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Abstract

This study deals with the modeling of rail vehicles’ behavior when traveling in curves of short radius. Based on the symmetry of
the vehicle and on the nature of the motion, we show that the study of the system behavior can be reduced to the quasi static study
of a quarter. We propose in this work, an analytical model able to describe the safety and the comfort by determining derailment
and creep forces. The developed model is validated using the software ADAMS and results from the bibliography. The developed
model can be easily used to optimize the rail vehicles design and the sensitivity analyses of its performance. To cite this article:
M. Nejlaoui et al., C. R. Mecanique 337 (2009).
© 2009 Published by Elsevier Masson SAS on behalf of Académie des sciences.
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1. Introduction

Safety and comfort are two imperative criteria for traveling rail vehicles. Traveling on curves of short radius, the
rail vehicle (RV) can circulate with creep wheel–rail (WR) causing wear and noise. Moreover, the RV circulates, in
general, with contact flange–rail which can create a derailment. There are several works dealing with these problems.

Dang Van [1] has presented the fatigue damage prediction methodology applicable to multiaxial fatigue conditions
of the wheel–rail system. Joly [2] has presented the WR contact forces in closed form. Shevtsov et al. [3] have defined
a design procedure for a wheel profile based on geometrical WR contact characteristics. They checked the optimized
results with ADAMS software.

Majka et al. [4] have studied the effects of some design parameters on the dynamic response of railway bridges.
Vehicle damping was found to have an negligible influence on the system dynamic response. He and McPhee [5]

* Corresponding author.
E-mail addresses: zouhaier.affi@enim.rnu.tn (Z. Affi), ajmi.houidi@issatso.rnu.tn (A. Houidi), lotfi.romdhane@enim.rnu.tn (L. Romdhane).
1631-0721/$ – see front matter © 2009 Published by Elsevier Masson SAS on behalf of Académie des sciences.
doi:10.1016/j.crme.2009.05.003



304 M. Nejlaoui et al. / C. R. Mecanique 337 (2009) 303–311
Nomenclature

i index of wheel set
j index of wheel
k index of bogie
g the gravity constant
Gki wheelset centre of mass
Gk bogie centre of mass
Ḡ car body centre of mass
m wheelset mass
m̂ bearing box body mass
M mass of bogie
M̄ car body mass
N normal load by a wheel
Rc radius of curve
yki transversal displacement of the wheelset i of

bogie k

yk transversal displacement of the bogie k

ȳ transversal displacement of the car body
αki yaw angle of the wheelset i of the bogie k

αk yaw angle of the bogie k

ᾱ yaw angle the car body
ςu gyration radius of the wheelset around the

direction u (u = x, y, z)
Ωu gyration radius of the bogies around the di-

rection u

Ω̄u gyration radius of the car body around the
direction u

Ku spring stiffness of the primary suspension in
the direction u

K̄u spring stiffness of the secondary suspension
in the direction u

have used multibody dynamic modeling software to determine the governing equations of motion of the RV models.
Based on this model, a design optimization was conducted. Rjeb et al. [6] have optimized the design variables of RV
system in rectilinear motion using Genetic Algorithms. Elkins and Wu [7] considered the ratio of the lateral force to
the vertical force applied by each wheel as a derailment criterion.

It seems that no literature has reported the performance such as safety and comfort of the RV system in closed
form. The main factor that hinders this approach is the great complexity of the system. The goal of this work is
the modeling of the RV behavior in short radius curves in closed form. In Section 2, we describe the RV structure.
Section 3 reports the dynamic modeling of the system. In Section 4, we quantify the comfort and safety criterion in
terms of contact forces. The validation of the proposed model is presented in Section 5. Some concluding remarks are
given in Section 6.

2. The rail vehicle structure

The RV is made of a car body, two bogies and four wheelsets. The car body C is connected to the bogies Ck

by 4 secondary suspensions. Each bogie is connected to 2 wheelsets Ski using 4 primary suspensions. In the real
design, each suspension is formed by a vertical spring and a damper in parallel. Each one works in the 3 directions
with different stiffness and damping coefficients [2]. Generally, each suspension is modeled by 3 systems, formed by
springs and dampers in parallel (Fig. 1), acting in the 3 directions (i.e. longitudinal (1), lateral (2) and vertical (3))
[2,5,10,11].

In order to model the dynamic behavior of the rail vehicle, different reference frames were used. A fixed reference
frame Rg = (Og,Xg,Yg,Zg) is attached to the track. To each body forming the system we have a reference frame
Ri = (Gi,Xi, Yi,Zi). R0 = (O0,X0, Y0,Z0) is an inertial reference frame attached to the rail vehicle. The RV system
has 21 degrees of freedom, which are summarized in Table 1.

