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Abstract

Though the solution to the limit analysis problem of the hollow sphere model—with a von Mises matrix and under spherical
symmetry—is well known, it is not available, to our knowledge, for both isotropic loadings (tension and compression) in the case of
a Coulomb matrix and partially for a Drucker–Prager matrix. In the present Note, we establish in a unified framework, for this class
of materials, closed-form solutions for stress and strain fields in a hollow sphere under external isotropic tension and compression.
These analytical results not only give useful reference solutions, but can also be considered as a part of a trial velocity field in
the hollow sphere submitted to an arbitrary loading. Comparisons with 3D finite element-based limit analysis approaches and with
recent results in the literature are provided. In addition to the established analytical results, we present a rigorous evaluation of a
recent Gurson-type macroscopic criterion corresponding to the Drucker–Prager hollow sphere under an arbitrary loading, by means
of the previous 3D limit analysis codes. To cite this article: Ph. Thoré et al., C. R. Mecanique 337 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Solutions exactes du modèle de la sphère creuse à matrice de Coulomb et de Drucker–Prager sous chargements iso-
tropes. Alors que la solution du problème d’analyse limite du modèle de la sphère creuse—à matrice de von Mises et en symétrie
sphérique—est bien connue, elle n’est pas, à notre connaissance, disponible dans les deux cas de chargement isotrope (traction,
compression) pour une matrice solide de Coulomb et partiellement pour une matrice de Drucker–Prager. Dans la présente Note,
nous établissons dans un cadre unifié et pour cette classe de matériaux, les solutions exactes (champs de contraintes, de déforma-
tion) pour une sphère creuse soumise à une traction ou compression isotrope externe. Ces résultats analytiques sont non seulement
utiles comme solutions de référence, mais elles peuvent aussi être considérées comme partie de champ d’essai en vitesse pour le
modèle de la sphère creuse soumise à un chargement arbitraire. On fournit une comparaison avec des approches 3D par éléments
finis du problème d’analyse limite, ainsi qu’avec de récents résultats dans la littérature. Outre les solutions analytiques établies,
nous présentons une évaluation d’un récent critère de plasticité macroscopique correspondant à la sphère creuse de Drucker–Prager
sous chargement quelconque, ceci à l’aide des précédents codes d’analyse limite 3D. Pour citer cet article : Ph. Thoré et al., C. R.
Mecanique 337 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

In the famous paper [1], Gurson proposed an upper bound limit analysis approach of a hollow sphere and a hollow
cylinder having a von Mises solid matrix. The computation has been performed under uniform boundary strain rate
conditions and led to a macroscopic yield function of the “Porous von Mises”-type materials. Gurson’s analysis
consists in the use of a kinematic approach of limit analysis (LA) of the hollow sphere in order to obtain an exterior
approach. It is based on the consideration of a two-part velocity field, the first part being the solution to the problem
of the hollow sphere under isotropic stress or strain rate loading. It was later shown that such an exterior LA method
provides an upper bound of the macroscopic criterion of the spherically porous material (at least in the sense of
Composite Sphere Assemblage of Hashin) subjected to an arbitrary loading on its external boundary.

Several extensions of the Gurson’s model have been further proposed in the literature, the probably most important
developments being those accounting for voids shape effects [2–4]. Mention can also be made of models taking into
account plastic anisotropy [5,6]. More recent extensions concern the consideration of plastic compressibility of the
matrix with Drucker–Prager—not for Coulomb—criterion, as it is the case for polymers or cohesive geomaterials
[7–9], and [10]. For validation purpose of these recent models, and for reference solutions in the Coulomb case, there
is still a strong need of numerical [11] or analytical solutions.

The main objective of the present Note is to derive the complete closed-form solutions to the problem of a hollow
sphere under external pressure, with a Coulomb or a Drucker–Prager type solid matrix: the limit load and the asso-
ciated stress, velocity and strain rate fields, which could be considered as a part of trial velocity fields in the hollow
sphere under arbitrary loadings, will be also given. We present a comparison of the derived results with our previous
and recent finite element data, and with partial results recently available in the literature. Finally, taking advantage of
our 3D finite element-based limit analysis bounds, we provide a rigorous evaluation of a Gurson-type macroscopic
criterion recently established by [10] in the case of a hollow sphere with Drucker–Prager matrix under an arbitrary
loading.

