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Abstract

Living bone is a tissue that is constantly renewed. It has been demonstrated that bone fluid flow and induced shear effects on the
bone cells are important players in triggering and signaling bone formation and remodelling. This Note presents a model studying
interstitial fluid flow in cortical bone under axial harmonic loads. These living tissues are considered as saturated anisotropic
poroelastic material characterized by three-dimensional periodic groups of osteons. Using a frequency-domain analysis, the fluid
shear stress variations are studied for various loading conditions and geometrical or physical bone matrix parameters. To cite this
article: V.-H. Nguyen et al., C. R. Mecanique 337 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

As a living tissue, cortical bone maintains and adapts its structure to external physical stimuli [1]. For instance,
mechanical loading influences the rate of bone tissue renewal [2]. Linking bone mechanical loading to local bone
tissue remodelling is a subject of great interest as it could help to better understand this phenomenon. Such a task
requires to know the structural [3] and mechanical [4] properties of bone tissues. A poroelastic model of a single
osteon, the structural cylindrical unit of cortical bone, was proposed in [5,6] to study the pore pressure and interstitial
fluid flow in cortical bone matrix. It illustrated the high dependency of the osteon hydraulic behaviour on poroelastic
parameters as well as on the loading conditions. Nevertheless, in these studies, the surrounding cement layer of
the osteon (cement line) was assumed to be perfectly rigid and impermeable. This assumption may be rough since
micropores of osteonal tissues do cross cement lines [7]. As a consequence, mechanical behaviour of the osteon might
be influenced by its surrounding environment.

The aim of this Note is to propose a model to study how a mechanical stimulus involved in bone remodelling
process changes with various loading conditions and geometrical or physical bone matrix parameters. Section 2 begins
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with a description of the model which considers the bone matrix as a periodic array of osteons. Then, the governing
equations are introduced. They are based on Biot’s poroelastic theory applied to three-dimensional anisotropic media.
Moreover, assuming the homogeneous deformation in the longitudinal direction, a two-dimensional system can be
deduced. Section 3 presents a method of resolution of the problem in the frequency domain and Section 4 provides
some numerical results in terms of hydraulic behaviour of the fluid.

2. Statement of the problem

2.1. Three-dimensional geometrical description and governing poroelastic equations

In the osteonal bone matrix, Haversian canals run longitudinally through the bone cortex and are transversely
inter-connected by Volkmann canals. Osteon consists of a matrix of layers called lamellae which are developed con-
centrically around one Haversian canal and presents a cylinder-like form. Osteocytes are found between concentric
lamellae and connected to each other and the central canal by cytoplasmic processes through the canals called canali-
culi. This network permits the exchange of nutrients and metabolic waste [4]. Each osteon is coated by a thin layer
called the cement line. The tissues found outside of the cement lines, i.e. tissues that fill the space between the osteons,
are old osteonal matrix called interstitial osteons.

The cement line of secondary osteon presents a front where the bone removal activity associated with construction
of a new osteon has ceased and bone deposition activity begins. The nature of the cement line is not really known
and is still in debated. For instance, Burr et al. [8] suggested that the cement lines of secondary osteons are poorly
mineralized while Skedros et al. [9] found that cement line represents relatively hypermineralization.

For simplification purposes, the osteonal zone considered here is assumed to be located far enough from transverse
Volkmann canals, so that their influence can be neglected. Fig. 1-A shows a representative matrix of osteons containing
Haversian canals that run in the vertical direction x3. Thus, osteons are depicted as thick-walled hollow cylinders. They
are assumed to be identical and parallel. Moreover, they are arranged periodically in the horizontal plane (x1,x2) (see
Fig. 1-B).

Fig. 1. An idealized periodic array of osteons.
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All those bone materials (osteons, cement lines, interstitial tissues) are considered as linear saturated anisotropic
poroelastic media. The influence of canaliculae (as well as of lacunae) is taken into account through the homogenized
permeability and the porosity of the porous domain. No body forces are considered. For low frequencies, the equations
of the anisotropic poroelastic medium are given by [10,11]:

ρü − divσ = 0 (1)
1

M
ṗ − div(k gradp) + α : ε̇ = 0 (2)

where ρ = φρf + (1 − φ)ρs is the mixture density defined from the porosity φ and the densities of fluid and solid
phases (ρf and ρs respectively), u and ε are respectively the displacement vector and the strain tensor of the solid
skeleton, σ is the total stress tensor, p is the fluid pressure in full-filled pores, k is the anisotropic permeability tensor,
α is the Biot tensor and M is the Biot modulus. The derivatives with respect to the time t are denoted by superposed
dot, the divergence and gradient operators are respectively denoted by div and grad. The symbol ‘:’ between two
quantities defines the scalar product in the appropriate space.

