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Abstract

The Dirichlet and Neumann spectral problems for the Laplace operator in a bounded domain Ω ⊂ R
2 are considered. We

assume that Ω has a piecewise smooth boundary ∂Ω and the density function is equal to 1 + ε−mχε in Ω , where ε > 0 is a
small parameter, m ∈ R and χε is the characteristic function of the union ω0

ε ∪ · · · ∪ ωJ−1
ε of small sets (the concentrated masses)

distributed periodically near a straight segment Γ ⊂ ∂Ω . We describe asymptotics for the eigenelements of both problems as
ε → 0. To cite this article: S.A. Nazarov, E. Pérez, C. R. Mecanique 337 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Nouveaux effets asymptotiques pour le spectre des problèmes avec des masses concentrées près de la frontière. On consi-
dére des problèmes spectraux pour l’opérateur de Laplace dans un domaine bornée Ω ⊂ R

2 avec des conditions de Dirichlet et
Neumann respectivement sur la frontière. On suppose que la frontière ∂Ω est régulière par morceaux tandis que la fonction densité
prend la valeur 1 + ε−mχε dans Ω , oú ε > 0 est un petit paramètre, m ∈ R, et χε est la fonction caractéristique de l’union des
petites ensembles ω0

ε ∪ · · · ∪ ωJ−1
ε (les masses concentrés), qui sont répartis périodiquement prés d’un segment droite Γ de la

frontière, Γ ⊂ ∂Ω . Nous décrivons le comportement asymptotique des valeurs propres de ces deux problèmes lorsque ε → 0. Pour
citer cet article : S.A. Nazarov, E. Pérez, C. R. Mecanique 337 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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Fig. 1. (a) The domain Ω . (b) A sketch of the eigenvalues convergence in the case 6◦ when N = � = 2.

1. Introduction and setting of the problems

Let Ω ⊂ R
2 be a domain bounded by a piecewise smooth boundary ∂Ω . Let ∂Ω contains the segment Γ =

{x = (x1, x2) / x1 ∈ (0, a), x2 = 0}, with a > 0. To define concentrated masses near the boundary segment Γ (see
Fig. 1a), we introduce a large integer J ∈ N and the small parameter ε = a/J . Furthermore, let Π be the half-
band Π = {ξ ∈ R

2 / ξ1 ∈ (0,1), ξ2 > 0} and let ω be a domain with a smooth boundary ∂ω such that the compact
closure ω = ω ∪ ∂ω ⊂ Π . We introduce the sets ω0

ε = {x ∈ R
2 / ξ := ε−1x ∈ ω}, ω

j
ε = {x: (x1 − jε, x2) ∈ ω0

ε},
j ∈ N = {1,2, . . .}, and the characteristic function χε of the union of sets ω0

ε ∪ · · · ∪ ωJ−1
ε ⊂ Ω . We consider the

equation

−�xu
ε(x) = λε

(
1 + ε−mχε(x)

)
uε(x), for x ∈ Ω (1)

with either the Dirichlet condition uε = 0, or the Neumann condition ∂nu
ε = 0, on ∂Ω (∂n is the derivative along the

outer normal). Here, ε and m are two parameters, ε > 0, m ∈ R, and λε denotes the spectral parameter. Throughout
the paper, we indicate these spectral problems as (D) and (N), respectively. Both problems have discrete spectrum in
the Sobolev spaces H 1

0 (Ω) and H 1(Ω), respectively. Problem (D) has the eigenvalue sequence

0 < λε
1 � λε

2 � · · · � λε
k � · · · → +∞ as k → ∞ (2)

where λε
1 is simple. For problem (N), the sequence (2) must be augmented with the eigenvalue λε

0 = 0. In this paper,
we describe asymptotics for the eigenelements {λε,uε} of both problems as ε → 0.

