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Abstract

The Continuous Thermodynamics Model (CTM) (Cotterman et al., 1985) is a suitable method to reduce computational cost of
multi-component vaporization models. The droplet composition is described by a probability density function (PDF) rather than
tens of components in the classical Discrete Component Model (DCM). In the first CTM method developed for this application,
the PDF was assumed to be a Γ -function (Hallett, 2000), but some problems had appeared in the case of vapor condensation at the
droplet surface (Harstadt et al., 2003). The method put forward in this article, the Quadrature Method of Moments (QMoM), enables
one to avoid any assumption on the PDF mathematical form. Following Lage who has developed this method for phase equilibria
(Lage, 2007), this article widens the scope of QMoM to the modelling of multi-component droplet vaporization. The different
CTM approaches are presented in the first part and the results obtained for a vapor condensation test case are then compared and
analysed to illustrate improvements made by QMoM. To cite this article: C. Laurent et al., C. R. Mecanique 337 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Modélisation de l’évaporation des gouttes en thermodynamique continue : comparaison entre le modèle Gamma-PDF et
la QMoM. La modélisation à Thermodynamique Continue (MTC) (Cotterman et al., 1985) est une méthode appropriée pour réduire
les coûts de calcul associés à la modélisation de l’évaporation multi-composant. La composition des gouttes est modélisée par une
fonction de distribution qui représente les dizaines d’espèces prises en compte par le modèle classique à Composants Discrets
(MCD). Dans la première approche à Thermodynamique Continue développée pour cette application, la composition du mélange
était décrite par une fonction de distribution de type fonction Γ (Hallett, 2000). Cependant, cette approche a été mise en défaut dès
lors que de la vapeur se condensait à la surface de la goutte (Harstadt et al., 2003). La méthode proposée dans cet article, dite de
Quadratrue des Moments, permet d’éviter toute hypothèse sur la forme de la fonction de distribution. A partir des travaux de Lage
qui a appliqué cette méthode à l’équilibre thermodynamique des phases (Lage, 2007), ce papier élargit le domaine d’application de
la QMoM à l’évaporation des gouttes multi-composant. Les différentes approches à Thermodynamique Continue sont décrites dans
la première partie et les résultats obtenus dans un cas de condensation de vapeur sont ensuite comparés et analysés pour illusrer les
améliorations apportées par la QMoM. Pour citer cet article : C. Laurent et al., C. R. Mecanique 337 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

The droplet composition can have a real impact on the vapor flow rate, at low temperature for example with a
pronounced distillation effect, or in the case of a mixture composed of components whose physical properties are very
different. An example for aero-engine manufacturers is the high-altitude engine relighting, which is a critical issue for
the combustion chamber conception. Bio-fuels, which may be complex mixtures of various components, are another
application field for the modelling of multi-component droplet vaporization.

Several approaches have been developed to compute fuel composition during the droplet vaporization process. The
classical model, called Discrete Component Model (DCM), solves evolution equations for each fuel component [1].
However, fuels such as kerosene, diesel or gasoline are composed of tens of compounds and this model is much
too time consuming to be implemented in industrial codes. Therefore, some models in which the composition is
described by a probability density function (PDF) have been investigated. This approach, called Continuous Thermo-
dynamic Model (CTM), is relevant to reduce computational costs. In this way, Hallett developed a model for vaporizing
droplets assuming that the PDF is a Γ -function [2], as Cotterman previously did for multi-component vapor–liquid
equilibrium [3]. Nevertheless, if vapor condenses on the droplet surface, the PDF shape can be very different from
a Γ -function and this model fails [4]. As this phenomenon can occur in combustion chambers, new methods which
avoid hypotheses on the PDF mathematical form [5] have been recently studied, like the Orthogonal Collocation (OC)
developed by Arias-Zugasti and Rosner [5]. The method proposed here, the Quadrature Method of Moments (QMoM),
has the same feature and some other remarkable properties too, as, for example, robustness, which is a crucial point
for implementation in CFD codes. The QMoM has already been applied by Lage to describe the multi-component
vapor–liquid equilibrium [6], and this method is now extended to droplet vaporization modelling, as Hallett has pre-
viously done from Cotterman scientific work [2,3]. The QMoM has already been implemented successfully in other
fields too, like aerosol dynamics [7] and population balance equations [8].