In what follows, the intrinsic permeability κ is used which is defined by k = κ/η, where η is the pore fluid
dynamic viscosity. Moreover, the vector and tensor components are respectively denoted by ui for i = 1, . . . ,3 and
σij for i, j = 1, . . . ,3 for instance for the displacement vector and the stress tensor.

Moreover, the stress and strain tensors and the pressure are linked by the relation:

σ = C : ε − αp (3)

where C is the elastic stiffness tensor of drained material. For an orthotropic material, C is defined by 9 indepen-
dent parameters; the tensors α and k are assumed diagonal in the three principal directions and can be defined by
3 independent values.

2.2. Two-dimensional formulation

In the scope of this study, the considered tissues are assumed to be located in the diaphysial region a femur or tibia.
Under walking activity, this region is essentially loaded following the long axis of bone which is also the direction of
the Haversian canals. As a consequence, we are interested essentially in studying mechanical behaviour of the system
in response to uniform axial loading in the x3-direction. Thus, some additional assumptions are made:

(H1) The excitation applied on the system in the vertical direction is uniform and thus the vertical displacement in an
arbitrary horizontal plane is assumed to be uniform: ∂u3

∂x1
= ∂u3

∂x2
= 0;

(H2) The low-frequency excitation applied on the structure is considered as a cyclic loading (i.e. the dimension of the
structure is very small in comparison with the wave length): ∂u1

∂x3
= ∂u2

∂x3
= 0;

(H3) The size of the longitudinal cross section of the domain is sufficiently large in comparison with the size of one
osteon cross section and thus we can neglect boundary effects when considering osteons in the middle of the
domain.

The assumptions (H1) and (H2) imply that there are no shear strains in two vertical planes (x1,x3) and (x2,x3),
i.e. ε13 = ε23 = 0. As a consequence σ13 = σ23 = 0. Applying these conditions to the system of Eqs. (1) and (2) and
neglecting the term related to ε̈33, a two-dimensional problem is obtained:

ρü1 − ∂σ11

∂x1
− ∂σ12

∂x2
= 0 (4)

ρü2 − ∂σ12

∂x1
− ∂σ22

∂x2
= 0 (5)

1

M
ṗ − k11

∂2p

∂x2
1

− k22
∂2p

∂x2
2

− 2k12
∂2p

∂x1∂x2
+ α11ε̇11 + α22ε̇22 + 2α12ε̇12 + α33ε̇33 = 0 (6)

where
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σ11 = c11
∂u1

∂x1
+ c12

∂u2

∂x2
+ c13ε33 − α11p, σ22 = c21

∂u1

∂x1
+ c22

∂u2

∂x2
+ c23ε33 − α22p (7)

σ12 = c44

(
∂u1

∂x2
+ ∂u2

∂x1

)
(8)

The 4-by-4 matrix c is built from the elasticity tensor C; these components cij (for i, j = 1, . . . ,4) are given by:

c =
⎡
⎢⎣

C1111 C1122 C1133 0
C2211 C2222 C2233 0
C3311 C3322 C3333 0

0 0 0 C1212

⎤
⎥⎦ (9)

By taking advantage of periodicity of the array of osteons, the Representative Elemental Volume (REV) is defined
by the domain ABCD in which AD is Haversian canal’s wall and AB, BC, CD are the symmetrical boundaries wherein
symmetric conditions are considered (see Fig. 1-C).

2.3. Interface and boundary conditions

The interface and symmetry conditions are now presented. Some superscripts referring to different material com-
ponents of the cortical medium are introduced in association with the different fields: Haversian canal (h), osteon (o),
cement line (c) and interstitial tissues (i). Moreover, the coordinates of the normal unit vector of the interface Γαβ

between the domains (α) and (β) are noted n
Γαβ

j .

(i) As we are interested in the behaviour of the osteon under bone deformation due to activities like running or
walking, the induced variation of fluid pressure in lacunar–canalicular pores is much higher than the one in
the vascular pores. Here, the reference pressure is considered and the surface is then assumed to be free at the
interface between osteon and Haversian canal (x ∈ Γoh):

p(o) = 0 and σ
(o)
ij n

Γoh
j = 0 (10)

(ii) At the interface between the osteon and the cement line (x ∈ Γoc), the pressure, displacement, normal velocity,
and normal stress are continuous:

p(o) = p(c) and u
(o)
i = u

(c)
i (11)

−k
(o)
ij

∂p(o)

∂xj

n
Γoc

i = −k
(c)
ij

∂p(c)

∂xj

n
Γoc

i and σ
(o)
ij n

Γoc

j = σ
(c)
ij n

Γoc
j (12)

(iii) At the interface between the cement line and the interstitial tissue (x ∈ Γci), the pressure, displacement, normal
velocity and normal stress are continuous (analogous equations as relations (11) and (12)).