Using the min–max principle and different estimates for the integrals on ω0
ε ∪· · ·∪ωJ−1

ε , we get bounds (3) and (4)
for the eigenvalues of (D) and (N). That is, for fixed k, and sufficiently small ε, we have

for (D): C1 � λε
k � C1k when m � 2, and C2ε

m−2 � λε
k � C2iε

m−2 when m > 2 (3)

for (N): C3 � λε
k � C3k when m � 1, and C4ε

m−1 � λε
k � C4kε

m−1 when m > 1 (4)

where the constants Cj and Cjk (j = 1,2,3,4) do not depend on ε.
In Section 2, using (4) and the normalization of eigenfunctions uε

k in H 1(Ω), we can establish the convergence of
the eigenelements of (N) towards those of the standard spectral Neumann problem (6) when m < 1; towards those of
the Steklov problem (8) when m > 1 with the spectral parameter in the boundary conditions on Γ (once we have re-
scaled the eigenvalues); and, towards those of problem (8) when m = 1 and the spectral parameter in both, Ω and Γ .
We refer to the papers [1–5] for the technique to conclude estimates (4) and the convergence results (cf. [6] for further
references).

In Section 3 for (D) with m < 2, a similar method works and shows that {λε
k, u

ε
k} converge to the eigenelements

{βk,uk} of the standard Dirichlet problem (9). However, in the case m > 2 the convergence analysis becomes much
more complicated because all re-scaled eigenvalues ε2−mλε

i approach the first eigenvalue Λ of the local problem (10)
(see [7,8] for related problems). We now apply the technique in [9] to conclude the convergence which is based on
a factorizations uε(x) = U(ε−1x)Wε(x) where U is the eigenfunction of (10) corresponding to Λ while Wε is an
eigenfunction associated with the spectral parameter �ε = λε −Λε−1 of a new problem in Ω . In Section 4, we outline
composite asymptotic expansions (cf. [10–12]) in the most complicated case m = 2 in (D), which is the only one
where the justification of the analysis remains to be performed (cf. Remark 1).

Asymptotics for vibrating systems with many concentrated masses near the boundary have been widely studied.
The case of concentrated masses, placed at Γ “sparsely” (that is, the period being much larger than ε), with either
alternating boundary conditions, or the Neumann condition, has been studied in [1,6,13,14] for different exponent m

and dimension n of the space R
n, Ω ⊂ R

n; both, low and high frequencies have been considered. We also mention [15]
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with m < 2 and n = 2, and [16] with m < 2, aperiodic distribution of masses and various boundary conditions. For
comb-shaped junctions with heavy rectangular “teeth”, we refer to [17].

The concentration of mass along a curve Υ ⊂ Ω and Υ = ∂Ω has been treated in [2] and [3,4], respectively.
Many concentrated masses sparsely placed is considered in [7] which contains the nearest problems and results in the
literature to those in this Note for m > 2. See Remark 1 to compare the results in this paper with previous ones and
Remark 2 for asymptotics of high frequencies.

2. Asymptotics for the Neumann problem

Let us formulate the convergence results for positive eigenvalues of (N).
1◦ For m < 1, we have λε

k → βk , k ∈ N, where

0 < β1 � β2 � · · · � βk � · · · → +∞ (5)

is the sequence of positive eigenvalues in the standard Neumann problem

−�xv = βv in Ω; ∂nv = 0 on ∂Ω (6)

2◦ For m � 1, we have ε1−mλε
k → μk , k ∈ N, where

0 < μ1 � μ2 � · · · � μk � · · · → +∞ (7)

is the sequence of positive eigenvalues of the Steklov spectral problem

−�xv = δm,1μv in Ω; ∂nv = 0 on ∂Ω \ Γ ; ∂nv = μ|ω|v on Γ (8)

where δm,1 is defined as δ1,1 = 1 and δm,1 = 0 for m 	= 1, and, |ω| denotes the area of ω.

3. Asymptotics for the Dirichlet problem

Let us state the convergence results for the eigenvalues of (D) for different ranges of m.
3◦ For m < 2, we have λε

k → βk , k ∈ N, where (5) now denotes the eigenvalue sequence in the standard Dirichlet
problem

−�xv = βv in Ω; v = 0 on ∂Ω (9)

For further asymptotic descriptions, we need the first eigenvalue Λ and the corresponding eigenfunction U of the
auxiliary problem in the half-band Π with the periodicity conditions on its lateral sides

−�ξU(ξ) = ΛχωU(ξ), ξ ∈ Π; U(ξ1,0) = 0, ξ1 ∈ (0,1)

U(0, ξ2) = U(1, ξ2),
∂U

∂ξ1
(0, ξ2) = ∂U

∂ξ1
(1, ξ2), ξ2 > 0 (10)