This article presents first a description of these different approaches and then, a comparison between models for
the difficult test case of vapor condensation at the droplet surface.

2. Vaporized droplet composition modelling

2.1. Description of the droplet composition

During the vaporization process, the droplet composition is changing because of the volatility difference between
the fuel components. This modification is significant for the vapor flow rate calculation. The objective of the Con-
tinuous Thermodynamic Model (CTM) is to recover a continuous description of the liquid composition. The PDF fl

is defined by the equation xi
l = fl(I )�I , where xi

l represents the mole fraction of the real component i and I the
corresponding distribution parameter. The chosen distribution parameter I is the normal boiling point (i.e., I = Tnb),
which is a suitable variable to characterize a component for vaporization process. Indeed, contrary to the molar mass
which is commonly used [2,4], the normal boiling point is a direct parameter for saturation vapor pressure and heat of
vaporisation (see Eqs. (20) and (21)).

The first studied Continuous Thermodynamic Model presumed the mathematical form of the droplet composition
PDF as a Γ function. This is the Γ -CTM approach, and the droplet composition PDF is modelled as follows [2,3]:

fl(I ) = xl

(Il − γ )αl−1

(βl)αlΓ (αl)
exp

(
−

(
I − γ

βl

))
(1)

The second method put forward in this paper is the Quadrature Method of Moments (QMoM). The droplet composition
PDF is then discrete and the QMoM can be interpreted as a Discrete Component Model with N pseudo-components
instead of N real components with N � N . The normal boiling point of each pseudo-component may change during
the vaporization process [6]. The PDF describing droplet composition in QMoM approach is therefore:

fl,N (I ) =
N∑

x̂k
l δ

Î k
l
(I ) (2)
k=1
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The α order moments of the droplet composition PDF are defined by:

mα
l =

+∞∫
0

fl(I )Iα dI (3)

The moments are obtained from the integrated form of the classical equations describing droplet composition evolu-
tion during vaporization. Consequently, the physical properties have to be interpolated as functions of I = Tnb. In case
of complex mixtures, the components are classified into homogeneous groups as alkanes, alcohols or monoaromatics
in order to ensure a satisfying modelling of each group’s physical behaviour. This is the first hypothesis of the Con-
tinuous Thermodynamic Models (Hypothesis 1). The pseudo-components have therefore variable physical properties
depending on their boiling point. This method allows one to use 2 or 3 pseudo-components for each homogeneous
group instead of tens real components for the whole mixture. In the following section, the models are only detailed for
one group of components, since the multiple PDF model is merely an extension which uses classical DCM approach
applied to groups instead of components.

2.2. Droplet composition evolution

In the DCM approach, the evolution of the fuel composition in the droplet during the vaporization process is
described by

dxi
l

dt
= 3

4πR3cl

(
ṅtotx

i
l − ṅi

)
(4)

These equations are written using the molar system since it is more convenient for Continuous Thermodynamic meth-
ods. Then, cl represents the molar density of the droplet and R its radius. The vapor flow rate of each component i is
ṅi and it is the sum of a convection and a diffusion term:

ṅi = ṅtotx
i
g,s − 2πRcgD

i
gShi

g

(
xi
g,∞ − xi

g,s

)
(5)

In this equation, Shi
g is the Sherwood number which refers to the classical definition,

Shi
g = 2R

xi
g,∞ − xi

g,S

(
∂xi

g

∂r

)
s

(6)

and Di
g is the diffusion coefficient of the component i. The integration performed by the CTM approach leads one to

assume that the diffusion coefficient Di
g and the Sherwood number Shi

g do not depend on the component (this is the
Hypothesis 2 of the Continuous Thermodynamic Model). The continuous form of Eq. (4) using Eq. (5) is then:

dfl(I )

dt
= 3

4πR3cl

(
ṅtotfl(I ) − ṅtotfg,s(I ) + 2πRcgDgShg

(
fg,∞(I ) − fg,s(I )

))
(7)

The Spalding number is commonly used for vaporization models. Its definition is:

BM = x
g,s
tot − x

g,∞
tot

1 − x
g,s
tot

(8)

The vapor mole fraction at the droplet surface x
g,s
tot is obtained from the phase equilibrium at the droplet interface. This

point is detailed below in Section 2.4. Then, using the BM definition and by summing Eq. (5) for all components i,
we deduce

ṅtot = 2πRcgDgShgBM (9)

which is equivalent to the well-known equation

ṅtot = 2πRcgDgSh∗
g ln(1 + BM) (10)

where Sh∗
g is the modified Sherwood number defined by:

Sh∗
g = BM

Shg (11)

ln(1 + BM)
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For an immobile droplet, Sh∗
g = 2 and, in the general case, Sh∗

g is given by correlations depending especially on the
Reynolds number (see [1]).

