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Abstract

The linearized solution for an inviscid imperfectly-expanded supersonic axisymmetric jet has been extended to the case of a
turbulent flow, by taking into account the mean Reynolds stresses. The analytical results agree reasonably well with experimental
data available in the literature, and so indicate that the solution is a good approximation to the near-field of an imperfectly-expanded
jet. This analytical solution could be used to improve semi-empirical models of broadband shock-associated noise in aeronautics.
To cite this article: B. Emami et al., C. R. Mecanique 337 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Une solution à champ d’ècoulement moyen pour un jet supersonique turbulent modérément sous/sur-expansé. La solution
linéarisée pour un jet à la fois axisymétrique, supersonique, non-visqueux et imparfaitement expansé a été portée au cas d’un
ècoulement turbulent en tenant compte des contraintes Reynolds moyennes. Les résultats analytiques correspondent plutôt bien
aux données expérimentales disponibles dans la literature. Ils indiquent donc que la solution est une bonne approximation au
quasi-champ d’un jet imparfaitement expansé. Cette solution analytique pourrait servir à améliorer les modéles semi-empiriques
de bruits de large bande liés aux chocs dans de domaine de l’aéronautique. Pour citer cet article : B. Emami et al., C. R. Mecanique
337 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

The study of under/over-expanded jets is of importance to various engineering applications, including the design
of aeronautic vehicles and the reduction of screech noise in civilian aircraft. When the pressure of a supersonic jet at a
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Fig. 1. Schlieren image of the decaying shock-cell structure of an under-expanded jet [1]. Exit Mach number is 2.53; exit pressure ratio is 3.12.

nozzle exit is higher/lower than the ambient pressure, a multi-cell shock structure (that consists of shock and expansion
waves) forms, causing the pressure of the flow field to decrease/increase to the ambient value. Under/over-expanded
free jets involve a simple flow geometry, yet very complicated phenomena, because of these shock waves and because
the shock cells decay with distance from the nozzle exit due to the interaction with turbulence (see Fig. 1).

The solution of the linearized compressible Euler equations for an inviscid imperfectly-expanded supersonic ax-
isymmetric jet is well known. In the early work of Pack [2], the velocity potential equation for a compressible inviscid
flow was linearized and solved. Later, Howe and Ffowcs-Williams [3] and Tam [4] linearized and solved the pressure
perturbation equation. More recently, the role of screech noise in self-exciting jets was studied using the linearized
solution [5]. In all of this work, solutions were obtained for the inviscid equations, neglecting turbulent and molecular
diffusion. Tam et al. [6] addressed this problem by applying the method of multiple-scales to the linearized Navier–
Stokes equations, reducing them to an inhomogeneous ODE eigenvalue problem that, except for the first mode of the
eigenvalue problem, is solved numerically.

Here, we provide an analytical solution by extending the linearized solution to the Navier–Stokes equations, taking
into account the mean Reynolds stresses, where the empirical turbulence model of Witze [8] is used to determine the
value of the eddy viscosity. The results are compared to the inviscid solution as well as some available experimental
data.

2. Methodology

The Favre-averaged continuity and momentum equations for a turbulent compressible flow in vector form, neglect-
ing the molecular viscous terms, are

∇ · (ρ̄ũ) = 0 (1)

and

ρ̄ũ · ∇ũ � −∇P̄ + ∇ · R (2)

where ρ̄ is Reynolds-averaged density, ũ is Favre-averaged velocity, P̄ is Reynolds-averaged pressure, and R is the
Reynolds stress dyad that can be calculated, in tensor form, as

Rij = μt

(
∂ũi

∂xj

+ ∂ũj

∂xi

− 2

3
δij

∂ũk

∂xk

)
− 2

3
δij ρ̄k̃ (3)

where μt is the turbulent eddy viscosity, and k̃ is the turbulent kinetic energy. By assuming a constant eddy vis-
cosity μt , and by neglecting the isotropic contribution of the turbulent kinetic energy k̃ with respect to the mean
pressure P̄ ,

∇ · R � μt∇2ũ + 1
3
μt∇(∇ · ũ) (4)

Eq. (2) then reduces to

ρ̄ũ · ∇ũ = −∇P̄ + μt∇2ũ + 1

3
μt∇(∇ · ũ) (5)

The assumption of constant eddy viscosity is according to the work of Kleinstein [7] and Witze [8], who concluded
that the eddy viscosity remains almost constant in the flow field of a high speed jet, based on a wide range of related
experimental data. Kleinstein [7] suggested
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μt = 0.00915(ρ∞ρe)
0.5UeDe (6)

where ρ∞ is the ambient density, ρe is the nozzle exit density, Ue is the nozzle exit velocity, and De is the nozzle
exit diameter. Later, Witze [8] proposed an improved correlation for eddy viscosity by looking at a wider range of
measurements,

μt = 0.01ρ0.28∞ ρ0.72
e UeDe(1 − 0.16Me) (7)

where Me is the Mach number at the nozzle exit. In the present results, the eddy viscosity is calculated using Eq. (7),
unless otherwise mentioned, and the molecular diffusion is assumed negligible.

