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Abstract

A new approach is proposed to detect trapped modes in periodic canals. The obtained sufficient condition is new even for a
straight canal with a body piercing the water surface as well. To cite this article: S.A. Nazarov, C. R. Mecanique 337 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Une nouvelle approche pour la détection d’ondes de surfaces piégées dans un canal à topographie souterraine périodique.
Une nouvelle approche est proposée pour détecter les modes piégés dans les canaux périodiques. La condition suffisante obtenue
est nouvelle également dans le cas d’un canal droit avec un corps traversant la surface de l’eau. Pour citer cet article : S.A. Nazarov,
C. R. Mecanique 337 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Different formulations of the water-wave problem

Let � ⊂ R
2 be an open set in the rectangle (0,1) × (−H,0), H > 0, while γ �= ∅ is the union of open intervals

belonging to the boundary ∂� and to the horizontal line R ×{0} as well (Fig. 1(a)). We determine the periodic set Π ,
a quasi-cylinder, Fig. 1(b), as the interior of

Π =
⋃
j∈Z

�j (1)
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Fig. 1. The periodicity cell and the periodic canal with a body.

where Z = {0,±1,±2, . . .} and �j = {(y, z): (y − j, z) ∈ � } is a shift of the periodicity cell � along the y-axis.
We also fix a compact set Θ ⊂ Π . Assuming Ω = Π \ Θ to be a Lipschitz domain, we consider the linear spectral
boundary value problem in the theory of surface water-waves (cf. [1,2])

−�ϕ + κ2ϕ = 0 in Ω, ∂νϕ = 0 on Σ, ∂zϕ = λϕ on Γ (2)

Here, ϕ is the velocity potential, κ the wave number in the x-direction, perpendicular to the plane R
2 � (y, z), λ =

ω2/g stands for a spectral parameter and ω is the frequency, g > 0 the acceleration due to gravity. The boundary ∂Ω

is divided into two parts

Σ = {
(y, z) ∈ ∂Ω: z < 0

}
, Γ = ∂Ω \ Σ = Γper ∪ θ (3)

where Γper = ⋃
γj in accord with (1) and θ = {(y, z) ∈ ∂Θ: z = 0} is the horizontal part of the obstacle boundary

at the water surface level. Our assumption that Ω is a Lipschitz domain, provides the following: Ω is a connected
set, the derivative ∂ν along the outward normal ν is defined almost everywhere on Σ , and cuspidal irregularities of
the boundary are forbidden which could lead to the continuous spectrum irrelative to wave processes at infinity [3].
Clearly, ∂ν = ∂z = ∂/∂z on Γ .

Since the period in (1) is one, rescaling had been made and all coordinates have become dimensionless. We assume
κ > 0, that is the wave deviation angle with respect to the y-axis is acute.

Owing to the possible boundary irregularities, the velocity field ∇ϕ = gradϕ may get singularities and problem (2)
ought to be understood as the integral identity [4]

(∇ϕ,∇ψ)Ω + κ2(ϕ,ψ)Ω = λ(ϕ,ψ)Γ , ψ ∈ H 1(Ω) (4)

where (ϕ,ψ)Ω is the natural scalar product in the Lebesgue space L2(Ω) and H 1(Ω) the Sobolev space supplied
with the specific scalar product 〈ϕ,ψ〉 on the left of (4). Introducing a positive, continuous and symmetric, therefore,
self-adjoint operator T in H 1(Ω)

〈T φ,ψ〉 = (φ,ψ)Γ , φ,ψ ∈ H 1(Ω) (5)

we reduce the variational problem (4) to the abstract equation

T ϕ = μϕ in H 1(Ω) (6)

with the new spectral parameter

μ = 1/λ (7)

As well known (see, e.g., [5]), the spectrum s of T is situated in the segment [0, t] of the real axis R in the complex
plane C, where t denotes the norm of the operator,

t = sup
φ∈H 1(Ω)\{0}

〈T φ,φ〉
〈φ,φ〉 (8)

The point μ = 0 is an eigenvalue with the infinite multiplicity with an eigenspace composed from functions in H 1(Ω)

vanishing at Γ . Since the embedding H 1(Ω) ⊂ L2(Γ ) is not compact in the unbounded domain Ω , the essential
spectrum se of T does not reduce to the point μ = 0 and its upper bound μ† = 1/λ† is positive.
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In the sequel we employ a device, proposed in [6] and adapted here to periodic structures, in order to derive a
geometrical sufficient condition for the inequality

t > μ† (9)

which ensures that μ1 = t is an eigenvalue in the discrete spectrum sd = s \ se �= ∅. At the same time, λ1 = 1/μ1,
by the relationship (7), becomes the smallest eigenvalue below the lower bound λ† of the essential spectrum Se of
problem (4) = (2). The corresponding eigenfunction ϕ1 ∈ H 1(Ω) readily implies a trapped mode (cf. [7–11] and
others).