All the terms of Eq. (7) have been clarified in order to allow CTM integration and then, the moment equations can
be obtained.

2.3. The Moment Problem

The evolution equations for the α order moments mα
l are carried out by integrating Eq. (7):

dmα
l

dt
= 3

4πR3cl

(
ṅtotm

α
l − ṅtotm

α
g,s + 2πRcgDgShg

(
mα

g,∞ − mα
g,s

))
(12)

Using Eq. (9), the system can be rewritten as follow for ṅtot �= 0 (i.e., BM �= 0):

dmα
l

dt
= 3ṅtot

4πR3cl

(
mα

l − mα
g,s(1 + BM) − mα

g,∞
BM

)
(13)

or, for ṅtot = 0:

dmα
l

dt
= 3cgDgShg

2R2cl

(
mα

g,∞ − mα
g,s

)
(14)

The so-called Moment Problem consists of computing the droplet composition PDF from a set of moments obtained
at each time step from Eq. (13) or Eq. (14).

For the Γ -CTM approach, the PDF is defined by the parameters αl and βl (see Eq. (1)) which can be calculated
from the mean normal boiling point Θl and the standard deviation σl or from the first and the second order moments
m1

l and m2
l :⎧⎪⎪⎪⎨

⎪⎪⎪⎩
αl =

(
Θl − γ

σl

)2

= (m1
l − γ )2

m2
l − (m1

l )
2

(15a)

βl = (σl)
2

(Θl − γ )
= m2

l − (m1
l )

2

m1
l − γ

(15b)

When the Quadrature Method of Moments is used, the solution is obtained by computing the nodes {Î k
l }N1 and the

weights {x̂k
l }N1 of a Gauss quadrature whose formulation for its application to fl,N is

∫
�(I )fl,N (I )dI =

N∑
k=1

x̂k
l �

(
Î k
l

) + R(�) (16)

R
(
P

2N−1) = 0 (17)

Indeed, the moment problem studied corresponds to �(I ) = Iα and consequently, the Gauss Quadrature gives an
exact solution for moments up to the 2N − 1 order. This quadrature rule is optimal, N nodes are necessary and
sufficient to obtain the 2N first moments and the number of nodes required is minimum.

2.4. Vapor–liquid equilibrium at the droplet surface

The model closure is given by the vapor–liquid equilibrium. For ideal mixtures, the phase equilibrium at the droplet
surface finds expression in the well-known Raoult’s law,

xi
g,sP∞ = xi

l P
i
sat(Ts) (18)

where Psat(Ts) refers to the saturation vapor pressure expressed at Ts , the temperature at the droplet surface. The
continuous form of Eq. (18) is

fg,s(I )P∞ = fl(I )Psat(I, Ts) (19)
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and Psat is given, for instance, by the Clausius–Clapeyron equation:

Psat(I, Ts) = P∞ exp

(
lvb(I )

R

(
1

I
− 1

Ts

))
(20)

The function (I → lvb(I )) has been interpolated from the normal molar latent heats of vaporization lvb of real compo-
nents. This enables one to compute the molar latent heat of vaporization, whose classical expression in the literature
is [9]:

lv(I ) = lvb(I )

(
Tc(I ) − Ts

Tc(I ) − I

)0.38

(21)

where Tc is the critical temperature expressed as a function of I .
The non-polynomial function for (I → Psat(I )) reveals that integration of the vapor–liquid equilibrium equation

is a difficult point, depending on the chosen method (see Eq. (19)). Therefore, the relationship between the moments
of the droplet composition and those of the vapor composition does not appear explicitly. For the Γ -CTM approach,
this was solved by Cotterman [3] and then resumed by Hallett for the vaporizing droplet modelling [2]. Concerning
the method proposed in this paper, the mole fraction x̂k

l and the normal boiling point Î k
l of each pseudo-component

are computed with QMoM. Then, using the definition of fl,N (see Eq. (2)), the integration of the continuous form of
the Raoult’s law (see Eq. (19)) gives the moments of the vapor composition PDF at the droplet surface:

mα
g,s =

N∑
k=1

x̂k
l

Psat(Î
k
l , Ts)

P∞
(
Î k
l

)α (22)

Now, the next step for the Quadrature Method of Moments is the computations of nodes {Î k
l }N1 and weights {x̂k

l }N1
from the moments {mα

l }2N−1
0 .