The above equations (for an axisymmetric jet exiting from a nozzle of diameter De) are linearized by ρe and Ue as

ρe∇ · ũ + Ue

∂ρ̄

∂x
= 0 (8)

and

ρeUe

∂ũ
∂x

= −∇P̄ + μt∇2ũ + 1

3
μt∇(∇ · ũ) (9)

As can be seen, the radial derivatives of ρ̄ and ũ on the left-hand sides of Eqs. (8) and (9) respectively, are deemed
negligible because ũ was set to (Ue,0). This can also be physically justified, as the radial component of velocity
is much smaller than the axial component in the near-field of a jet. Taking the divergence of both sides of Eq. (9),
substituting Eq. (8), and introducing a linearized equation of state, P̄ = ρ̄a2

e /γ (γ is the specific heat ratio and ae is
the speed of sound at the nozzle exit), we obtain an equation for pressure

A

(
∂3p

∂x3
+ ∂3p

∂x∂r2
+ 1

r

∂2p

∂x∂r

)
+ (

1 − γM2
e

)∂2p

∂x2
+ ∂2p

∂r2
+ 1

r

∂p

∂r
= 0 (10)

where A = 4γμtUe/(3ρea
2
e ), r and x are the radial and axial coordinates in a 2D axisymmetric system, and

p = P̄ − P∞ (P∞ is the ambient pressure) is introduced to create homogeneous boundary conditions. The above
equation is subject to

p(x = 0, r) = Pe − P∞ (11)

and

∂p

∂x
(x = 0, r) = 0 (12)

at the nozzle exit, where Eq. (12) holds as long as the jet is mildly imperfectly-expanded; and

p(x, r = De/2) = 0 (13)

which holds in the near-field of the jet, close to the nozzle exit.
Using separation of variables, p(x, r) = X(x)R(r), Eq. (10) is converted to a Bessel equation for R(r) and a

third-order ODE for X(x). Considering the boundary conditions, it can be shown that the solution to the first ODE
is a linear combination of J0(λmr), where J0 is the zero-order Bessel function of the first kind, λm = 2βm/De , and
J0(βm) = 0 (m = 1,2,3, . . .). The second ODE reduces to

AX′′′ + (
1 − γM2

e

)
X′′ − AλmX′ − λ2

mX = 0 (14)

In the inviscid limit, A = 0 and the above equation reduces to a second-order ODE, the solution to which has been
shown to be a linear combination of cos{2βmx/[De(γM2

e − 1)1/2]} (e.g. [3,4]). For A �= 0, we consider a solution
of the form e−θmx[C1 sin(ηmx) + C2 cos(ηmx)], where θm, ηm, C1 and C2 are constants to be determined. In other
words, the solution is postulated to have the form of a damped oscillation, as suggested by the experimental work of
Selezneva et al. [9]. Substituting this into Eq. (14) and considering the boundary conditions, it can be shown that X(x)

is a linear combination of e−θmx[cos(ηmx) + (θm/ηm) sin(ηmx)], where θm and ηm are obtained from a system of two
nonlinear equations
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−Aθ4
m + η4

m + (
1 − γM2

e

)(
θ3
m + θmη2

m

) + Aλ2
m

(
θ2
m + η2

m

) − λ2
mθm = 0 (15)

2A
(
θ3
m + θmη2

m

) − (
1 − γM2

e

)(
θ2
m + η2

m

) − λ2
m = 0 (16)

that can be solved iteratively using the Jacobian matrix (Newton–Raphson method). Again, in the inviscid limit
(A = 0), it can be shown that θm = 0 and ηm = 2βm/[De(γM2

e − 1)1/2], and so the solution reduces to that of the
inviscid case.

Applying the boundary conditions the solution to Eq. (10) is then

p(x, r) =
∞∑

m=1

αmJ0(λmr)e−θmx

[
cos(ηmx) + θm

ηm

sin(ηmx)

]
(17)

where αm = 2(Pe − P∞)/(βmJ1(βm)) and J1 is the first-order Bessel function of the first kind. Substituting this into
Eq. (9) and considering Eq. (8), the velocity components can then be calculated. For the axial velocity component u,
we obtain

∇2u + B
∂u

∂x
= F(x, r) (18)

where B = −ρeue/μt , and

F(x, r) = 1

μt

∂p

∂x
+ γ ue

3ρea2
e

∂2p

∂x2
(19)

subject to

u(x = 0, r) = ue (20)

and

∂u

∂x
(x = 0, r) = 0 (21)

which holds for mild under/over-expansions.
Eq. (18) can be solved using a Bessel series. Let u(x, r) = ∑∞

m=1 ζm(x)J0(λmr). Following some tedious calcula-
tions, it can be shown that ζm(x) satisfies

