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Abstract

The Note presents an unconventional computational method for irrotational and incompressible fluid flows over lifting bodies.
At first, Laplace’s equation for the velocity potential is solved with internal Dirichlet conditions expressed at the nodes of the
mesh rather than at smooth surface positions. Continuous distributions of surface normal doublets are used, and obtaining the
surface velocity field with such distributions becomes straightforward. Secondly, an original Neumann type formulation of the
Kutta conditions is proposed. Expressing the minimization of the velocity flux across the wall shows a significant reduction of the
discretization impact upon the computed global efforts when compared to local no-load conditions. The method can be applied to
2 or 3-dimensional flows, steady or not. To cite this article: P. Ardonceau, C. R. Mecanique 337 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Une procédure nodale de résolution numérique de l’équation de Laplace. Application aux écoulements à potentiel de
vitesse. La Note présente une méthode non-conventionnelle de calcul de l’écoulement de fluide parfait incompressible autour de
corps portants. D’abord l’équation de Laplace régissant le potentiel de la vitesse est résolue avec des conditions de Dirichlet internes
exprimées aux nœuds du maillage plutôt que sur des parties lisses de la surface. La méthode est applicable moyennant l’utilisation
de répartitions surfaciques continues de couches de doublets, avec lesquelles l’obtention du champ de vitesse pariétale devient
trivial. Ensuite une formulation originale de type Neumann des conditions de Kutta est proposée. Exprimée sous forme d’une
minimisation du flux pariétal de la vitesse, elle entraîne une réduction sensible de l’impact de la discrétisation sur l’estimation
des efforts globaux par rapport aux formulations locales. La méthode est applicable aux écoulements bi ou tri-dimensionnels,
stationnaires ou non. Pour citer cet article : P. Ardonceau, C. R. Mecanique 337 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

The vast majority of problems discussed today in fluid mechanics deal with complex viscous flows, possibly de-
tached and compressible. There remain some marginal issues for which the basic inviscid/incompressible fluid flow
model is suitable, especially at aero-acoustics and aero-structural interfaces. The work presented in this Note refers
to an aerodynamic optimization under structural constraint, the induced drag reduction [1]. This type of drag, which
comes from the vortical wake generated by a lifting surface, originates from the inviscid fluid model which is therefore
a natural tool to compute it.

The irrotational “and incompressible” flow over lifting or non-lifting bodies is controlled by the Laplace’s equation
and the boundary element method (BEM) provides an interesting alternative to finite difference or finite element
methods by reducing the spatial dimension of the problem [2,3], a crucial aspect for the integration of a code into
an iterative process. Applied to fluid dynamics, the boundary element method, generally known as the panel method,
became popular at the end of the sixties with the advent of computers [4–6].

The first panel methods were based on the velocity formulation [4]. Point or distributed elements whose induced
velocity field is known for a unit intensity, such as source-sinks, vortices, doublets, are distributed over the body
surface. The actual intensity is derived from the resolution of a linear system built up by writing the velocity slip
condition �V · �n = 0 over the body surface.

A second family of methods has subsequently emerged, with the velocity potential Φ as the primary variable. In
this case, the influence of surface singularities is expressed by their induced potential and the Neumann conditions
(∂Φ/∂n at the wall, where n symbolizes the direction normal to the wall) are then replaced by internal Dirichlet
conditions (Φi = Cte) [7].

With both methods, one (2D) or more (3D), constraints must be added for lifting bodies, the Kutta conditions, in
order to select the regular “physical” solution among an infinite set of “mathematical” solutions. In practice there is a
wide variety of formulations, and selecting one is not trivial in discretized problems.

The panel codes have been widely used in aerodynamics since the 1970s. Numerous light custom codes coexist
with heavier industrial codes such as Panair [8], aimed to deal with complete geometries, such aircrafts. The latter
uses fairly sophisticated interpolation or patching techniques, in order to provide accurate outcomes despite relatively
coarse meshes.