2. Unified statement of the problem

The considered hollow sphere is made up of a single spherical cavity embedded in a homothetic cell of a rigid-
plastic isotropic and homogeneous Drucker–Prager or Coulomb material. Let us denote by r0 and R the internal
and the external radii of this hollow sphere, respectively. The hollow sphere is submitted at its external boundary
to a uniform pressure P , so that the mechanical problem complies with the spherical symmetry. Obviously, this is
equivalent to the problem of the same hollow sphere submitted at its external boundary to a uniform isotropic strain
rate (or equivalently to a radial, constant velocity).

In the following, we make use of the appropriate spherical coordinates (r, θ,ϕ), r being the radius, θ the inclination
angle and ϕ the azimuth angle. The objective in this section is to provide a unified statement which allows to consider
both Drucker–Prager and Coulomb criteria.

Let us note that here the stress field σ has only three non-zero components: σrr , σθθ = σϕϕ , and that the equilibrium
equations reduce in absence of body forces to:

dσrr

dr
+ 2

σrr − σθθ

r
+ fr = 0 (1)

Due to the spherical symmetry, the two plasticity criteria considered in the present Note can be put into the form:

ε(σθθ − σrr) + Aσθθ + Bσrr − C � 0 (2)

with the following convention:

ε = +1 in tension with 0 < σrr < σθθ ,
ε = −1 in compression with σθθ < σrr < 0.
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– Coulomb criterion:
As detailed in Section 3.2, from the spherical symmetry, the Coulomb criterion can be written as:

frθ (σ ) = |σθθ − σrr | + (σrr + σθθ ) sinφ − 2c cosφ (3a)

frϕ(σ ) = |σϕϕ − σrr | + (σrr + σϕϕ) sinφ − 2c cosφ (3b)

In the following static approach, as no derivatives of the criterion are needed, we can directly consider σθθ = σϕϕ ,
and the Coulomb criterion can be written as:

|σθθ − σrr | + (σθθ + σrr) sinφ − 2c cosφ � 0 (4)

which leads to: A = B = sinφ and C = 2c cosφ in (2).
– Drucker–Prager criterion:

The Drucker–Prager criterion reads:√
J2 + α tr(σ ) − k � 0 (5)

where J2 = 1
6 [(σrr −σθθ )

2 + (σθθ −σϕϕ)2 + (σϕϕ −σrr)
2]+σ 2

rθ +σ 2
θϕ +σ 2

ϕr and α = sinφ√
3(3+sin2 φ)

; H = c cotφ;

k = 3αH = 3αc cotφ and φ ∈ [0; π
2 ]; α ∈ [0;

√
3

6 ].
Considering again σθθ = σϕϕ , it follows that J2 = 1

3 (σrr − σθθ )
2, and then the Drucker–Prager criterion (5) takes

the form:

|σθθ − σrr | + α
√

3(2σθθ + σrr) − k
√

3 � 0 (6)

which corresponds in (2) to:

A = 2α
√

3 = 2 sinφ/

√
3 + sin2 φ; B = A/2 and C = k

√
3 = 3α

√
3c cotφ

3. Solutions to the case of Coulomb matrix

3.1. Expression of the stress field

Starting as in [12] and [13,14] for an infinite Coulomb matrix, it is assumed that the whole solid matrix is yielding;
both previous criteria read also:

2(σrr − σθθ ) = aσrr − b (7)

in which:

a = 2
A + B

A + ε
; b = 2C

A + ε
⇒ b

a
= C

A + B
(8)

with A = B = sinφ and C = 2c cosφ.
Taking into account (7) and integrating the equilibrium equation (1), the solution for the radial component σrr of

the stress field reads:

