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Abstract

We consider a formal asymptotic study of plates with periodically rapidly varying heterogeneities. The asymptotic analysis is
performed when both the period of change of the material properties and the thickness of the plate are of the same orders of
magnitude. We consider a plate made of Ciarlet–Geymonat type materials (P.G. Ciarlet and G. Geymonat (1982)). Depending on
the order of magnitude of the applied loads, we obtain a nonlinear membrane model and a nonlinear membrane inextensional-
bending model as announced in E. Pruchnicki (2006). Our approach is based on a sequence of recursive minimization problems.
To cite this article: E. Pruchnicki, C. R. Mecanique 337 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Modèles bidimensionnels non linéaires pour les plaques hétérogènes. On considère une étude asymptotique formelle de
plaques avec des hétérogénéités variant périodiquement. L’analyse asymptotique est faite lorsque la période de variation des pro-
priétés du matériau de la plaque sont du même ordres de grandeur. On considère une plaque faite de matériaux de Ciarlet–Geymonat
(P.G. Ciarlet et G. Geymonat (1982)). En fonction de l’ordre de grandeur des charges appliquées, on obtient un modèle non linéaire
membranaire et un modèle non linéaire membranaire flexion-inextensionnelle comme annoncé par E. Pruchnicki (2006). Notre
approche est basée sur une suite récursive de problèmes de minimisation. Pour citer cet article : E. Pruchnicki, C. R. Mecanique
337 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

For the homogeneous thin plates structures, the only small parameter to be introduced into the asymptotic analysis
is the thickness. The work of P.G. Ciarlet [1] shows that the analysis of the asymptotic expansion with the thick-
ness as a small parameter allows a set of two-dimensional models for such structures to be proven in a systematic
way in various orders. Composite materials are characterized by the fact that they contain two or more finely mixed
constituents. For heterogeneous plates, the size of heterogeneities highlighting the periodic character of the hetero-
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geneous microstructure on the middle surface introduces a second small parameter. T. Lewiński and J.J. Telega [2]
showed within the framework of the linear elasticity that we could consider same orders of magnitude for these two pa-
rameters because the other cases can thus be deduced and this is confirmed by the rigorous results of Γ -convergence.
By assuming a nonlinear constitutive law of Saint Venant–Kirchoff, E. Pruchnicki [3,4] showed respectively for plates
ans shells that the model of the highest possible order is of membrane type. In the present note, we are interested in
the important case of a nonlinear material of P.G. Ciarlet and G. Geymonat [5] because this material is more realistic
than a Saint Venant–Kirchoff material. Indeed he does not allow the possibility of squashing a volume into a point
thanks to the logarithmic term in the stored energy function. Moreover the stored energy function is polyconvex with
respect to the invariants of the deformation gradient which ensures powerful results for the minimization problem of
the potential energy (J.M. Ball [6], P.G. Ciarlet [7]). Moreover, we consider composite plates for which the stiffness
of each material is of the same order of magnitude. When this assumption is false, the asymptotic analysis depends on
another small parameter which is the ratio of the mechanical characteristics of the matrix to that of the reinforcement.
This leads to non-classical models of homogenization (G. Panasenko [8]).

The outline of this paper is as follows. We adapt the method developed previously by O. Pantz [9,10] to solve a
sequence of minimization problems for heterogeneous plates. This method is also used by N. Meunier [11], K. Tra-
belsi [12] for the cases of homogeneous rods and plates respectively. We obtain a hierarchy of two-dimensional models
depending on the order of magnitude of the applied loads. For loading of order one with respect to the small param-
eter, we obtain a two-dimensional energy minimization problem modelling nonlinear membrane behaviour of plate
and whose the solution is the leading term in the expansion of the displacement field. We are thus led to define a
generalization of the space of nonlinear inextensional displacements for heterogeneous plates. When this space does
not reduce to {0} and for loading of order three with respect to the small parameter, the displacement field can be iden-
tified as a solution of a two-dimensional nonlinear membrane inextensional-bending model. This model generalizes
the ones proposed by P. Giroud [13], D. Caillerie and E. Sanchez-Palencia [14] and K. Trabelsi [15].