The development of an intermediate procedure was motivated by the fact that basic codes did not provide the
required precision to blend into optimization algorithms, especially evolutionist ones, and industrial codes are not
suitable to fit into intensive iterative processes.

The original method described in this paper was designed with two objectives: a fast convergence with mesh
refinement, to reduce the computation time, and an easy interfacing with finite element structural codes.

2. Overview of the basic “low order” method

The underlying technique of the present development is a “potential” formulation: like the field to calculate, the
potential “influence coefficients” (Green functions in the BEM frame) are of scalar type, hence reducing the data
storage compared to multi-dimensional coefficients. In its basic formulation, it can be called “0th order”, i.e. constant
intensity singularities (per segment or panel). The steady Kutta condition is implicitly fulfilled by extending the surface
sheets into a semi-infinite constant intensity wake of doublets, attached to the emission point or line (3D case) [7,9].
This is a strong advantage compared to explicit statements of this condition, as it turns out to prescribe equal pressures
on both sides of the body at the very trailing edge rather than at mid-mesh upstream. Another interesting feature of
a “potential” formulation is the actual knowledge of the potential, required for unsteady pressure calculations, which
involves its time derivative.

This potential formulation however generates several adverse counterparts. At first, in order to obtain the more
physical surface velocity and pressure fields, the surface potential has to be differentiated, which is not straightforward
in the 3D case. Second, it can stressed that the velocity coming out from the differentiation of the potential, a potential
method has to be one order higher than a velocity method. In other words, to get a piecewise C0 surface velocity field,
the scalar method has to be 1st order, i.e. linearly varying surface sheet intensity.

Although the proposed method has been applied even to unsteady 3D cases, the following discussion focuses on the
two-dimensional steady version that contains the essential features of the problem, hence avoiding lengthy algebraic
expressions and 3D visualizations.
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2.1. Continuous formulation

We wish to solve the Laplace equation, ∇2Φ = 0, which governs the velocity potential Φ of an irrotational and
incompressible flow, such that: �V = −�∇Φ . The body surface is covered with a double layer (normal doublets) of
local intensity μ(P ) at point P . The natural slip condition, �V · �n = 0, which appears as a Neumann condition for the
potential, can be replaced by an internal Dirichlet condition [7,9]. Indeed, with a continuous formulation, imposing
a constant internal potential, Φi(P ) = Cte, ∀P , leads to Φe(P ) = μ(P ) + Cte. The external surface potential is
therefore equal to the potential jump across the layer, up to some constant. Thereafter, the constant will be set to 0.
The normal velocity, invariant across a layer of normal doublets and identically zero inside the body, must also be zero
on the outside surface. The internal Dirichlet condition is therefore equivalent to the Neumann zero normal velocity
condition for a continuous problem.

If the body has an edge at some point B along it, the external surface potential is no longer uniquely defined and
has a jump [[ΦTE]], equal to the circulation Γ of the velocity around the body, for any path binding points Bin and Bex,
where the indices ( )in and ( )ex, state the lower and the upper surfaces. The downstream potential jump is modelled
by a semi infinite line of normal doublets with intensity [[ΦTE]] = Γ = μex(B) − μin(B). In steady flows, the doublet
wake can extend along the trailing edge bisector or along the unperturbed velocity, the wake is then called “frozen”.
It can be aligned with the local velocity, a model termed “relaxed”. In steady three-dimensional flows a “frozen” or
“relaxed” doublet sheet replaces the doublet line. Generally the choice has little influence on the solution. In unsteady
flows the intensity of the sheet varies. Each point keeps the value of the potential jump, at the time and position of the
emission, and must be convected with the local velocity (no load on the wake) [11].

2.2. Discrete formulation

The numerical resolution of the internal Dirichlet problem begins with a discretization of the body. Modeling the
surface curvature has not shown a significant improvement of the results, and seriously complicates the procedures.
Rectilinear segments are therefore used in this work. The profile is divided into NP segments, of variable length,
adapted to the local curvature and decreasing near the trailing edge. The lengths of the two segments on both sides of
the trailing edge are moreover constrained to be strictly identical. At 0th order, each segment I wears a distribution of
normal doublets of constant intensity μ(I) and an internal control point at the center of the associated segment.