The RV system has a longitudinal symmetry. This symmetry leads to the decoupling of lateral, vertical and longi-
tudinal motions [2]. In this Note we focus on the lateral dynamic of the RV system. In order to simplify the modeling
of the RV system and without loss of generality, we will consider only one quarter (Fig. 1). The quarter of the RV
has 8 degrees of freedom, with respect to the frame R0 = (O0,X0, Y0,Z0). These motions are represented by the
generalized coordinate vector q.

q = [ȳ, ᾱ, y1, α1, y11, α11, y12, α12]T (1)

In this study, we assume that the rail curve radius and the rail inclination, δ, are constant. Moreover, in curves, the
RV has a constant and a low traveling speed. Consequently, the roll motion and the damping forces are not significant
compared to the elastic forces.



M. Nejlaoui et al. / C. R. Mecanique 337 (2009) 303–311 305
Table 1
Degrees of freedom of the RV system.

Lateral displacement The roll The yaw

Car body ȳ θ̄ ᾱ

Bogies Ck (k = 1,2) yk θk αk

Wheelsets Ski (k, i = 1,2) yki θki αki

Fig. 1. The rail vehicle model.

Fig. 2. The geometric parameters of the WR.

3. The dynamic modeling of rail vehicle

3.1. Kinematics study of the rail vehicle

In curved track, the wheelset has a lateral displacement, y0, which leads to a pure rolling configuration. We consider
the expression of the wheelset lateral displacement y0 given by [2]:

y0 = e0r0

γeRc

(2)

with

γe = Rγ0

R − R′
e0 + R′γ0

e0 − r0γ0

The geometric parameters e0, r0, γ0,R and R′ are described in Fig. 2.
By considering the lateral displacement of the wheel set, the quarter RV generalized coordinates in a curved track

will be:
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y∗
11 = y11 + y0, y∗

12 = y12 + y0, y∗
1 = y1 + y11 + y12

2
+ y0, α∗

1 = α1 + y11 − y12

2a
and

ȳ∗ = ȳ + y1 + y11 + y12

2
+ y0 (3)

Due to the RV symmetries, the bogies have the same, but opposite, magnitude of lateral displacements. Consequently,
the car body yaw angle can be written as:

ᾱ∗ = ᾱ + y1 − y2

2Ā
= ᾱ + y1

Ā
(4)

Hence, the quarter RV coordinate vector will be:

q = [Ȳ ∗, ᾱ∗, Y ∗
1 , α∗

1 , y∗
11, α11, y

∗
12, α12]TR0

(5)

3.2. The dynamic model

The dynamic model of the RV is developed based on the Lagrange formalism given by:

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi

= Qi (6)

L and Qi are, respectively, the Lagrangian function and the generalized forces applied to the system.
The dynamic model of the RV expressed in the moving frame R0, can be rewritten as follows:

d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi

= Qi −
4∑

j=1

∂

∂q̇i

{ϑSj ∈R0/Rg}{TSj ∈R0/Rg} (7)

where T = T (qi, q
′
i , t) is the kinetic energy of the system written in the reference frame R0. Sj can be the quarter of

the car body or the bogie or one of the wheelsets and {TSj
}, {ϑSj

} are, respectively, the dynamic screw and the twist
of (Sj ∈ R0/Rg) [2].

The RV kinetic energy in R0 is given by:

2T = M̄

4

( ˙̄y2 + Ω̄2
z
˙̄α2) + M

2

(
ẏ2

1 + Ω2
z α̇2

1

) +
i=2∑
i=1

{
(m + m̂)ẏ2

1i + (
mς2

z + m̂d2)α̇2
1i

}
(8)

The RV system generalized forces are determined via the generalized power of the different mechanical actions. These
actions are those due to the gravity Q1, to the springs Q2, and to the WR contacts Q3. The global generalized force is
given by:

Q = Q1 + Q2 + Q3 (9)

with

Q1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M̄
4 gδ

0
M
2 gδ

0

(m + m̂)gδ + Wζ(y∗
11 + y0)

−Wγ0ε0α11

(m + m̂)gδ + Wζ(y∗
12 + y0)

−Wγ0ε0α12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

, Q2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K̄y(ȳ
∗ + Āᾱ∗)

2K̄x d̄
2β + K̄y(Āᾱ∗ + ȳ∗)

4Kyy
∗
1 + K̄y(Āᾱ∗ + ȳ∗)( −2K̄xd̄

2(β + Ā
Rc

)

+4Kya
2α∗

1 + ∑i=2
i=1 2Kxd

2ηi

)

−2Ky(y
∗
1 + aα∗

1)