2. The nonlinear boundary-value problem of plates

Let ω be a bounded, open, connected subset of R
2 with a Lipschitz-continuous boundary ∂ω. Let (e1, e2, e3)

denotes the basis of the space R
3. We shall write x = (x1, x2, x3) for vectors in R

3, and x′ = (x1, x2) for vectors
in R

2. The following notations are used: Greek index α, β = 1, 2; Latin index i, j, k = 1,2,3. Let us consider
a plate of thickness ε and mid-surface ω. The set Ωε = ω × ]− ε

2 , ε
2 [ is called the reference configuration of this

plate. The boundary of the plate is divided into two parts: the first is composed of the lower and upper boundaries
ω × ({− ε

2 } ∪ { ε
2 }); the second is the lateral boundary Γ ε = ∂ω × ]− ε

2 , ε
2 [. This plate is heterogeneous and the size

of the heterogeneities, which is assumed to be of the same order of magnitude of the thickness, is very small with
regard to the global length-scale x′ = (x1, x2). Thus we can define the ratio between both the local length-scale of the

plate y′ = (y1, y2) and the global one ε = x′
α

y′
α

. We note that the heterogeneous microstructure of the plate is periodic
with respect to global coordinates and it is sufficient to define the distribution of the constituents on the smallest
period Y ε = Y ′ × ]− ε

2 , ε
2 [ (Y ′ = (0,1) × (0,1)), which is also called the unit cell. A current point in Y ε is defined

by yε = (y1, y2, x
ε
3). Since the thickness of the plate is of order of magnitude ε, we introduce y3 such that xε

3 = εy3.
The boundary ∂Y ε of the unit cell is divided into the lateral boundary ∂Y ε

L = ∂Y ′ × [− ε
2 , ε

2 ], and into both the lower
and the upper boundaries ∂Y ε± = Y ′ × ({− ε

2 } ∪ { ε
2 }). The plate is submitted to dead loading which is periodic with

respect to the local length-scale y′, and it is sufficient to define this dead loading only over one unit cell. The density
of body force is the vector denoted f ε

i ei . Let us consider the surface force per unit area hε
i ei acting on the upper and

lower faces Γ ±,ε = ω × ∂Y ε± of the plate then their components are functions hε
i : ω × (∂Y ε− ∪ ∂Y ε+) → R. The plate

is clamped on its lateral boundary Γ ε . When subjected to the given loading, the plate undergoes the displacement
field uε

i (x
ε, y′)ei . The three functions uε

i : Ωε × Y ′ → R are the components of the displacement field uε
i (x

ε, y′)ei

with xε = (x1, x2, x
ε
3). The components of the displacement field are defined by functions uε

i : ω × Y ε → R. Next
we denote the vector field uε = (uε

i ) : ω × Y ε → R
3. The deformation gradient is defined by Fε(uε) = I + grad uε

and grad uε is the gradient of the displacement field uε defined by (grad uε)iα = ∂xαuε
i + 1

ε
∂yαuε

i , (grad uε)i3 = ∂xε
3
uε

i .

The plate is made of hyperelastic material of which the polyconvex stored energy function is defined by (Ciarlet and
Geymonat [5], see also Ciarlet [7])

Wε
(
Fε

) = a
∣∣Fε

∣∣2 + b
∣∣Cof Fε

∣∣2 + c det
(
FεT Fε

) − d ln
(
det

(
FεT Fε

)) + e



E. Pruchnicki / C. R. Mecanique 337 (2009) 297–302 299
where a, b, c, d and e are real positive functions independent of ε. We have limdet(Fε)→0+ W(Fε) = ∞ which means
that an infinite amount of energy is necessary to annihilate a volume. C∞

per(ω × Y ε) is the set of functions of C∞(ω ×
R

2 × [− ε
2 , ε

2 ]), Y ′ periodic in y′. W 1,2
per (ω × Y ε) is the completion of the space C∞

per(ω × Y ε) with respect to the norm

of W 1,2(ω × Y ε) and W1,2
per(ω × Y ε) = (W 1,2

per (ω × Y ε))3.

3. The two-scale three-dimensional minimization problem

The equilibrium state of the plate satisfies the minimization problem P ε(ω × Y ε)

Find vε ∈ Vε
(
ω × Y ε

)
such that J ε

(
vε

) = inf
uε∈Vε(ω×Y ε)

J ε
(
uε

)
The total energy functional J ε takes the form J ε(uε) = I ε(uε) − lε(uε), where

I ε
(
uε

) =
∫

ω×Y ε

Wε
(
Fε

(
uε

))
dx′ dyε and lε

(
uε

) =
∫

ω×Y ε

f ε
i uε

i dx′ dyε +
∫

ω×∂Y ε±

hε
i u

ε
i da

measure, respectively, the internal energy of the plate, and the work of the external forces. f ε
i and hε

i (i = 1,3) belong
to L2(ω × Y ε) and L2(ω × (∂Y ε− ∪ ∂Y ε+)) respectively. The set of admissible displacement field is defined by