We note C(I, J ) the potential induced at the control point of the segment I by a segment J , with unitary intensity,
and Φ∞(I ) the unperturbed velocity potential of the flow at the same point I [5]. The internal Dirichlet condition
writes:

NP +2∑

J=1, J �=I

C(I, J )μ(J ) + πμ(I) = −2πΦ∞(I ), I = 1,Np

In the simplest case the wake is represented by two superimposed semi-infinite straight lines, with constant intensity.
The linear system then consists of NP equations with NP + 2 unknowns. It has to be completed by two relationships
expressing the Kutta condition. It is customary to write:

μW(1) = μ(NP + 1) = μ(1)

μW(2) = μ(NP + 2) = μ(NP )

where (·)W stands for “wake”.
These two elements can be combined as they are geometrically superimposed. The “socket” model is however

preferred for logical considerations.
With a continuous formulation and a zero angle trailing edge, this statement of the Kutta condition is fully justified

(Joukowski profiles). Vectors normal to the wall are continuous at the transition from surface to wake, on both sides
of the trailing edge. The two previous relationships are equivalent to imposing a zero gradient of the surface potential,
which expresses the existence of a stagnation point each side of the trailing edge. In the event of a finite trailing edge
angle, the justification is only piecewise because there are four different normals at the same point. Nevertheless, in
practice, with a discrete formulation, the procedure works fine.
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2.3. Problems associated with the basic method

The method, briefly described above, provides a simple and elegant tool to compute the surface potential field (the
overall field can be deduced). It has to be later derived to obtain the wall velocity and pressure fields. A first drawback
appears: the potential, indeed finite, is discontinuous at junction between elements. The resulting velocity and pressure
fields are therefore neither continuous nor even finite at the wall. Such infinite quantities may be troublesome with
configurations such as multiple bodies in strong interaction or thin wing sections.

A second, more technical problem of surface differentiation remains in any case. Positioning the control points at
the segment centers (panel centroids 3D) defines the potential at a location where its derivative is rather required. The
choice of a contour by straight lines (2D) or planar (3D) elements does not accommodate an intrinsic geometrical
representation by means of curvilinear coordinates and makes it difficult to build differentiation algorithms, at least
in the 3D case. Experience shows that the three-dimensional wall pressure field depends significantly upon the differ-
entiation algorithm. Moreover the use of unstructured meshes implies a complicated management of a neighbouring
table between elements.

3. Development of a higher order model

3.1. Logical construction

The “potential” 0th order model, while providing a simple and fast implementation, has not demonstrated the
qualities required for a code to be integrated and interfaced in an optimization loop. The aforementioned problems,
sensitivity to the surface derivation method and presence of infinite quantities, can be overcome by shifting to a higher
order potential model. To keep the procedure simple and as close as possible to the basic formulation, a 1st order
model is selected. The intensity of the normal doublet sheet then becomes a linear (2D) or bi-linear (3D) function
of the coordinates on each element and is continuous at the nodes. The potential field is therefore also continuous
everywhere. The surface velocity, although discontinuous at the nodes, remains finite and can be objectively defined
and easily computed. The problem may now be stated as follows: seek the intensity of the doublet sheet at the NN

mesh nodes that verify the slipping condition over the body. The nodes, which are the natural geometric interface
variables, also carry the solution of the fluid problem. The linear system (Section 2.2) can be written:

NN+2∑

J=I

C(I, J )μ(J ) = −2πΦ∞(I ), I = 1,NN

where C(I, I ) represents the “self-influence” coefficient, i.e. the influence of the value of the doublet intensity of the
surface sheet on the control point I [7] (π for two aligned segments, �= π in the general case).

By definition this approach contains a logical problem: positioning the control points. If they are maintained at
the centers (centroïds/3D) of the panels, the resulting linear system is generally undetermined. Given NP panels, one
gets a set of NP equations, the number of unknowns being NN , the number of nodes. NP and NN are linked to the
number of edges NE by the Euler relation.1 Depending upon the type of mesh, the three cases NN > NP , NN = NP ,
NN < NP may arise.