(iv) At the symmetric boundary x ∈ Γsym, the normal pressure flux and displacement are zero:

∂p

∂xi

n
Γsym
i = 0 and uin

Γsym
i = 0 (13)

3. Equations in the frequency domain

The vertical strain is assumed to be a time-harmonic function which can be expressed by ε33 = ε0e
iωt , where ε0

is the strain amplitude and ω is the angular frequency of loading. Since we only focus on the stationary response of
the system, a transformation into the frequency domain is carried out. Thus, the solutions of u and p are investigated
using the forms u(x1, x2, t) = û(x1, x2)e

iωt and p(x1, x2, t) = p̂(x1, x2)e
iωt . Transposing these expressions in the

system (4)–(6) and simplifying the term eiωt , a two-dimensional system of differential equations is obtained:

−ω2ρû1 − ∂σ̂11

∂x1
− ∂σ̂12

∂x2
= 0 (14)

−ω2ρû2 − ∂σ̂12 − ∂σ̂22 = 0 (15)

∂x1 ∂x2
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iω

M
p̂ − k11

∂2p̂

∂x2
1

− k22
∂2p̂

∂x2
2

− 2k12
∂2p̂

∂x1∂x2
+ iω(α11ε̂11 + α22ε̂22 + 2α12ε̂12) = −iωα33ε0 (16)

where

σ̂11 = c̃11
∂û1

∂x1
+ c̃12

∂û2

∂x2
+ c̃13ε0 − α11p̂, σ̂22 = c̃21

∂û1

∂x1
+ c̃22

∂û2

∂x2
+ c̃23ε0 − α22p̂ (17)

σ̂12 = c̃44

(
∂û1

∂x2
+ ∂û2

∂x1

)
(18)

4. Numerical results

The weak formulations of previous equations have been derived and implemented into the finite element software
COMSOL MULTIPHYSICS [12].

By using these formulations, some relevant tests have been carried out to investigate the hydraulic sensibility of
the system in function of (i) the amplitude and the frequency of the loading; (ii) the permeability of the cement lines;
(iii) the distance between osteons. According to [13], the mechanosensitive cells of cortical bone, the osteocytes,
are sensitive to induced fluid shear stress acting on their membranes. This stimulus would be a key element in bone
remodelling process [1]. As a consequence, the hydraulic behaviour of the bone tissue is essentially described in
terms of shear stress. These microscopical shear effects are proportional to macroscopic fluid velocities and may be
estimated using the procedure proposed in [14].

As we have discussed below, in this study, the presence of lacunar–canalicular pores are introduced through the
porosity and permeability parameters. Moreover, this study focuses on the mechanosensitive osteocyte cells embedded
in the osteonal matrix in the lacunae. Typically, these cells present a body of a few micrometers and communicate one
with another thanks to cytoplasmic processes (around 0.1 µm of radius) developing in the canalicular network. Due to
mass conservation arguments, the cell–fluid interactions are supposed to be relevant at the canalicular scale (see [15]).
As a result, all the localisation results are presented at this scale.

4.1. Numerical parameters and numerical tests

The mechanical properties of the osteonal tissue strongly depend on its hierarchical organisation (see [16]). In this
study, a reference structural configuration is assumed and the parameter values associated with this configuration are
based on the literature [4]. The geometry is defined by: the inner (Haversian canal) and the outer radii of osteons,
ri = 50 µm and ro = 150 µm respectively, the cement line thickness of 1 µm and the centre to centre distance between
two osteons 2ro + d . As a result, the REV corresponding to the domain ABCD (see Fig. 1-C) is characterized by
OA = ri , OB = ro + d/2 and �(OA,OD) = π/6. In what follows, the material properties of the different subdomains
of the REV are taken identical and are provided in Table 1. Nevertheless, the textural properties of the cement line
are not the same as the ones of its neighbouring osteonal tissues. Thus, assuming isotropic permeability tensors,
osteonal permeability parameters κ(o) and κ(i) are constant as stated in Table 1 whereas different values of the intrinsic
permeability of the cement line κ(c) are studied.

Moreover, the load corresponds to an imposed vertical strain ε33 = ε0e
iωt where ε0 is the peak-to-peak magnitude.

Noting f0 the loading frequency, the role of the strain rate ε̇ = ε0f0 is also discussed hereafter.

Table 1
Physical parameters considered for the tests (see [4]).

ρs

(kg m−3)
E1
(GPa)

E2
(GPa)

E3
(GPa)

G12
(GPa)

G13
(GPa)

G23
(GPa)

ν12
–

ν13
–

ν23
–

2000 15.9 E1 20.3 C11−C12
2 6.9 6.9 0.328 0.25 ν13

ρf

(kg m−3)

φ

–
α1
–

α2
–

α3
–

κ1
(m2)

κ2
(m2)

κ3
(m2)

η

(Pa s)
M

(GPa)

1000 0.05 0.132 α1 0.092 10−18 10−18 10−18 10−3 38.0
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Fig. 2. Simulation of the fluid flow velocities (left) and shear fluid stress (right).

