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Abstract

The Dirichlet and Neumann spectral problems for the Laplace operator in a bounded domain £2 C R? are considered. We
assume that §2 has a piecewise smooth boundary 952 and the density function is equal to 1 4+ &7 x. in £2, where ¢ > 0 is a
small parameter, m € R and yx; is the characteristic function of the union wg U---uU a)gj ~1 of small sets (the concentrated masses)
distributed periodically near a straight segment I" C 9§2. We describe asymptotics for the eigenelements of both problems as
& — 0. To cite this article: S.A. Nazarov, E. Pérez, C. R. Mecanique 337 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Nouveaux effets asymptotiques pour le spectre des probléemes avec des masses concentrées pres de la frontiere. On consi-
dére des problemes spectraux pour 1’opérateur de Laplace dans un domaine bornée §2 C R? avec des conditions de Dirichlet et
Neumann respectivement sur la frontieére. On suppose que la frontiere 02 est réguliere par morceaux tandis que la fonction densité
prend la valeur 1 + ™™ x, dans £2, ol ¢ > 0 est un petit paramétre, m € R, et . est la fonction caractéristique de 1’'union des
petites ensembles a)g u-.-u a)g —1 (les masses concentrés), qui sont répartis périodiquement prés d’un segment droite I” de la
frontiere, I" C 9£2. Nous décrivons le comportement asymptotique des valeurs propres de ces deux problémes lorsque € — 0. Pour
citer cet article : S.A. Nazarov, E. Pérez, C. R. Mecanique 337 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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Fig. 1. (a) The domain £2. (b) A sketch of the eigenvalues convergence in the case 6° when N = x = 2.

1. Introduction and setting of the problems

Let £2 C R? be a domain bounded by a piecewise smooth boundary 2. Let 352 contains the segment " =
{x = (x1,x2) /x1 € (0,a), x» =0}, with a > 0. To define concentrated masses near the boundary segment I" (see
Fig. 1a), we introduce a large integer J € N and the small parameter ¢ = a/J. Furthermore, let IT be the half-
band IT = {§ e R? /£, € (0, 1), & > 0} and let w be a domain with a smooth boundary dw such that the compact
closure ® = w U dw C I1. We introduce the sets a) ={xeR?/E:= s‘lx € a)} w) = {x: (x] — je, x2) € a)g},
jeN={1,2,...}, and the characteristic function x. of the union of sets a)g U---u a)EJ —1 c 2. We consider the
equation

—Axu‘?(x)=k€(l+87mxg(x))u5(x), for x € 2 (1)

with either the Dirichlet condition u® = 0, or the Neumann condition 9,u® = 0, on 952 (9, is the derivative along the
outer normal). Here, ¢ and m are two parameters, ¢ > 0, m € R, and A® denotes the spectral parameter. Throughout
the paper, we indicate these spectral problems as (D) and (N), respectively. Both problems have discrete spectrum in
the Sobolev spaces HOl (£2) and H'(2), respectively. Problem (D) has the eigenvalue sequence

0<Af <A< <A< > +oo ask— o0 ()

where A{ is simple. For problem (N), the sequence (2) must be augmented with the eigenvalue A = 0. In this paper,
we describe asymptotics for the eigenelements {A%, u®} of both problems as ¢ — 0.

Using the min—max principle and different estimates for the integrals on a)g U---u a)gj -1 we get bounds (3) and (4)
for the eigenvalues of (D) and (N). That is, for fixed &, and sufficiently small ¢, we have

for (D): C; <Ay <Cixwhenm <2, and Cre™ 2 < AL < Coie™ 2 whenm > 2 3)
for (N): C3<A{ <Cywhenm <1, and Cae" ' <Af < Caye™ ' whenm > 1 4)

where the constants C; and Cj (j =1,2,3,4) do not depend on ¢.

In Section 2, using (4) and the normalization of eigenfunctions u,i in H1(£2), we can establish the convergence of
the eigenelements of (V) towards those of the standard spectral Neumann problem (6) when m < 1; towards those of
the Steklov problem (8) when m > 1 with the spectral parameter in the boundary conditions on I" (once we have re-
scaled the eigenvalues); and, towards those of problem (8) when m = 1 and the spectral parameter in both, £2 and I".
We refer to the papers [1-5] for the technique to conclude estimates (4) and the convergence results (cf. [6] for further
references).

In Section 3 for (D) with m < 2, a similar method works and shows that {A7, u;} converge to the eigenelements
{Bk, ur} of the standard Dirichlet problem (9). However, in the case m > 2 the convergence analysis becomes much
more complicated because all re-scaled eigenvalues sz_m)»f approach the first eigenvalue A of the local problem (10)
(see [7,8] for related problems). We now apply the technique in [9] to conclude the convergence which is based on
a factorizations u®(x) = U (¢~ 'x)W¢(x) where U is the eigenfunction of (10) corresponding to A while W? is an
eigenfunction associated with the spectral parameter 0° = A° — Ae¢~! of a new problem in £2. In Section 4, we outline
composite asymptotic expansions (cf. [10—12]) in the most complicated case m = 2 in (D), which is the only one
where the justification of the analysis remains to be performed (cf. Remark 1).