Problem (10) has a discrete spectrum in the space of periodic functions in ξ1 with the norm ‖∇ξU ;L2(Π)‖ +
‖U ;L2(ω)‖. The first eigenvalue is simple, and the associated eigenfunction U can be chosen as positive in Π and
‖U ;L2(ω)‖ = 1. Moreover, the Fourier method (cf. [10, Ch. 1] and [18, Ch. 2]) leads us to assert that∣∣U(ξ) − B

∣∣ � c exp
(−(2π)−1ξ2

)
(11)

where the constant B ∈ R is defined as an integral characteristic of the domain ω ⊂ Π , namely

B = Λ

∫
ω

ξ2U(ξ)dξ > 0 (12)

For this first eigenvalue Λ of (10) we also introduce the Steklov spectral problem in Ω :

−�xv = δm,2Λv in Ω; v = 0 on ∂Ω \ Γ ; ∂nv = μB−2v on Γ (13)

where δm,2 is defined as δ2,2 = 1 and δm,2 = 0 for m 	= 2.
4◦ For m > 2, we have ε1−m(λε

k − εm−2Λ) → μk , k ∈ N, where (7) now stands for the eigenvalue sequence of
(13) where δm,2 ≡ 0. Consequently, all the eigenvalues μk are positive.
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For m = 2, we distinguish between two options. Firstly, when Λ is not an eigenvalue of problem (9), i.e., for a
certain N , N � 0, we have

0 < β1 � β2 � · · · � βN < Λ < βN+1 (14)

5◦ For m = 2 with (14), we have λε
k → βk for k = 1, . . . ,N , and ε−1(λε

N+j −Λ) → μj for j ∈ N, where (7) now
denotes the sequence of eigenvalues of problem (13) at m = 2, and, depending on the value of Λ, a finite number of
eigenvalues μj = μj (Λ) can be negative.

Secondly, let Λ be an eigenvalue of problem (9) with multiplicity � , i.e.,

0 < β1 � β2 � · · · � βN = · · · = βN+�−1 = Λ < βN+� (15)

while the corresponding eigenfunctions vN, . . . , vN+�−1 satisfy the conditions∫
Ω

vp(x)vq(x)dx = δp,q, p, q = N, . . . ,N + � − 1 (16)

The derivatives ∂vN/∂x2, . . . , ∂vN+�−1/∂x2 are linear independent in L2(Γ ) and, therefore, the � ×�-matrix M with
entries

Mpq = B2
∫
Γ

∂vp

∂x2
(x1,0)

∂vq

∂x2
(x1,0)dx1, p, q = N, . . . ,N + � − 1 (17)

is a symmetric and positive definite and has the eigenvalues

0 < γ0 � · · · � γ�−1 (18)

6◦ For m = 2 and (15), we have λε
k → βk for k = 1, . . . ,N − 1, ε− 1

2 (λε
N+p − Λ) → −γ

1
2

p for p = 0, . . . , � − 1,

and ε−1(λε
N+�−1+q − Λ) → μq for q ∈ N (cf. Fig. 1b, when N = � = 2).

4. Asymptotic ansätze

We provide the formal asymptotic technique for the most complicated case 6◦. If k = 1, . . . ,N − 1, the asymptotic
ansätze read

λε
k = βk + · · · , uε

k(x) = vk(x) + εw1
k(ξ, x1) + εv1

k (x) + · · · (19)

where {βk, vk} is an eigenelement of problem (9) and w1
k is a solution of the problem

−�ξw
1
k(ξ, x1) = βkχω(ξ)

(
w1

k(ξ, x1) + v1
k (x1,0) + ξ2

∂vk

∂x2
(x1,0)

)
, ξ ∈ Π

w1
k(ξ1,0, x1) = −v1

k (x1,0), ξ1 ∈ (0,1) (20)

with the periodicity conditions on the lateral sides of the half-band Π . Since βk < Λ, problem (20) has a unique
solution w1

k with the finite Dirichlet integral. A proper choice of the regular type term v1
k (x1,0) gives the exponential

decay of w1
k(ξ, x1) as ξ2 → ∞ and w1

k gets the natural property of a boundary layer.
For k = j + N + � − 1, j ∈ N, the asymptotic ansätze become the following:

λε
k = Λ + εμj + · · · , uε

k(x) = w0
j (ξ, x1) + vj (x) + εw1

j (ξ, x1) + εv1
j (x) + · · · (21)