4.2. Results and discussion

4.2.1. Behaviour of the fluid in bone matrix
Fig. 2 presents a first case that illustrates the hydraulic behaviour of the system and can be used as a comparison

point for the following results. Here, the cement line is less permeable in comparison with the osteon and interstitial
tissues (κ(c) = 10−19 m2). The frequency of loading f0 = 1 Hz (that corresponds to walking activity) and strain rate
ε̇ = 10−3 s−1 are taken to be typical of daily activity values. The inter osteons distance is d = 10 µm. The finite
element mesh used in the simulation consists of 1797 triangular elements and 24 618 degrees of freedom.

On the left, the isovalue curves of maximal fluid velocity field in the compressional phase of the loading are plotted.
In the compressional phase, pores volumes tend to be reduced making pore fluid pressure increases, then the fluid is
pumped to flow toward the Haversian canal. The fluid velocity is more important at the Haversian edge and tends to
nearly vanish at the vertical symmetric boundary. According to the Darcy law, the pressure inversely increases from
its Haversian reference to reach its maximum in the interstitial tissues. Moreover, the velocity field as well as the
pressure in the osteon are nearly axisymmetric close to the Haversian canal.

According to [17], bone cells in vitro actually respond to fluid shear stresses of 0.2–6 Pa over their surface. Thus
our results would imply that under this specific loading condition, the osteon cells are only stimulated in the vicinity
of the Haversian system (see Fig. 2, right). Indeed the osteocytes located near the cement line or in the interstitial
tissues are not stimulated enough. We might suggest that there is a quite extensive hydraulic “dead zone” within the
cortical tissue for the considered parameters.

4.2.2. Effects of loading frequency and strain rate
Fig. 3 presents two isovalue curves of the fluid-induced shear stress that aim at studying the influence of the loading

frequency and strain rate. The same geometrical and physical parameters as in the precedent case are used.
We present in Fig. 3 (left) the case in which the loading frequency (f0 = 1 Hz) is increased whereas the strain rate

value is preserved (ε̇ = 0.001 s−1). A comparison with Fig. 2 shows that the differences of shear stress between lower-
and higher-frequency cases are moderate.

The graph presented on Fig. 3 (right) shows that the fluid shear stress field is considerably modified when increasing
the strain rate (ε̇ = 0.003 s−1) and fixing the loading frequency. This high dependency with the strain rate recovers the
theoretical statements of [6,18] and the experimental observations presented by [19]. As a consequence, the previous
hydraulic “dead zone” is limited to the interstitial tissues.
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Fig. 3. Effects of frequency and strain rate.

Fig. 4. Effects of the permeability of the cement lines.

4.2.3. Effects of the permeability of the cement lines
All those previous tests were performed assuming a cement line that is less permeable than the osteon and in-

terstitial tissues. Keeping the most favorable loading condition (f0 = 1 Hz and ε̇ = 0.003 s−1), two other cases
are carried out on Fig. 4 to capture the cement line permeability influence: (i) the cement line is more permeable
(κ(c) = 10−17 m2); (ii) the cement line is impermeable (κ(c) = 10−22 m2). This second value is a purely numerical
criterion aiming at representing an impervious property since such a low permeability is physically unrealistic. A com-
parison between the second graph of Fig. 3 and the two graphs of Fig. 4 only shows slight differences for the shear
stress in the vicinity of the cement line. Hence, the permeability of the cement line does not seem to play an important
role in the shear stress distribution. Moreover, for the second case, the isovalue curves are axisymmetric because of
the impermeability of the cement line.

4.2.4. Effects of the geometry
To finish our investigations, the interaction between osteons has been studied increasing the distance between two

osteons: d = 50 µm (see Fig. 5). Compared to the second graph of Fig. 3 where d = 10 µm, the fluid shear effects are
more important and a small area of the interstitial tissues is also stimulated.
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Fig. 5. Effects of the distance between osteons.

5. Conclusion and perspectives

Based on the poroelasticity theory, the investigation of hydraulic behaviour of cortical bone proposed in this study
puts into relief some key-elements in the viewpoint of bone remodelling mechanotransduction: (i) as classically stated,
the hydraulic remodelling signals depend strongly on strain rate; (ii) the permeability of the cement line does not
strongly influence these signals; (iii) these signals are more sensitive to the osteons interactions, that is to say to the
proximity between Haversian canals. This last point suggests that the distribution of vasculature in the bone volume is
an important parameter in interstitial bone fluid movements. Thus, this work has to be pursued by taking into account
the Volkmann canals and possible macrocracks. This will require us to adopt a 3-D treatment of the problem.
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