In practice the case NN > NP is more frequently encountered (i.e. under-determined linear systems). Several
techniques have been evaluated to overcome this problem. One is to add enough internal control points to provide the
required number of constraints [10]. This raises the question of choosing the position of these additional points, which
seems to have no objective response. A more sophisticated technique is to build “a” solution based on the singular
vectors obtained by singular value decomposition of the matrix system, using an optimization criterion. However such
solutions systematically exhibit spatial instabilities and the approach was rejected.

On the contrary, if the control points are set at the mesh nodes, then, for a closed body, the Dirichlet problem is
well determined (NN relations for NN unknowns). It can be solved if the Green’s identity is applied at the angular

1 NN +NP = NE +α where NE is the number of edges and α the Euler–Poincaré characteristic (α = 1 for a plane, α = 2 for a sphere, α = 2−2t

for a surface with holes, . . .).
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points, the vertices of the polyhedron, rather than on the plane walls [9]. Note that this method does not apply to a
velocity formulation as the surface velocity is not defined at these points.

To sum up, with this option:

• the unknowns become the value of the intensity the doublet distribution at the mesh nodes;
• the surface velocity is unambiguously defined over each panel and simply follows the local intensity law of the

doublet sheet;
• the control points being the nodes, no additional geometrical definition and associated supplementary storage are

required;
• in case of a geometrical optimization, the deformation of the body can be done simply by moving the nodes,

which supports a simple interface.

The method built on these bases will then be called “nodal”. Apart from the tricky calculation of the influence
from one node on the control point at the same location, it does not contain any difficulty and the computation of the
potential flow over non-lifting bodies is straightforward. Obtaining a fast convergence of the solution with the mesh
refinement in the lifting case is however less straightforward and requires a special attention to the formulation of the
Kutta condition which is outlined below.

3.2. Kutta conditions

The lift force induced by the body upon the flow implies the existence of some circulation Γ which must be
specified on “physical” considerations. The velocity potential cannot be continuous everywhere when Γ �= 0 and it is
a common practice to insert a jump of Φ across the wake originating at the trailing edge (cf. Section 2.1). Therefore
Φ is not uniquely defined at the trailing edge and each node along it must be twined. Thus K additional degrees of
freedom appear, NN → NN +K , without corresponding increase in the number of relations since the pair of nodes are
geometrically coincident. The linear system has to be supplemented by as many relationships as Kutta double nodes.

Originally designed in the framework of two-dimensional flows conformal mapping [12], the Kutta condition is
now less restrictively expressed. It turns out to select a circulation that provides a regular flow at the trailing edge
by preventing its circumvention. In discrete versions, this is stated by an absence of local load, zeroing the pressure
differential across the wing or the wake, close to the trailing edge. But such a circumvention of the edge cannot be
observed at smaller scale than the mesh size. The no-load condition being expressed at the half-mesh, this suggests a
strong dependency of the computed lift with the mesh size.

To illustrate the problem, Fig. 1 shows the calculated pressure coefficients over the rear side of a NACA 64212
wing section at 10◦ angle of attack (Fortran codes are run with real*8 data representation). This slightly cambered
wing section is selected for its thin trailing edge, a selective computational case. The continuous curve comes from
one 0th order calculation with a large number of segments (1000). It is noticed that this method, even applied with
a rough discretization (32 segments), provides a lift coefficient, underestimated by only 3.5% (triangular symbols).
The 1st order method (circular symbols) underestimates it more than 12%. The Kutta condition, stating equal pressure
coefficients at the center of the two terminal segments, is apparent on the graph. Expressed in terms of equal pressures
(bottom/top surfaces), the Kutta condition should actually be written at the very trailing edge and not upstream.