The main term of the boundary layer

w0
j (ξ, x1) = vj (x1,0)B−1(U(ξ) − B

)
(22)

has the exponential decay due to (11). The second term is periodic in ξ1 and satisfies the problem

−�ξw
1
j (ξ, x1) = Λχω(ξ)

(
w1

j (ξ, x1) + v1
j (x1,0) + ξ2

∂vj

∂x2
(x1,0)

)
+ μjχω(ξ)

(
w0

j (ξ, x1) + vj (x1,0)
)

+ 2B
∂U

(ξ)
∂vj

(x1,0), ξ ∈ Π; w1
j (ξ1,0, x1) = −v1

j (x1,0), ξ1 ∈ (0,1) (23)

∂ξ1 ∂x1
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Since Λ is a simple eigenvalue, problem (23) requires only one compatibility condition which, by (12), turns into the
boundary condition on Γ in (13). The other equations in (13) are self-understood.

Ansätze for λε
N , . . . , λε

N+�−1 are intricate and we employ asymptotic procedures from [11] and [4]:

λε
N+p = Λ ± ε

1
2 γ

1
2

p + · · · , uε
N+p(x) = v0

p(x) ± ε
1
2 w1

p(ξ, x1) ± ε
1
2 v1

p(x) + εw2
p(ξ, x1) + εv2

p(x) + · · ·
(24)

where the further terms w2
p and v2

p depend on the sign ±. Also, we set

v0
p(x) = a

p
NvN(x) + · · · + a

p

N+�−1vN+�−1(x) (25)

where vN, . . . , vN+�−1 are eigenfunctions of problem (9) corresponding to the eigenvalue Λ (cf. (15)) and the columns
āp = (a

p
N , . . . , a

p

N+�−1) have to be found. Then, the first term w1
p of the boundary layer type takes the form (22) with

vj ≡ v0
p on the right hand side. The regular type term v1

p satisfies

−�xv
1
p(x) = Λv1

p(x) + γ
1
2

p v0
p(x), x ∈ Ω, v1

p(x) = 0, x ∈ ∂Ω \ Γ (26)

while the boundary condition on Γ is obtained from the compatibility condition in the problem

−�ξw
2
p(ξ, x1) = Λχω(ξ)

(
w2

p(ξ, x1) + v2
p(x1,0) + ξ2

∂v0
p

∂x2
(x1,0)

)

+ γ
1
2

p χω(ξ)
(
w1

p(ξ, x1) + v1
p(x1,0)

)
, ξ ∈ Π; w2

p(ξ1,0, x1) = −v2
p(x1,0), ξ1 ∈ (0,1)

with the usual periodicity conditions. From (12), we derive

v1
p(x1,0) = −B2γ

− 1
2

p

∂v0
p

∂x2
(x1,0), x1 ∈ (0, a) (on Γ ) (27)

Now, according to (16), � compatibility conditions in problem (26), (27) provide the algebraic system Māp = γpāp

which delivers the eigenvalues (18) while the eigenvectors ā0, . . . , ā�−1 ∈ R
� can be chosen to compose a unitary

matrix. Thus, the asymptotic ansätze (24) are completed.

Remark 1. The analysis of (N) looks very similar to that of mass concentration along a curve Υ ⊂ Ω . In the case
m < 2, the similarity (no influence of the masses) can be observed in (D) as well. On the other hand, eigenelements
of the Dirichlet problem (D) with m > 2 in the low frequency range behave rather similar to eigenelements of the
problem consisting in the Laplace equation with alternating Dirichlet and Steklov spectral boundary conditions on Γ :
the local problem (10) and the Steklov problem (13) arise to describe the asymptotics for the eigenelements. Finally,
(D) with m = 2 implies the most complicated situation where the Dirichlet problem (9) in Ω , the local problem (10)
in Π and the Steklov problem (13) in Ω , together with the matrix M (17), are involved.

Remark 2. The technique in Section 4 allows all the eigenvalues of the Dirichlet problem (9), the rest of eigenvalues
of (10) and the set of positive γ

1/2
p in (18), to be obtained as limiting points of eigenvalues λε

k of (D) (suitable re-
scaled shifted eigenvalues, respectively), but now we cannot preserve the index k any more, since it should depend on
the parameter ε. If m > 2, the same can be said for the rest of the eigenvalues of the local problem (10) and re-scaled
sequences ε2−mλε

k(ε) for k(ε) → ∞ as ε → 0.
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