walls increase as the wall param-
eter Cw decreases towards its asymptotic value (Cw = 0.5). Its magnitude is obviously linked to the mass fraction
difference between the walls, so that changes in Cw while keeping εm constant imply changes in the mixture compo-
nents. Fig. 4 shows that the blowing and suction effects may be assumed negligible for Cw > 2 while they produce a
sharp increases in Sh for smaller Cw-values. By combining the variations in εm and Cw (i.e for a given binary mixture
or M∗), large increases in the mass transfer may be predicted, as exemplified in Table 3.
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4. Conclusion

Variable density effects on natural convection in a vertical cavity filled with a binary mixture of ideal gases are
numerically investigated by using a weakly compressible flow model. The study is conducted in the case where an
inert carrier gas (species “1”) present in the cavity is not soluble in species “2”, and do not diffuse into the walls
(evaporation of water vapor in dry air for example).

Under these conditions, mixture density and thermodynamic pressure experience significant changes from initial
to steady states. However, in the range of parameters investigated, it is shown that the average steady Nusselt and
Sherwood numbers do not differ significantly provided that the mass flux advected at the wall is much smaller than the
mass diffusion flux. Therefore, the heat and mass transfer analogy can be considered as valid for solutal and thermal
parameters (εm and εT , respectively) few times larger than the 0.1-limit usually reported in the current literature.
A new problem formulation is proposed for solving thermosolutal convection with large density variations.
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