σrr = b

a

[
1 − f

a
3

(
R

r

)a
]

= c cotφ

{
1 −

[
f

1
3
R

r

] 4ε sinφ
1+ε sinφ

}
(9)

where f is the porosity.
It follows that the normal stress (pressure) at the external boundary r = R is:

P0 = b

a

[
1 − f

a
3
] = c cotφ

[
1 − f

ε 4
3

sinφ
1+ε sinφ

]
(10)

From (7), the other components σθθ and σϕϕ are then:

σθθ = σϕϕ = b

a

[
1 −

(
1 − a

2

)(
r0

r

)a
]

= c cotφ

{
1 − ε − sinφ

ε + sinφ

[
f

1
3
R

r

] 4 tanφ
cosφ

(ε−sinφ)
}

(11)
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Since there is no boundary condition for the corresponding velocity field, this stress solution is exact if one can
find an associated velocity field without any boundary condition. In this case the limit load calculated by using the
kinematic theorem of LA will be the same as P0.

3.2. Determination of the associated velocity fields

As classically, the spherical symmetry implies for the velocity vector field (vr(r), vθ = vϕ = 0), and then for the
non-zero components of the strain rate tensor d : drr = ∂vr

∂r
; dθθ = dϕϕ = vr

r
.

Let us recall that the Coulomb criterion (4) reads, in terms of principal stresses:

f (σ ) = |σi − σj | − 2c cosφ + (σi + σj ) sinφ � 0, with i, j = 1,2,3

In the present problem σrr , σθθ and σϕϕ are principal; from the isotropy of the material, drr , dθθ and dϕϕ are also
principal, and the normality rule holds using these principal values. Under isotropic tension or compression of the
hollow sphere, the apex of the cone cannot be reached at the limit load; then, only four of these six inequalities remain
relevant since they can become equalities, hence possibly being concerned by the normality rule. Another consequence
of the spherical symmetry (σθθ = σϕϕ) is that the point representing the stress tensor is constantly on one of the edges
of this polyhedral cone. Hence let us denote the four remaining equalities as following:

frθ (σ ) = ε(σθ − σr) + (σr + σθ ) sinφ − 2c cosφ (12a)

frϕ(σ ) = ε(σϕ − σr) + (σr + σϕ) sinφ − 2c cosφ (12b)

with the previous convention for ε (which takes the value +1 or −1). From the normality rule and the previous
remarks, the components of the strain rate tensor are:

drr = λrθ (r)
∂frθ

∂σrr

+ λrϕ(r)
∂frϕ

∂σrr

= [
λrθ (r) + λrϕ(r)

]
(sinφ − ε) (13a)

dθθ = λrθ (r)
∂frθ

∂σθθ

+ λrϕ(r)
∂frϕ

∂σθθ

= λrθ (r)(sinφ + ε) (13b)

dϕϕ = λrθ (r)
∂frθ

∂σϕϕ

+ λrϕ(r)
∂frϕ

∂σϕϕ

= λrϕ(r)(sinφ + ε) (13c)

with λij > 0 ⇒ fij = 0.
Using now the spherical symmetry (dϕϕ = dθθ ), one obtains: λrϕ(r) = λrθ (r) = λ(r). Hence, the components of

the strain rate field can be expressed as:

drr = 2λ(r)(sinφ − ε); dθθ = dϕϕ = λ(r)(sinφ + ε) (14)

From the relation velocity field–strain rate tensor, we obtain:

vr = (sinφ + ε)rλ(r); 2λ(r)(sinφ − ε) = (sinφ + ε)

[
dλ(r)

dr
+ λ(r)

]
(15)

Finally, with m = 3ε−sinφ
ε+sinφ

, λ(r) verifies:

dλ(r)

λ(r)
= −m

dr

r
(16)

The general solution to (16) is given by λ(r) = Kr−m where K is an arbitrary constant, positive due to the normality
law. From (15), the admissible velocity field finally becomes:

vr = ε(1 + ε sinφ)Kr
−2 1−ε sinφ

1+ε sinφ ; vθ = vϕ = 0 (17)

In addition to the computation of this velocity field, it can be easily verified that, by using the virtual power theorem,
one obtains the same limit load as in (10). Indeed, as expected, the obtained velocity field complies with the PA (plastic
admissibility) condition and the stress field and the velocity (and the corresponding strain rate) field are admissible
and associated with each other.