A general goal for a discrete method is its rapid convergence towards the continuous solution with increasing
number of elements. The fundamental solution to satisfy this criterion would be to shift the order of the model, but
it is prescribed from outer considerations in the present work. To check the accuracy of the process at a given panel
number Np , the solution can be compared to the asymptotic “smooth” solution (Np → ∞) or to the “exact” solution
at given Np , i.e. the solution over the Np faces polygon (Fig. 2). The velocity field over such a polygon is indeed
singular at the corners, but the singularity does not induce singular efforts [10]. A polygonal reference solution can
be simply computed by means of a standard sub-meshing of the body sides (Fig. 2). This way of doing seems more
appropriate as there is an infinite set of smooth profiles in which the NP polygon fits and there is no valid reason to
refer to one rather than another.

Among the many attempts to tackle the formulation the Kutta condition with linear doublet distributions, the
most obvious answer is to match the extrapolations to the trailing edge of the wall pressure coefficients from both
faces (2nd degree Lagrange extrapolation). The lift coefficient at 10◦ angle of attack for the previous profile, with an
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Fig. 1. Pressure coefficients over the rear side of a NACA64212 airfoil at 10◦ angle of attack. Comparison between the constant (triangles) and
linear (circles) doublet distributions with 32 segments. Reference computed with constant doublets and 500 segments (continuous line).

Fig. 2. The smooth NACA64212 (top), the derived 10 segments discretized section (middle) and the submeshed polygon (bottom).

increasing number of nodes, is shown in Fig. 3. This results into a significant improvement but a still unacceptable
gap remains with the desired solution (continuous curve). It is recalled that the two-dimensional pressure exhibits a
singular evolution at finite trailing edge angles, and obviously no extrapolation can capture this behaviour.

Following various unsuccessful attempts, the problem has been reversed. With fixed parameters (geometry, in-
cidence, given mesh), the evolution of several local and integral quantities has been observed, under prescribed
circulations varied around the “correct” value, otherwise known. This strategy was devised with the hope of sug-
gesting a selection criterion for Γ . Fig. 4 represents the evolution of the drag coefficient (theoretically zero in 2D
steady flow), the velocity fluxes across the segments adjacent to trailing edge FTE, and the overall squared flow flux
over the profile (FV 2 = ∮

( �V · �n)2 dl where �n is the unit local normal vector and dl the elementary tangent length).

C
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Fig. 3. Evolution of the lift coefficient Cl with the number of nodes (NACA 64212, 10◦ angle of attack, linear doublet distribution). Comparison
between the constant and linear doublet distributions (Kutta condition at mid-segment and extrapolation at trailing edge).

Surprisingly it is observed that this flux and the computed drag show extreme values at the correct circulation Γ

whereas the fluxes of �V across the trailing edge segments are cancelled at the same value. The equivalence between
the Neumann and Dirichlet problems mentioned above (Section 2.1) is not therefore systematically verified by the
discrete model, except at the adapted circulation. This fundamental feature provides criteria that may be used to
formulate alternative Kutta conditions.

As a criterion built on the drag cannot likely be extended to three-dimensional flows which exhibit some induced
drag, and even to two-dimensional unsteady flows (the unsteady vortical wake also generates some drag), there remain
the procedures based upon velocity fluxes.

Without valid reason to cancel the flux across one of the trailing edge segments rather than the other (bottom/top
surfaces), and building an algorithm on a single segment may likely induce asymmetry, so it seems preferable to rely
on the algebraic sum: FTE = �V1 · �n1 dl1 − �VNp · �nNp dlNp (the negative sign comes from the opposite directions of
normal unit vectors). A FTE cancelling algorithm can be simply built observing that the velocities, and therefore the
fluxes, are linear functions of the circulation. The internal Dirichlet problem may be solved for two arbitrary values (in
practice Γ = 0 and Γ = 1). The correct value of the circulation Γ and of the intensities μI , I = 1, NN , are deduced
by linear interpolation.

A similar procedure is applied to the other version of the Kutta condition, the “global flux” minimization. Observing
once again that all velocities, especially at the wall, are linear functions of Γ , the quadratic flux FV 2 is therefore a
second degree function of Γ . The Dirichlet problem has then to be solved for 3 values (−1,0,+1) and the maximum
of the parabolic function FV 2(Γ ) is algebraically deduced.