Asymptotics for vibrating systems with many concentrated masses near the boundary have been widely studied.
The case of concentrated masses, placed at I" “sparsely” (that is, the period being much larger than ¢), with either
alternating boundary conditions, or the Neumann condition, has been studied in [1,6,13,14] for different exponent m
and dimension n of the space R", £2 C R”; both, low and high frequencies have been considered. We also mention [15]
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with m <2 and n = 2, and [16] with m < 2, aperiodic distribution of masses and various boundary conditions. For
comb-shaped junctions with heavy rectangular “teeth”, we refer to [17].

The concentration of mass along a curve 7 C §2 and 7" = 942 has been treated in [2] and [3,4], respectively.
Many concentrated masses sparsely placed is considered in [7] which contains the nearest problems and results in the
literature to those in this Note for m > 2. See Remark 1 to compare the results in this paper with previous ones and
Remark 2 for asymptotics of high frequencies.

2. Asymptotics for the Neumann problem

Let us formulate the convergence results for positive eigenvalues of (N).
1° Form < 1, we have )»i — Bk, k € N, where

0<BI<Pr< - <P <> +00 (5)
is the sequence of positive eigenvalues in the standard Neumann problem
—Ayv=p8v in £, d,v=0 onod2 (6)

2° Form > 1, we have 81_"1)\]‘3 — Uk, k € N, where
O<pri<p2r< - S <> 400 )
is the sequence of positive eigenvalues of the Steklov spectral problem
—Ayv=2414v in £2; op,v=0 ondf2\ T} opv = plwlv on I’ (8)

where §,,,1 is defined as §1,1 = 1 and 8,1 =0 for m # 1, and, |w| denotes the area of w.
3. Asymptotics for the Dirichlet problem

Let us state the convergence results for the eigenvalues of (D) for different ranges of m.
3° Form < 2, we have Ai — Bk, k € N, where (5) now denotes the eigenvalue sequence in the standard Dirichlet
problem

—Ayv=pv in£2; v=0 onads2 ©)]
For further asymptotic descriptions, we need the first eigenvalue A and the corresponding eigenfunction U of the
auxiliary problem in the half-band IT with the periodicity conditions on its lateral sides
—A:UE) = AxoU (), §ell; U(1,00=0, & €(0,1)
oUu oU
U,6)=U1,&), —0,8)=—(0.86), &=>0 (10)
981 981

Problem (10) has a discrete spectrum in the space of periodic functions in &; with the norm || V:U; L>(I)| +
|U; L?(w)|. The first eigenvalue is simple, and the associated eigenfunction U can be chosen as positive in IT and
|U: L?(w)| = 1. Moreover, the Fourier method (cf. [10, Ch. 1] and [18, Ch. 2]) leads us to assert that

|U#) — B| < cexp(—(2n)7'&) (11)

where the constant B € R is defined as an integral characteristic of the domain w C I1, namely

B=A/«§2U(€)d$ >0 12)

For this first eigenvalue A of (10) we also introduce the Steklov spectral problem in £2:
—Axv =424V in £2; v=0 ond2\I; 8,,v=,ugB72v on I’ (13)

where §,, 2 is defined as 822 = 1 and 6, 2 =0 for m # 2.
4°  Form > 2, we have g!="™ (A,sc —&"24) > Uk, k € N, where (7) now stands for the eigenvalue sequence of
(13) where §,,2 = 0. Consequently, all the eigenvalues px are positive.
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For m = 2, we distinguish between two options. Firstly, when A is not an eigenvalue of problem (9), i.e., for a
certain N, N > 0, we have

0<p1<Pr< - <By <A< BNsi (14)

5°  Form =2 with (14), we have A — By fork=1,..., N, and s_l()\f\,ﬂ. —A) — pj for j € N, where (7) now
denotes the sequence of eigenvalues of problem (13) at m = 2, and, depending on the value of A, a finite number of
eigenvalues (1 = 1 j(A) can be negative.

Secondly, let A be an eigenvalue of problem (9) with multiplicity », i.e.,

O<Bi<Br<- <Bv=+=BNtx—-1=A < BNtx (15)
while the corresponding eigenfunctions vy, ..., Vy4,—1 satisfy the conditions
/vp(x)vq(x)dx=8p’q, p.gq=N,....N+x—1 (16)
Q
The derivatives dvy /0x2, ..., 0UN+x—1/0X7 are linear independent in L2(I") and, therefore, the x x x-matrix M with
entries
5 [ 0vp vy
My, =B —(x1,0)—(x1,0)dx;, p,g=N,...,N+x—1 a7
0x2 0x2
r

is a symmetric and positive definite and has the eigenvalues

O0<yo < < ¥u—t (18)
1
6° For m =2 and (15), we have A; — By fork:l,...,N—1,8_%()Lf\,+p—A)—> —yp forp=0,...,%—1,
and 8’1(Afv+ﬂ_]+q — A) — pg for g € N (cf. Fig. 1b, when N = » =2).