Vε
(
ω × Y ε

) = {
uε ∈ W1,2

per

(
ω × Y ε

)
: det

(
Fε

(
uε

))
> 0 and uε = 0 on ∂ω × Y ε

}
Now we suppress the difficulty originating from the dependence on the small parameter of the plate by defining a

rescaling operator by (πεg)(x′, y) = g(x′,y′, xε
3). Then for all functions gε and functionals Gε , we set g(ε) = π−1

ε gε

and G(ε)(ψ) = π−1
ε Gε(ψ). Thus the domain Y ε becomes the domain Y = Y ′ × (− 1

2 , 1
2 ). The boundaries ∂Y ε ,

∂Y ε±, ∂Y ε
L become ∂Y, ∂Y± = Y ′ × ({− 1

2 } ∪ { 1
2 }), ∂YL = ∂Y ′ × [− 1

2 , 1
2 ] respectively. Scaled in this fashion, the

minimization problem P ε(ω × Y ε) becomes problem P(ε)(ω × Y)

Find v(ε) ∈ V(ε,ω × Y) such that J (ε)
(
v(ε)

) = inf
u(ε)∈V(ε,ω×Y)

J (ε)
(
u(ε)

)
The space of admissible deformation is now defined as:

V(ε,ω × Y) = {
u(ε) ∈ W1,2

per(ω × Y): det
(
F(ε)(u)

)
> 0 and u(ε) = 0 on ∂ω × Y

}
The formal asymptotic two-scale method is based on the hypothesis that the unknown vector field u(ε), the data

f(ε) and h(ε) can be expanded in powers of the small parameter ε as

∞∑
n=0

εnun,

∞∑
n=0

εn fn and
∞∑

n=0

εnhn

respectively. These assumptions imply expansions on the deformation gradient

F(ε)
(
u(ε)

) =
∞∑

n=−1

εnFn(u)

the stored energy function

W(ε)
(
F(ε)

(
u(ε)

)) =
∞∑

n=−6

εn Wn(u)

and the total energy functional

J (ε)
(
u(ε)

) =
∞∑

n=−5

εn J n(u)

where u is the sequence (u0, u1, u2, . . . ).
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The next proposition shows that the solution v(ε) of the problem P(ε;ω×Y) can be obtained by solving a sequence
of partial variational problems. This idea was introduced by O. Pantz [9] in the case of homogeneous plates. The
solution of problem P(ε)(ω × Y) is such that

v = (
v0,v1,v2, . . .

) ∈
∞⋂

n=−5

Vn(ω × Y), where

Vn+1(ω × Y) = {
v ∈ Vn(ω × Y): Jn(v) = inf

u∈Vn(ω×Y)
J n(u)

}
V−5(ω × Y) = {

v ∈ W1,2
per(ω×Y)N: det

(
F(ε)

(
v(ε)

))
> 0 and v = 0 on ∂ω × Y

}
Let Pn(ω × Y) be the boundary-value problem: finding v ∈ Vn(ω × Y) such that Jn(v) = infu∈Vn(ω×Y) J

n(u). By
solving the first variational problems Pn(ω × Y) for n � 0, we see that v0 does not depend on the microscopic scale y
and

∫
∂Y± h0 da∗ = 0; da∗ denotes the area element along the boundary ∂Y±. Thus we assume the stronger condition,

h0 = 0 on ω × ∂Y±.

4. A nonlinear membrane plate theory

We show that nonlinear membrane plate theory arises as problem P1(ω × Y). If v = (v0,v1, . . .) is a solution of
the problem P1(ω × Y) then the first term v0 in the asymptotic expansion of the displacement field solves the global
minimization problem

Jm

(
v0) = inf

u0∈U0(ω)
Jm

(
u0)

in which the set of displacement field

U0(ω) = {
u0 ∈ W1,2(ω),u0 = 0 on ∂ω

}
and the membrane energy is defined by

Jm

(
u0) =

∫
ω

Wm

(
gradx′

(
u0))dx′ −

∫
ω

( ∫
Y

f 0
i dy +

∫
∂Y±

h1
i dy′

)
u0

i dx′

where Wm is the membrane elastic energy obtained by computing the following local minimization problem

Wm

(
gradx′

(
u0)) = inf

u1∈U1(ω×Y)