Applied to the case already treated (Fig. 3), the two procedures show a rapid convergence towards the exact polyg-
onal solution of the lift coefficient Cl with the number of nodes (Fig. 5), faster than the 0th order method (Fig. 3).
The “local” no flux condition, numerically lighter, seems more efficient than the “global” flux minimization. It has
been selected for two-dimensional applications. Its application to the three-dimensional case is less obvious because
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Fig. 4. Variation of the computed drag Cd and various fluxes as the prescribed circulation Γ is varied.

Fig. 5. Convergence of the lift coefficient Cl with the number of nodes (linear doublet distributions). Kutta condition expressed as zero flux across
trailing edge segments or minimal quadratic flux across the section.
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Fig. 6. Comparison between the surface pressure coefficients computed by the centered and nodal methods (NACA64212 wing section, 10◦ angle
of attack, 61 nodes).

each node at the trailing edge belongs to several panels on each side, not necessarily with the same shapes. To avoid
arbitrarily selecting one of these panels, a minimization of the overall quadratic flux is preferred. The algorithm is
based upon the Lagrange multipliers method. The wing being meshed with NN nodes, among which K are doubles
(those of the trailing edge), NN −K multipliers are introduced, which leads to a well determined linear system of size
2NN − K , obviously larger that the system built for a 0th order method of size NP .

The present nodal method does not show any evidence of spatial instability, the associated linear system is almost
diagonal dominant. An attempt to derive a similar formulation with a more conformist positioning of the control
points at the center of the elements was found very unstable. In this case, the potential influence of a segment I on
the associated control point I is through the half sum (μ(I) + μ(I + 1))/2 only, where μ(I) and μ(I + 1) are the
intensities of the doublet sheet at the surrounding nodes. The respective effects of μ(I) and μ(I + 1) possibly come
from the adjacent panels induction, provided that the surface has some local curvature. The matrix of the singular
system is then nearly singular and this may induce severe instabilities as can be seen on Fig. 6. This observation from
2D experiments can be related to the 3D instabilities mentioned in Section 3.1. The problem can be partially cured by
a slight de-centering of the control point, at the expense of some deviation of the produced lift.

Finally the zero internal potential condition has been checked by means of a numerical surface integration of the
potential field inside the body. The rms deviation from this condition is typically 5 × 10−5 for realistic numbers of
nodes (NN > 60 in the 2D case).

4. Conclusions

The numerical computation of incompressible irrotational fluid flows is performed with a potential formulation, sur-
face doublet sheets of C1 class, and internal Dirichlet conditions. The use of (bi)linear surface distributions, necessary
to obtain finite velocity fields and easy derivation of the surface velocity field, prompts to develop an unconventional
methodology. The two main features of the approach are: (1) Dirichlet conditions written at the mesh nodes and (2) an
original Kutta condition formulation. Writing the Dirichlet conditions at the nodes rather than at the centroids yields
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a number of equations equal to the number of unknowns in the non-lifting case. The linear problem is then well-
determined. When the body develops some lift, a cutting must be put in place at the trailing edge. This implies double
knots and therefore supplementary degrees of freedom. The missing equations are provided by explicitly formulated
Kutta conditions. A classical writing of these conditions, expressing the absence of pressure differential across the
trailing edge, is seen to induce a systematic lift deficit. This writing at the half-mesh turns out to match the pressures
upstream of the very trailing edge. It is observed that the “suitable” circulation is the one which minimizes the velocity
fluxes through the wall, reinforcing the no-penetration condition that is not explicitly imposed in the discrete Dirichlet
formulation of the method. At the price of a moderate complexity compared to a more conventional 0th order method,
we get a significantly improved convergence of the solution with the number of nodes. In addition the calculation of
the surface derivatives becomes trivial. Several applications have been validated, bi- and tri-dimensional, stationary or
unsteady, the perspective being an iterative matching with structural codes.
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