264 Ph. Thoré et al. / C. R. Mecanique 337 (2009) 260–267
4. Solutions to the case of a Drucker–Prager matrix

4.1. The stress field

From (9), (10) and (11) one obtains:

σrr = c cotφ

{
1 −

[
f

1
3
R

r

] 2 tanφ
cosφ

[ε
√

3+sin2 φ−2 sinφ]}
(18)

Hence the normal stress P0 at the external boundary reads in the case of a Drucker–Prager matrix:

P0 = c cotφ
{

1 − f
2 tanφ
3 cosφ

[ε
√

3+sin2 φ−2 sinφ]} (19)

which is the result that has been already established by [7] following a similar reasoning (see also [15] for only
compressive loading).

Moreover:

σθθ = σϕϕ = c cotφ

{
1 −

[
1 − tanφ(ε

√
3 + sin2 φ − 2 sinφ)

cosφ

][
f

1
3
R

r

] 2 tanφ
cosφ

[ε
√

3+sin2 φ−2 sinφ]}
(20)

4.2. Components of the strain rate and the velocity field

Considering (5), the normality rule reads:

drr = λ(r)
∂f

∂σrr

= λ(r)

[
α + 2σrr − σθθ − σϕϕ

6
√

J2

]
(21)

and

dθθ = λ(r)
∂f

∂σθθ

= λ(r)

[
α + 2σϕϕ − σrr − σθθ

6
√

J2

]
(22)

From the spherical symmetry σθθ = σϕϕ , dθθ = dϕϕ , σrθ = σθϕ = σϕr = 0, J2 = 1
3 (σrr − σθθ )

2, we get:

drr = λ(r)

[
α − ε√

3

]
; dθθ = λ(r)

[
α + ε

2
√

3

]
; dθθ = dϕϕ (23)

with the same previous convention on ε (see Section 2).
Considering the relation between the velocity field and the strain rate tensor and the criterion (23), we obtain

similarly to what was done above:

λ(r) = Kr
− 3

1+2εα
√

3 (24)

and finally the radial component of the velocity field:

vr = ε
K

2
√

3

[
1 + 2ε sinφ√

3 + sin2 φ

]
r
−2 1−ε sinφ/

√
3+sin2 φ

1+2ε sinφ/
√

3+sin2 φ (25)

This velocity field is the one already considered by Guo et al. [10] in their LA approach devoted to the derivation of
a macroscopic criterion of porous media with a Drucker–Prager matrix. One can find also this velocity field in [15]
(p. 162) in the compressive case, after changing

√
3/2 to

√
3/4 in the expression of the parameter α. As for the

Coulomb case, by applying the kinematic theorem the same expression of the limit load as in (19) is obtained for the
case of a Drucker–Prager matrix, as expected.
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Table 1
Comparison of P0/c exact values to those obtained by the finite element methods for porous Coulomb and Drucker–Prager materials.

Porosity f 10% 10% 10%

Friction angle φ 10◦ 20◦ 30◦

Hollow sphere with Coulomb matrix Compression MEF static −5.0416 −10.439 −33.140
Closed-form −5.1397 −10.805 −35.584
MEF kinematic −5.1848 −10.977 −36.770

Tension MEF static 2.0488 1.4744 1.0422
Closed-form 2.0704 1.4911 1.1096
MEF kinematic 2.1003 1.5016 1.1145

Hollow sphere with Drucker–Prager matrix Compression MEF static −4.3116 −8.7407 −27.559
Closed-form −4.3961 −9.0408 −28.764
MEF kinematic −4.6174 −9.6553 −29.811

Tension MEF static 1.7806 1.2906 0.9664
Closed-form 1.8045 1.3031 0.9704
MEF kinematic 1.8293 1.3110 0.9728

Table 2
Comparison of our closed-form exact values and numerical MEF results to those kindly provided by [10] in the case of an isotropic loading,
a Drucker–Prager matrix, a porosity f = 5% and a friction angle φ = 19.85757◦ .