2.5. Computation of the QMoM nodes and weights

The nodes are solution of the Gauss quadrature rule (see Eq. (16)). According to the fundamental theorem of
Gauss quadrature [11,12], the nodes {Î k

l }N1 are then the roots of the monic orthogonal polynomial πN relative to the
inner product defined by:

〈p,q〉 =
+∞∫
0

p(I)q(I )fl,N (I )dI (23)

Now, as any orthogonal sequence has a recurrence formula relating any three consecutive terms, the following relation
appears for the {πk}N−1:{

πk+1 = (I − ak)πk − bkπk−1 (24a)
π−1 = 0 (24b)
π0 = 1 (24c)

The key point of the QMoM algorithm is then to compute the coefficients {ak}N−1
0 and {bk}N−1

1 from the moments
{mα

l }2N−1
0 with an efficient method. The Product-Difference algorithm developed by Gordon is an effective way to

obtain these coefficients [7,10]. Then, the last step is to solve the roots of the monic orthogonal polynomial πN from
ak and bk coefficients. Some numerical methods are described in literature. Indeed, the roots of the polynomial πN

are the eigenvalues of a tridiagonal matrix built from ak and bk coefficients [11,12]. In this way, the normal boiling
points {Î k

l }N1 are computed from the 2N first moments. The mole fractions {x̂k
l }N1 are then easily deduced.

3. Results analysis

3.1. Test case description

In this study, the Discrete Component Model (DCM), which solves droplet composition for each real component of
the mixture, is considered as the reference model. The test case presented below has been chosen for its difficulty. Its
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Fig. 1. Kerosene PDF for the Discrete Component Model (36 com-
ponents).

Fig. 2. Kerosene PDF for the Γ -Continuous Thermodynamic Model.

Fig. 3. Kerosene PDFs for the Quadrature Method of Moments (N = 2 and N = 3).

objective is to assess the QMoM when vapor condenses at the droplet surface, and consequently to prove its robustness
in this case contrary to Γ -CTM approach [4].

The example application considered in this paper is a kerosene droplet vaporizing in air rich in iso-C6H14. Indeed,
this isoHexane is one of the most volatile component present in kerosene (Tnb = 331 K). The droplet is 50 µm diameter
and its initial temperature is 300 K. The surrounding gas temperature is 500 K and the ambient pressure is 5 bar. The
composition of the carrier gas is supposed to be constant: xair

g,∞ = 0.7 and x
iso-C6H14
g,∞ = 0.3. Consequently, the PDF

fg,∞ of the vapor in the gas phase is reduced to one δ-function. Finally, concerning the liquid phase, the initial
PDFs of the droplet composition are plotted on Fig. 1 for the Discrete Component Model (DCM), on Fig. 2 for the
Γ -Continuous Thermodynamic Model (Γ -CTM) and on Fig. 3 for the Quadrature Method of Moments (QMoM).

3.2. Comparison between the different approaches

Computations using the different models have been performed and the results are now analysed. The first physical
parameter studied is the vapor flow rate (see evolution on Fig. 4). The vapor (iso-C6H14) first condenses (i.e., the
vapor flow rate is negative) and then, when the droplet is rich enough in iso-C6H14, it evaporates (i.e., the vapor flow
rate is positive). In comparison to the Γ -CTM approach, the QMoM results are closer to the reference model (DCM)
than Γ -CTM and, as expected, this is improved by increasing the number of pseudo-components (i.e., N = 3 instead
of N = 2). The droplet temperature evolution is another relevant parameter to study the reliability of models for the
thermal aspect (see Fig. 5). The displayed results underline that a failure of the droplet composition model can imply
significant errors for other variables too, such as the droplet temperature, for example.
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Fig. 4. Comparison between models for the droplet vapor flow rate. Fig. 5. Comparison between models for the droplet temperature.