ζ ′′
m + Bζ ′

m − λ2
mζm = fm(x) (22)

where

fm(x) = αme−θmx

{
− γ ue

3ρea2
e

(
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m

)
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− 1

μt
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)
+ γ ue

3ρea2
e

(
θ3
m

ηm
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)]
sin(ηmx)

}

(23)

subject to

ζm(0) = 2ue

βmJ1(βm)
(24)

and

ζm(∞) = 0 (25)

Eq. (22) can be solved analytically,

ζm(x) = (
ζm(0) − C2

)
e

−B−
√

B2+4λ2
m

2 x + e−θmx
[
C1 sin(ηmx) + C2 cos(ηmx)

]
(26)

where C1 and C2 are obtained by solving a set of two linear equations,(
θ2
m − η2

m − Bθm − λ2
m

)
C1 + (2θmηm − Bηm)C2 = f1 (27)

(−2θmηm + Bηm)C1 + (
θ2
m − η2

m − Bθm − λ2
m

)
C2 = f2 (28)
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Fig. 2. Comparison of analytical and experimental results; Pe/P∞ = 1.45, Me = 2; r/De = 0 (left) and r/De = 0.25 (right).

where

f1 = αme−θmx

[
− 1

μt

(
θ2
m

ηm

+ ηm

)
+ γ ue

3ρea2
e

(
θ3
m

ηm

+ θmηm

)]
(29)

and

f2 = −αme−θmx γ ue

3ρea2
e

(
θ2
m + η2

m

)
(30)

3. Results

Eq. (10) and Eq. (18) were solved for the mildly under-expanded jets of Norum and Seiner [10,11], corresponding
to convergent-divergent nozzles. Three cases were solved: Pe/P∞ = 1.45, Me = 2; Pe/P∞ = 1.62, Me = 1.5; and
Pe/P∞ = 1.33, Me = 1.5. The near-field solutions were restricted to the first 10 De and 5 De downstream from the
nozzle exit, for the first case and for the other two, respectively.

Fig. 2 shows the results for the first case; a comparison of the analytical solution and experimental measurements
for axial distributions (r/De = 0 and r/De = 0.25) of normalized pressure. The first 15 terms of the series were
calculated; adding more terms did not significantly change the results. As can be seen, the solution is fairly good, as
it estimates the position of the first few shock cells reasonably well, although the amplitudes are not predicted equally
well.

Fig. 3 shows the results for the second jet; comparison of the analytical solution and experimental measurement
for axial distribution of normalized pressure along the jet centerline. As can be seen, the agreement is reasonably
good. For the third jet, as shown in Fig. 4, analytical solution predicts the trend of the experimental data, but the axial
positions of the shock cells are over predicted.

The method was also used to predict some available data related to more strongly under-expanded jets [10,12]; the
agreement with the data is not as good, as the analytical solution assumes a mild under/over-expansion.

The sensitivity of solutions to the value of eddy viscosity was also studied. All the results that follow are for the
first jet (Pe/P∞ = 1.45, Me = 2). Fig. 5 (left) compares viscous (μt = 0.3) and inviscid solutions. As expected, the
viscous solution is a decaying oscillation, rather than a superposition of periodic functions as in the inviscid limit.
Fig. 5 (right) presents viscous solutions for different values of μt . Obviously, the greater is μt , the more the solution
decays.

Finally, Fig. 6 (left) compares the viscous (μt = 0.3) and inviscid solutions for the centerline distribution of the
axial velocity component. (It should be noted that as Eq. (18) has μt in the denominator, the inviscid solution is
obtained by setting μt to a very small value.) Again, the viscous solution is a decaying oscillation, rather than a
superposition of periodic functions as in the inviscid limit, and the average velocity decreases with axial distance from
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Fig. 3. Comparison of analytical and experimental results; Pe/P∞ = 1.62, Me = 1.5, r/De = 0.

Fig. 4. Comparison of analytical and experimental results; Pe/P∞ = 1.33, Me = 1.5, r/De = 0.

Fig. 5. Comparison of the centerline pressure: inviscid and viscous solutions (left), viscous solutions at different values of μt (right).



B. Emami et al. / C. R. Mecanique 337 (2009) 185–191 191
Fig. 6. Comparison of the centerline axial velocity: inviscid and viscous solutions (left), viscous solutions at different values of μt (right).

the nozzle exit. Fig. 6 (right) presents viscous solutions at different values of μt . Obviously, the greater is μt , the more
quickly the velocity decreases.

4. Concluding remarks

The linear analytical solution for an inviscid under/over-expanded supersonic axisymmetric jet has been extended
to take into account the mean turbulent Reynolds stresses. The solution was compared to some available measurements
and yielded satisfactory agreement. Future work could include a “multi-field” extension of this method, by dividing
the flow field into several sections and applying the method to each. Using this strategy, the evolution of the mean
flow field could be taken into account in the linearization of the equations, and a more complex eddy viscosity model
could be adopted, by linearizing and solving the PDEs of a two-equation turbulence model.
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