∫
Y

W 0(u0,u1)dy (1)

in which

W 0(u0,u1) = a
∣∣F0(u0,u1)∣∣2 + b

∣∣Cof F0(u0,u1)∣∣2 + c det
(
C0(u0,u1)) − d ln

(
det

(
C0(u0,u1))) + e

C0(u0,u1) = F0(u0,u1)T F0(u0,u1), F0(u0,u1) = I + gradx′
(
u0) + grady

(
u1)

and the set U1(ω × Y) is defined by

U1(ω × Y) =
{

u1 ∈ W1,2
per(ω×Y),det F0(u0,u1) > 0,

∫
Y

u1 dy = 0

}

This membrane model generalizes the membrane one previously proposed by Pruchnicki [4] for Saint Venant–
Kirchhoff materials. We can show that Wm(gradx′(u0)) → ∞ as

det
(

F̃0T F̃0) = ∣∣̃F0
1 ∧ F̃0

2

∣∣2 → 0+ (
F̃0

iα = (
F̃0

i

)
α

= δiα + ∂xαu0
i

)
As a consequence, the orientation-preserving condition is naturally imposed and the two-dimensional model pre-
cludes singular folds of the midsurface of the plate. This membrane energy inherits the material frame indifference
and isotropy properties of each material of the plate. By considering the rigorous Γ -convergence argument of
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S. Muller [16], it can be shown that membrane energy is obtained by minimizing the local energy on k basic cell
(Y becomes kY in formula (1)) and then on k. Nevertheless as shown by G. Geymonat et al. [17] and J.C. Michel et al.
[18], for specific deformation gradient F0, the one cell homogenized energy is the correct one. For homogeneous ma-
terial the analytical expression of function Wm is continuous (K. Trabelsi [19]). However for heterogeneous material,
no mathematical results would allow to show the continuity of Wm (G. Geymonat et al., Section 5.2 [17]).

5. A nonlinear membrane inextensional-bending plate theory

To study higher order model, we choose vanishing membrane loading; f0 = h1 = 0. Then a solution of problem
P1(ω×Y) can be written in the following form u1(x′, y3) = ũ1(x′)+u1(x′, y3) in which u1

i (x
′, y3) = ni(x′) y3 −y3δi3

and n = F̃0
1 ∧ F̃0

2 is the unit normal to the deformed mid-surface of the plate. Thus the leading order term of the
displacement field u0 inevitably belongs to the space of inextensional displacement field

U0 iso(ω,R
3) =

{
v ∈ W2,2(ω),v = 0 on ∂ω, Eαβ(v) = 1

2

((
I + gradx′(v)

)
kα

(
I + gradx′(v)

)
kβ

− δαβ

) = 0

}
which is assumed to be different of {0}. Then we observe that problem P2(ω × Y) is without internal energy and
becomes trivial if we choose

g1 =
∫
Y

f1 dy +
∫

∂Y±

h2 dy′ = 0

To avoid boundary-layer region around the neighborhoods of the clamped part of the plates, we replace this boundary
condition by its average on the unit cell. We assume that external loading satisfies f0 = 0, h1 = 0 and g1 = 0. If
v = (v0,v1, . . .) is a solution of the problem P3(ω × Y) then both the leading term v0 and the macroscopic first order
term ṽ1 in the asymptotic expansion of the displacement field solve the global minimization problem

Jbm

(
v0, ṽ1) = inf

u0∈U0 iso(ω),̃u1∈U0(ω)
Jbm

(
u0, ũ1)

where the membrane inextensional-bending energy is defined by

Jbm

(
u0, ũ1) =

∫
ω

Wbm

(
gradx′

(
u0),gradx′

(̃
u1))dx′ −

∫
ω

( ∫
Y

f 2
i dy +

∫
∂Y±

h3
i dy′

)
u0

i dx′

−
∫
ω

( ∫
Y

f 1
i y3 dy + 1

2

( ∫
∂Y+

h2
i dy′ −

∫
∂Y−

h2
i dy′

))
ni dx′

Wbm is the membrane inextensional-bending elastic energy obtained by computing the following local minimization
problem

Wbm

(
gradx′

(
u0),gradx′

(̃
u1)) = inf

u2∈U2(ω×Y,R3)

∫
Y

W 2(u0, ũ1,u2)dy

in which we set

W 2(u0, ũ1,u2) = (a + b)
{(

F̃0
i1F1

i2 + F̃0
i2F1

i1

)2 + (
F̃0

iαF1
i3 + niF1

iα

)(
F̃0

jαF1
j3 + nj F1

jα

)}
− 4(a + b)

(
F̃0

i1F1
i1F̃0

j2F1
j2 + F̃0

iαF1
iαnj F1

j3

) + 2d
(

F̃0
iαF1

iα + nj F1
j3

)2

where F1
iα = ∂xα ũ1

i + y3∂xαni + ∂yαu2
i , F1

i3 = ∂y3u
2
i and the set U2(ω × Y) is defined by

U2(ω × Y) =
{

u2 ∈ W1,2
per(ω×Y),

∫
Y

u2 dy = 0

}

For homogeneous plate, this model becomes a bending one which is rigorously obtained by Γ -convergence argument
(G. Friesecke et al. [20]).
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