Fig. 6. Comparison between models for the first order moment
(mean Tnb).

Fig. 7. Comparison between models for the standard deviation.

The failure of the Γ -CTM approach can be studied from the moments evolution. The droplet mean normal boiling
point (i.e., the first order moment m1

l ) is thus plotted on Fig. 6. A large discrepancy appears with the Γ -CTM approach,
mainly due to the hypothesis on the PDF shape (i.e., the Γ -function assumption). Indeed, after the condensation of
the iso-C6H14 on the droplet, the liquid composition PDF has two maxima, one corresponding to the iso-C6H14
concentration and the other to the kerosene composition (see Fig. 8). Consequently, this configuration cannot be
represented correctly by a single Γ -function whose standard deviation is consequently too high (see Fig. 7). The
droplet composition (i.e., its moments) is therefore much more accurately described using the QMoM instead of the
Γ -CTM.

Concerning CPU time, the QMoM is slightly less efficient than the Γ -CTM (see Table 1), due to the algorithm
used for finding eigenvalues of a tridiagonal matrix in the QMoM algorithm. Nevertheless, the Moment Problem can
be analytically solved for 2 pseudo-components (N = 2) and the QMoM has then the same computation time as the
Γ -CTM. Consequently, the QMoM (N = 2) can be a compromise solution for implementation in industrial codes if
the computation time turns out to be a very strong constraint.

3.3. Analysis of CTM hypotheses

It is worth noticing that the Continuous Thermodynamic Model (both Γ -CTM and QMoM approaches) underes-
timates the droplet lifetime. Indeed, the CTM rests on two main hypotheses, the first concerns the interpolation of
physical properties (Hypothesis 1) and the second assumes an identical Sherwood number and diffusion coefficient
for each component of the same group (Hypothesis 2). This last approximation is equivalent to assuming the same
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Fig. 8. Kerosene PDF for the Discrete Component Model at t = 0.04 s.

Table 1
Computation times of the different models.

Model CPU time

DCM (36 components) 14.6
Γ -CTM 0.6
QMoM (N = 2) 0.9
QMoM (N = 3) 1.1

Fig. 9. CTM error analysis for the first order moment (mean Tnb). Fig. 10. Comparison between methods to solve CTM approach con-
sidering best conceivable solution obtained for the first order moment
(mean Tnb).

Spalding numbers for all components in the same component group (see Eq. (9)). The results plotted on Fig. 9 under-
line that the Hypothesis 2 is the more significant source of error. Indeed, the vapor flow rate is mainly composed of
iso-C6H14. The Spalding number value computed with CTM approach is characteristic of a volatile component and
this implies an early vaporization of “heavy” components, and consequently a shortening of droplet lifetime. Finally,
the performance of QMoM can be estimated from the comparisons with the DCM results computed with CTM hy-
potheses (see Fig. 10). This underlines that QMoM modelling with 3 pseudo-components (N = 3) is very close from
the best solution which can be obtained with a CTM approach.

4. Concluding remarks

This article puts forward a new method to solve the Continuous Thermodynamic approach of multi-component
droplet vaporization modelling. This method, the Quadrature Method of Moment (QMoM), has already been applied
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by Lage to describe the phase equilibria in order to avoid any assumption on the mathematical form of the droplet
composition PDF [6]. The implementation of QMoM is now extended to droplet vaporization modelling, particularly
to solve the difficult test case of vapor condensation. Indeed, even though this phenomenon is not preponderant for
combustion applications, this case is relevant for numerical purposes. Partial condensation may occur in combustion
chambers due to inhomogeneities in the temperature or component mass fraction fields, and then leads to the failure of
computations if a classical Γ -CTM approach is used. The robustness required by CFD codes implies finding a method
which succeeds in this case. The results obtained with the QMoM have been compared to those given by the Γ -CTM
approach and they show a net improvement with QMoM. The QMoM solution with 3 pseudo-components is very
close to the DCM results computed with CTM hypotheses. This means that QMoM (N = 3) gives practically the best
conceivable solution provided by a CTM approach. The computational cost of QMoM (N = 3) is furthermore low
enough to consider this method to be an acceptable compromise for CFD implementation. The QMoM is consequently
very promising for solving the droplet composition modelling issue in industrial codes.
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