−2Kxd
2(η1 + a

Rc
)

−2Ky(y
∗
1 − aα∗

1)

2 a

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

and
−2Kxd (η2 −
Rc

)
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Q3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

−2C22α11χΣ1

2C11e0
γe

r0
y∗

11σ1 + 2C23α11

−2C22α12χΣ2

2C11e0
γe

r0
y∗

12σ2 + 2C23α12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

(10)

where:

σi = 1 − C11

3μN

γe

r0
y∗

1i + C2
11

27μ2N2

(
γe

r0
y∗

1i

)2

,
∑

i

= 1 − C22

3μN
α1i + C2

22

27μ2N2
α2

1i

ζ = 1

(R − R′)

(
e0 + Rγ0

e0 − r0γ0

)2

ε0 = (R + 2r0)γ0 − e0, χ = e0

(e0 − r0γ0)
, W =

(
M̄

4
+ M

2
+ m + m̂

)
g

β = ᾱ∗ + y∗
1

Ā
− y∗

11 − y∗
12

2a
− α∗

1 and ηi = α∗
1 + y∗

11 − y∗
12

2a
− α1i (i = 1,2)

The use of Eq. (7) gives us the following RV dynamic model:

A(q)q = b (11)

where:

A(q) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K̄y K̄yĀ 0 0 0

K̄y 2K̄xd̄
2 + K̄yĀ

2K̄x d̄2

Ā
−2K̄x d̄

2 − K̄x d̄2

a

K̄y K̄yĀ 4Ky 0 0

0 −2K̄x d̄
2 −2K̄x d̄2

Ā
2K̄xd̄

2 + 4Kxd
2 + 4Kya

2 K̄x
d̄2

a
+ 2Kx

d2

a

0 0 −2Ky −2Kya Wζ

0 0 0 −2Kxd
2 −Kx

d2

a
+ 2e0C11

γe

r0
σ1

0 0 −2Ky 2Kya 0

0 0 0 −2Kxd
2 −Kxd2

a

0 0 0

0 K̄x d̄2

a
0

0 0 0

− 2Kxd
2 −K̄x

d̄2

a
− 2Kx

d2

a
−2Kxd

2

− 2χC22
∑

1 0 0

2Kxd
2 − Wγ0ε0 + 2C23

Kxd2

a
0

0 Wζ −2χC22
∑

2

0 Kx
d2

a
+ 2e0C11

γe

r0
σ2 2Kxd

2 − Wγ0ε0 + 2C23

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

b = [
M̄
4 γnc 0 M

2 γnc 2K̄xd̄
2 Ā

Rc
(m + m̂)γnc − Wζy0 2Kxd

2 a
Rc

(m + m̂)γnc − Wζy0 −2Kxd
2 a

Rc

]T
γnc = V 2

Rc

− gδ
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Fig. 3. The WR contact forces.

4. Safety and comfort

In tracks with a low radius of curvature, we have a flange rail contact. This contact leads to a lateral force that if it
exceeds a certain limit, it can cause the derailment of the RV. Moreover, this kind of motion is usually accompanied
by the creep of the wheel on the rail. This creeping generates the wear of the rail as well as of the wheel. It is generally
accompanied by a high noise level.

4.1. The derailment force

When we have a flange rail contact, the y∗
1i variable of the vector q are constant and they present known values.

By using the constraint equation ẏ∗
1i = 0 in the dynamic model (Eq. (11)), the Lagrange multiplier representing the

lateral forces F1i applied by each wheelset (i = 1,2) on the rail can be calculated as follows:

F1i = 2Kyy
∗
1 − (−1)i2Kyaα∗

1 + 2χC22α1i

∑
i

+(m + m̂)γnc − Wζ(y0 + y∗
1i ) (12)

In this case, the rail exerts two reacting forces on each wheel: the force S normal to the contact surface and the creep
force T1ij tangent to the contact surface.

The equilibrium forces (Fig. 3b) in the lateral direction yields

F1i = S sin θ − T1ij cos θ (13)

The equilibrium forces (Fig. 3b) in the vertical direction yields:

N = S cos θ + T1ij sin θ (14)

The analysis of Eqs. (13) and (14) yields:

F1i

N
= tan θ − T1ij /S

1 + (T1ij tan θ)/S
(15)

The first term in Eq. (15) can be considered as a criterion of safety [7]. The maximum of safety is obtained when this
term is minimal. The maximum of T1ij /S corresponds to the friction coefficient μ. Therefore, at a given maximum
contact angle, to avoid the derailment, we should have:

F

N
<

tan θmax − μ

1 + μ tan θmax
(F = max(F1i )) (16)

4.2. The creep forces

When a wheel rolls on the rail, relative slip can occur between the wheel and the rail at their contact. The slip
generates a creep force at the wheel–rail interface in longitudinal (X1ij ) and lateral (T1ij ) directions and a torque
(M1ij ). The creep forces are modeled based on the method proposed by Joly [2]. These elements are depicted in
(Fig. 3a):
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Table 2
The design parameters of the RV system.