2. The band–gap structure of the essential spectrum

The Gel’fand transform [12] (see, e.g., [13–15] for details) associates the problem (2) in the quasi-cylinder Π with
the following problem in the periodicity cell:

−�Φ + κ2Φ = 0 in �, ∂νΦ = 0 on σ, ∂zΦ = ΛΦ on γ (10)

Φ|y=0 = eiηΦ|y=1, ∂Φ|y=0 = eiη∂Φ|y=1 (11)

The quasi-periodicity conditions (11) which involve the transform parameter η ∈ [0,2π) and are posed over the lateral
faces τ0 and τ1 of the cell marked with dotted lines in Fig. 1(a). Notice that σ = ∂� \ (γ ∪ τ0 ∪ τ1). The integral
identity

(∇Φ,∇Ψ )� + κ2(Φ,Ψ )� = Λ(Φ,Ψ )γ , Ψ ∈ H 1(� ;η) (12)

serving for problem (10), (11), refers to the subspace H 1(� ;η) of functions in H 1(�) meeting the first condition
in (11). The sesquilinear form on the left of (12) is Hermitian positive definite and closed in H 1(� ;η). Furthermore,
the embedding H 1(�) ⊂ L2(�) is compact in the bounded domain � (see, e.g., [4, §1.6]) and, hence, eigenvalues
of problem (12) = (10) + (11) compose the monotone positive unbounded sequence

0 < Λ1(η) � Λ2(η) � · · · � Λp(η) � · · · → +∞ (13)

where they are listed while counting multiplicity.
Fixing Λ ∈ C, one may regard (12) as a holomorphic pencil C � η → PΛ(η) [16, Ch. 1]. Let F be a linear

functional in the space H 1(Ω). The operator in H 1(Ω) of the inhomogeneous problem (4)

(∇φ,∇ψ)Ω + κ2(φ,ψ)Ω − λ(φ,ψ)Γ = F(ψ), ψ ∈ H 1(Ω)

is known (see [17], [14, Ch. 3] and cf. [13,15]) to be Fredholm if and only if the segment [0,2π) ⊂ R ⊂ C is free of
the η-spectrum of the pencil PΛ. It is straightforward to derive from this fact the following formula for the essential
spectrum of problem (4) (cf. [13,15]):

Se =
∞⋃

p=1

Υp, Υp = {
λ = Λp(η) | η ∈ [0,2π)

}
(14)

Since the functions R � η → Λp(η) are continuous [18, Ch. 9] and 2π -periodic (the change η → η ± 2πi does not
effect on (11)), the bands Υp in (14) are closed connected segments. The segmental structure of Se allows for gaps,
i.e., intervals in R+ which may include points of the discrete spectrum Sd only but have their endpoints in Se.

The lower bound of Se takes the form

λ† = min
{
Λ1(η) | η ∈ [0,2π)

}
> 0 (15)

Let the point η† constitute the minimum in (15) and let Φ† denote the corresponding eigenfunction. The function ϕ†,

ϕ†(y, z) = eiηjΦ†(y − j, z), (y, z) ∈ �j, j ∈ Z (16)

belongs to H 1
loc(Π) by virtue of the quasi-periodicity conditions (11) and solves the problem (2) in Π but only

formally because it falls out from H 1(Π) due to the oscillation at infinity. We emphasize that (12) ensures the relation

I� := 〈ϕ†, ϕ†〉 = λ†
∥∥ϕ†;L2(γ )

∥∥2 =: Iγ (17)
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Formula (7) passes the band–gap structure to the essential spectrum of the operator T

se =
∞⋃

p=1

υp, υp = {
μ = Λp(η)−1 | η ∈ [0,2π)

}

3. Deriving the sufficient condition for trapped modes

With any ε ∈ (0,1], we insert the function φε
† = e−ε|y|ϕ† ∈ H 1(Π) ⊂ H 1(Ω) into formula (8) for the norm t . The

following calculation is the crucial issue for our further consideration:

∑
j∈Z

e−ε|j | =
∫
R

e−ε|y| dy +
∑
j∈Z

j+1∫
j

(
e−ε|j | − e−ε|y|)dy

= 1

ε
+ 2ε

∑
j∈Z

e−ε|j |
( j+1∫

j

(|y| − |j |)dy + O(ε)

)
dy

= 1

ε
+ 2ε

∑
j∈Z

e−ε|j |
(

1

2
sign(j) + O(ε)

)

= 1

ε
+ O(ε)

Processing integrals over Π and Γper in a similar manner and taking into account that e−2ε|y| = 1 + O(ε) in the
compact set Θ , we obtain〈

T φε
†, φε

†

〉 = ∥∥φε
†;L2(Γper)

∥∥2 − ∥∥φε
†;L2(θ)

∥∥2 = ε−1Iγ − Iθ + O(ε)〈
φε

†, φε
†

〉 = ∥∥∇φε
†;L2(Π)

∥∥2 + κ2
∥∥φε

†;L2(Π)
∥∥2 − ∥∥∇φε

†;L2(Θ)
∥∥2 − κ2

∥∥φε
†;L2(Θ)

∥∥2

= ε−1I� − IΘ + O(ε) = ε−1λ†Iγ − IΘ + O(ε)

where we recall (17) and put

IΘ =
∫
Θ

(∣∣∇ϕ†(y, z)
∣∣2 + κ2

∣∣ϕ†(y, z)
∣∣2)dy dz, Iθ =

∫
θ

∣∣ϕ†(y,0)
∣∣2 dz (18)

Note that in the case Θ ⊂ � function (16) can be replaced by Φ† in the above integrands. We now have

t �
〈T φε

†, φε
†〉

〈φε
†, φε

†〉 � ε−1Iγ − Iθ − cε

ε−1I� − IΘ + cε
� μ†

(
1 + ε

Iγ

μ†(IΘ − λ†Iθ ) − Cε2
)

(19)

Under the condition

IΘ > λ†Iθ (20)

which just relates integrals (18), the parameter ε > 0 can be chosen such that the right-hand side of (19) exceeds μ†.
In other words, inequality (9) is valid and, thus, sd ∩ (μ†,+∞) �= ∅ and Sd ∩ (0, λ†) �= ∅. In other words, (20) implies
a sufficient condition for trapped modes.

4. Discussion

Let Π be the strip R × (−H,0). Solutions of the spectral problem (10), (11) in the cell � = (0,1) × (−H,0) get
an explicit form, in particular,

Λ1(η) = ζ
(
1 + e−2Hζ

)−1(
1 + e−2Hζ

)
, Φ1(y, z;η) = e−iηy

(
ezζ + e−(2H+z)ζ

)
ζ = (

η2 + κ2)1/2
, λ† = κ

(
1 + e−2Hκ

)−1(1 + e−2Hκ
)

(21)



614 S.A. Nazarov / C. R. Mecanique 337 (2009) 610–615
Denoting |θ | the length of θ , the condition (20) reads:

1

κ

1 + e−2Hκ

1 + e−2Hκ

∫
Θ

(
e2zκ + e−2(2H+z)κ

)
dy dz > |θ | (22)

If the body Θ is submerged, i.e. Θ ⊂ Π , and therefore, θ = ∅, Iθ = 0, then both inequalities (20) and (22) are
automatically satisfied that provides trapped modes. For the strip Π = R × (−H,0) this result is known (see [7–9]),
however the proof in (19) is much simpler. For a body piercing the water surface, the sufficient condition derived is
new in both the cases, straight and periodic.

Let us comment on the comparison principles (cf. [8,9,19]). We consider a compact set Θ� such that Θ ⊂ Θ�,
Θ �= Θ� but θ = θ� = {(y, z) ∈ ∂Θ�: z = 0} and Γ = Γ �, while Ω� = Π \ Θ� is still a Lipschitz domain. According
to (5) we introduce the operator T � in H 1(Ω�) with the norm t � � μ† and observe that t � > t because the integration
domain Ω� in the denominator on the right-hand side of the relation (8) for t � is smaller than Ω . Thus, the inclusion
t = μ1 ∈ sd assures that t � = μ

�
1 ∈ s

�
d . Moreover, in the same way the max–min principle provides that the total

multiplicity of the part of the discrete spectrum s
�
d located in (μ†,+∞] is bigger than the one of sd ∩ (μ†,+∞].

In the above-cited papers the comparison principles were established and applied in a straight canal. The approach
presented here, assists for adopting some of these results to periodic canals.