4. Asymptotic anséitze

We provide the formal asymptotic technique for the most complicated case 6°. If k =1, ..., N — 1, the asymptotic
ansétze read
AM=Bt-, ui(x) =) +ewp(E, x1) +evp(x) + - (19)

where {B, vi} is an eigenelement of problem (9) and w ,1 is a solution of the problem

0
—Aew) (€ xp) = ﬂkxw@)(w,l(s,xl) + vl (x1,0) +52%(x1, 0>), Eell

wi(E,0,x1) = —v} (x1,0), & €(0,1) (20)

with the periodicity conditions on the lateral sides of the half-band 7. Since B; < A, problem (20) has a unique
solution w,l with the finite Dirichlet integral. A proper choice of the regular type term v,l (x1, 0) gives the exponential
decay of w,l (&, x1) as & — oo and w,l gets the natural property of a boundary layer.

Fork=j+ N+ x —1, j € N, the asymptotic ansitze become the following:

M=Adeu;+--, ui(x)=w?(€,x1)+vj(X)+sw}(§,X1)+sv}(x)+~-- (21
The main term of the boundary layer
w)(, x1) =v;(x1,00B~ (U(&) — B) (22)

has the exponential decay due to (11). The second term is periodic in &1 and satisfies the problem

1 _ 1 1 v 0
—Azw;(,x1) = Axw(r‘E)(wj(f,xl) +v;(x1,0) +$28_x2(x1’ 0)) +/'ijw(§)(wj(%—7xl) + Uj(xlvo))

aUu

+2B
081

8 .
(é)a—:(xl,ox Eell;  wi,0,x)=—v;(x1,0, &€ (23)



S.A. Nazarov, E. Pérez/ C. R. Mecanique 337 (2009) 585-590 589

Since A is a simple eigenvalue, problem (23) requires only one compatibility condition which, by (12), turns into the
boundary condition on I" in (13). The other equations in (13) are self-understood.

Ansiitze for A%, ..., Ay 4, are intricate and we employ asymptotic procedures from [11] and [4]:
e 13 e 0 1o 1 2 2
Angp=AEeryy +---, Unyp(X) =v,(x) £ 2w, (8, x1) £ e2v,(x) +ewy, (5, x1) +ev,(x) +---
(24)
where the further terms wlz? and vl% depend on the sign £. Also, we set
V) () =afon () + - ah N1 () (25)
where vy, ..., Uy+x—1 are eigenfunctions of problem (9) corresponding to the eigenvalue A (cf. (15)) and the columns
al = (af\’,, ey af, 1) have to be found. Then, the first term w}, of the boundary layer type takes the form (22) with
vj = vg on the right hand side. The regular type term v }, satisfies
1
— Ay (x) = Avy(x) + Y V) (x), x €, V() =0, xedR\I (26)

while the boundary condition on I” is obtained from the compatibility condition in the problem
2 2 2 ov)
—Agwp (€. x0) = Axo(6) wh &, x1) + 5 (x1.0) +E2 5L (1. 0)
X2

+ 77 X0 @ (wy € x1) +vp(x1,0)), E€IT;  wi(E,0,x1)=—v)(x,0), & €(0,1)

with the usual periodicity conditions. From (12), we derive

_19°
vy (x1,0)=—B%, *—L(x,0), x1€(0.a) (onT) 27)
0x2

Now, according to (16), » compatibility conditions in problem (26), (27) provide the algebraic system Ma? = y,a”
which delivers the eigenvalues (18) while the eigenvectors a’, ..., a*~! € R* can be chosen to compose a unitary
matrix. Thus, the asymptotic ansitze (24) are completed.

Remark 1. The analysis of (N) looks very similar to that of mass concentration along a curve 7" C £2. In the case
m < 2, the similarity (no influence of the masses) can be observed in (D) as well. On the other hand, eigenelements
of the Dirichlet problem (D) with m > 2 in the low frequency range behave rather similar to eigenelements of the
problem consisting in the Laplace equation with alternating Dirichlet and Steklov spectral boundary conditions on I:
the local problem (10) and the Steklov problem (13) arise to describe the asymptotics for the eigenelements. Finally,
(D) with m =2 implies the most complicated situation where the Dirichlet problem (9) in §2, the local problem (10)
in [T and the Steklov problem (13) in §2, together with the matrix M (17), are involved.

Remark 2. The technique in Section 4 allows all the eigenvalues of the Dirichlet problem (9), the rest of eigenvalues

of (10) and the set of positive y;/ % in (18), to be obtained as limiting points of eigenvalues Ai of (D) (suitable re-
scaled shifted eigenvalues, respectively), but now we cannot preserve the index k& any more, since it should depend on
the parameter €. If m > 2, the same can be said for the rest of the eigenvalues of the local problem (10) and re-scaled
sequences 82_'")\.2(8) for k() > coas ¢ — 0.
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