Guo et al. (2008) Jeong (2002) Closed-form solution Kinematic MEF Static MEF

Tension 0.9787 0.9787 0.978747 0.9815 0.9747
Compression −9.5577 −9.5577 −9.557671 −9.8631 −9.1725

5. Results and comparisons

5.1. Comparison between porous Coulomb and Drucker–Prager materials

In Table 1, we present, for the porous material with Coulomb and Drucker–Prager solid matrix, a comparison of
the closed-form solutions to those obtained by the finite element method (static and kinematic approaches) partly
presented in [11] and [16], for a porosity f = 10% and three values of the friction angle (φ = 10◦, 20◦, 30◦). It
is observed that the theoretical results derived here are in remarkable agreement with the upper and lower bounds
provided by our Finite Element codes.

5.2. Comparison with porous Drucker–Prager estimates of [10]

To simply extend the above comparison, the closed-form solutions (for Σm/σ0), established in the present Note,
are reported in Table 2 together with results given by Jeong [8] (see also the more recent paper by [10]) in the
case of a Drucker–Prager matrix, with a porosity f = 5%. It is worth noting that we have to consider a friction
angle φ = 19.85757◦ as the value corresponding to the angle Ψα = 30◦ (from α = tan(Ψα)/

√
27) used by [10] and a

cohesion value c = σ0 tanφ/(α
√

27), with α defined in (5). As expected, the present closed-form solutions coincide
with results of both authors and are between the bounds given by the previous FEM codes.

More interestingly, we aim now at evaluating the accuracy of the approximate yield surface established by Guo
et al. [10] by using the kinematic approach of LA, with a two-component velocity field. The first component is the
velocity field given in (25) added to an arbitrary linear velocity in cylindrical coordinates, which accounts for average
strain rate boundary conditions. Nevertheless, as the plastic admissibility (PA) condition is not imposed on the total
field, the result cannot be stated as a rigorous upper bound to the final criterion. Hence their Upper Bound Model,
“UBM model”, should only be considered as a parametric estimate of the exact macroscopic criterion on the basis of
Gurson’s approach. As the authors could not obtain a closed-form expression of the macroscopic criterion, they also
gave an approximate estimate, found to be close to their “UBM model”.
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Fig. 1. Comparison between [10] results and our 3D porous Drucker–Prager MEF results; porosity: f = 5%; internal friction angle: φ = 19.85757◦
(Ψα = 30◦).

Fig. 2. Comparison between [10] results and our 3D porous Drucker–Prager MEF results; porosity: f = 10%; internal friction angle: φ = 30◦ .

To the best of our knowledge, their study is one of the most elaborate analytical attempts to obtain the criterion
of a porous material with a Drucker–Prager matrix. This is an ideal case to use our above-mentioned 3D codes as
validation tools. Fig. 1 gives the “UBM model” (Guo et al.) predictions together with those of the 3D codes under
general loadings. As indicated above, their values on the Σm axis coincide with the exact closed-form values of
Table 2, as expected from the fact that the velocity field of [10] becomes fully plastically admissible when its second
part vanishes.

For a porosity f = 5% and φ = 19.85757◦ (case of Fig. 3 in [10]), the comparison (see Fig. 2) with the FEM lower
bounds—never violated—suggests that the “UBM” approach is a good estimate of the exact macroscopic criterion,
specially for tensile kinematical loadings, as it was the case, but more accurately, for the Gurson criterion in [17].
However, we note in Fig. 2 that for a porosity f = 10% and an internal friction angle φ = 30◦, which are common for
geomaterials, the“UBM” approach violates the FEM lower bounds. This confirms that the “UBM” approach is not in
fact a rigorous upper bound in all cases.
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