5. Open questions

If the segment Υp in (14) shrinks up to a single point λ(p), then λ(p) becomes an eigenvalue with infinite multiplicity
of the problem (4) in the quasi-cylinder Π . Is the formula Υp = {λ(p)} possible? What does it happen in this case with
the spectrum of the problem (4) in Ω?

The peculiar formulas (21) demonstrate that η† = 0 for a straight canal. It is not difficult to verify that the point
η = 0 constitutes a local strict minimum of the function η → Λ1(η). Is this minimum global and, thus, η† = 0 always?

For any δ > 0, N = 1,2, . . . and arbitrary canal Π , method [20] provides a body Θ such that problem (4) has at
least N eigenvalues in the interval (0, δ). An example of a domain Ω = Π \ Θ with an eigenvalue in the band of the
essential spectrum or inside a gap is not known yet.

References

[1] J.J. Stoker, Water Waves: The Mathematical Theory with Applications, John Willey & Sons, Inc., New York, 1992. Reprint of the 1957
original.

[2] N. Kuznetsov, V. Maz’ya, B. Vainberg, Linear Water Waves, Cambridge University Press, Cambridge, 2002.
[3] S.A. Nazarov, J. Taskinen, On the spectrum of the Steklov problem in a domain with a peak, Vestnik St. Petersburg Univ. Math. 41 (1) (2008)

45–52.
[4] O.A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics, Applied Mathematical Sciences, vol. 49, Springer-Verlag, New

York, 1985.
[5] J. Sanchez-Hubert, E. Sanchez-Palencia, Vibration and Coupling of Continuous Systems: Asymptotic Methods, Springer-Verlag, Heidelberg,

1989.
[6] I.V. Kamotskii, S.A. Nazarov, Elastic waves localized near periodic sets of flaws, Dokl. Ross. Akad. Nauk 368 (6) (1999) 771–773; English

transl.: Dokl. Phys. 44 (10) (1999) 715–717.
[7] R.M. Garipov, On the linear theory of gravity waves: the theorem of existence and uniqueness, Arch. Rational Mech. Anal. 24 (1967) 352–362.
[8] F. Ursell, Mathematical aspects of trapping modes in the theory of surface waves, J. Fluid Mech. 183 (1987) 421–437.
[9] A.-S. Bonnet-Ben Dhia, P. Joly, Mathematical analysis of guided water-waves, SIAM J. Appl. Math. 53 (1993) 1507–1550.

[10] N. Kuznetsov, R. Porter, D.V. Evans, M.J. Simon, Uniqueness and trapped modes for surface-piercing cylinders in oblique waves, J. Fluid
Mech. 365 (1998) 351–368.

[11] C.M. Linton, P. McIver, Embedded trapped modes in water waves and acoustics, Wave Motion 45 (2007) 16–29.
[12] I.M. Gel’fand, Expansions in eigenfunctions of an equation with periodic coefficients, Dokl. Acad. Nauk SSSR 73 (1950) 1117–1120.
[13] P.A. Kuchment, Floquet theory for partial differential equations [in Russian], Uspekhi Mat. Nauk 37 (4) (1982) 3–52; English transl.: Russian

Math. Surveys 37 (4) (1982) 1–60.
[14] S.A. Nazarov, B.A. Plamenevsky, Elliptic Problems in Domains with Piecewise Smooth Boundaries, Walter de Gruyter, Berlin, New York,

1994.
[15] P. Kuchment, Floquet Theory for Partial Differential Equations, Birkhäuser, Basel, 1993.
[16] I.C. Gohberg, M.G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, Amer. Math. Soc., Providence, 1969.
[17] S.A. Nazarov, Elliptic boundary value problems with periodic coefficients in a cylinder, Izv. Akad. Nauk SSSR Ser. Mat. 45 (1) (1981)

101–112; English transl.: Math. USSR Izv. 18 (1) (1982) 89–98.



S.A. Nazarov / C. R. Mecanique 337 (2009) 610–615 615
[18] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Heidelberg, 1966.
[19] O.V. Motygin, On trapping of surface water waves by cylindrical bodies in a channel, Wave Motion 45 (2008) 940–951.
[20] S.A. Nazarov, Concentration of trapped modes in problems of the linearized theory of water waves, Mat. Sb. 199 (12) (2008) 53–78; English

transl.: Sb. Math. 199 (12) (2008) 1783–1807.


	A novel approach for detecting trapped surface waves in a canal  with periodic underwater topography
	Different formulations of the water-wave problem
	The band-gap structure of the essential spectrum
	Deriving the sufficient condition for trapped modes
	Discussion
	Open questions
	References