The suspension and gyration parameters The geometric parameters

u = x u = y u = z e0 (m) 0.75 d (m) 0.813

ςu (m) 0.58 0.4 0.58 γe 0.1 d̄ (m) 0.58
Ωu (m) 0.61 0.72 0.72 a (m) 1.04 l (m) 0.815
Ω̄u (m) 1.27 6.63 6.63 r0 (m) 0.356 h (m) 0.305
Ku (N/m) 3.15 × 107 3.96 × 106 2.1 × 106 Ā (m) 8.23 Rc (m) 280

K̄u (N/m) 0.00 1.97×105 6.87 ×105 The masses (Kg)

m + m̂ M̄ M

1190 32 820 3072

X1ij = (−1)j+1C11
γe

r0
y∗

1iσi (17)

T1ij = C22α1i

∑
i

(18)

M1ij = C23α1i (19)

where the Cij are the Kalker’s coefficients ([2,8]).
The maximum of the creep resultant force is given by:

R = max(R1ij ) = max
(√

X2
1ij + T 2

1ij

)
(20)

5. Validation of the developed model

5.1. Solving algorithm

The obtained model is highly nonlinear. In order to determine these forces, F and R, we should have the system
generalized coordinates. To achieve this goal, we developed an iterative algorithm, which solved the model in q, based
on the Broyden’s method [9]. For an initial vector q (q0 = 0), this algorithm solves iteratively the dynamic model by
minimizing the ration of the Euclidian norm of the increment to the Euclidian norm of the vector q, solution of the
model. This index should be less than a prefixed value. The values of F (F = max(F1i )) and R are calculated using
Eqs. (12) and (20).

5.2. Validation of the developed model

In this section, we will validate the developed model using results from the bibliography and numerical simulations
using the software ADAMS. We have used the design parameters of a RV system given by He and McPhee [5]
(Table 2). The RV traveling speed is V = 13 m s−1.

The same design parameters are introduced in a virtual prototype. Fig. 4 shows the erri_Wagon model designed
using ADAMS/Rail software. For this model, each spring is modeled to act in the three directions with different
stiffness coefficients. By using ADAMS post processing, we can get the required simulation results.

With the same parameters, He and McPhee [5] have used the RGEM and RACES programs to generate automati-
cally the governing equations and to solve them numerically. The software RACES was used to simulate the vehicle
as it travels on a constant radius curve.

The use of these parameters (Table 2) in our algorithm and the simulation of the virtual prototype using ADAMS
yield the results summarized in Table 3.

It is worth mentioning that the best validation of our model should be done using experimental results. However,
these results are not found in the bibliography and the experiments required are expensive to perform. To build a
comparison we have used as a reference the mean of the three results (Mcphee, ADAMS, and our analytical model).
The error, relative to the mean of the three forces, is given by:

EF = |�F | = |F − Fm|
(21)
Fm Fm
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Fig. 4. The Erri_Wagon RV model (ADAMS).

Table 3
Results recapitulative.

Forces (N) Relative error (%)

F (N) R (N) EF ER
Analytical model 3.51 × 104 1.28 × 104 2 3
ADAMS 3.35 × 104 1.36 × 104 2 3
He and McPhee 3.42 × 104 – 0 –

F is the force given by each method and Fm is the mean force given by the different methods.
We have not found a result concerning the creep force in [5]. From Table 3, one can note that the relative error of

the derailment force and the creep force do not exceed 3%. Therefore, the obtained results are in agreement, which
validates the developed model and the adopted hypotheses. This model has the advantages to be analytic and simple.
Therefore, it can be easily used for the optimization of the RV design based on the safety and comfort criteria as well
as the sensitivity of its performance to the design parameters fluctuations.

6. Conclusion

This work deals with the modeling of the rail vehicle behavior in short radius curves. Based on the symmetry of
the vehicle and on the motion nature, we have shown that the study of the system behavior can be reduced to the quasi
static study of its quarter. A quasi static model was developed in a closed form. This model is able to describe the
dynamic behavior of a rail vehicles system. By using this model, the safety and the comfort criteria were expressed as
functions of the derailment and the creep forces. The developed model is validated by bibliographic results and using
the software ADAMS.

The developed model can be easily used for the optimization design of the rail vehicle and the sensitivity analyses
of its performances.
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