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Abstract

The present Note deals with the effects of compressibility on the linearized dynamic characteristics of gas lubricated mechanical
components (journal and thrust bearings). Although the effect of compressibility on the static characteristics is well known, its in-
fluence on the dynamic characteristics is still not clearly understood. The present Note uses Lubrication’s simplest model problems
(the 1D slider) to qualitatively describe this effect. An analytic solution obtained for the parallel 1D slider depicts the variation
of stiffness and damping with the excitation frequency and shows that this nonlinearity must be taken into account for squeeze
number larger than 1. A convenient way of handling this nonlinearity in a dynamic system is described for an aerodynamic thrust
bearing. To cite this article: M. Arghir, P. Matta, C. R. Mecanique 337 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Effets de la compressibilité sur les caractéristiques dynamiques des composants mécaniques lubrifiées avec des gaz.
L’article présente les effets de la compressibilité sur les caractéristiques dynamiques linéaires des composants mécaniques lubrifiés
avec des gaz (paliers et butées). Même si les effets de la compressibilité sur les caractéristiques statiques sont bien connus, son
influence sur les caractéristiques dynamiques n’est pas encore clairement soulignée. L’article utilise le model le plus simple de la
lubrification (le blochet 1D) pour décrire qualitativement cet effet. Une solution analytique développée pour le blochet 1D à faces
parallèles décrit la variation de la raideur et de l’amortissement avec la fréquence d’excitation et montre que cette nonlinéarité
doit être prise en compte pour des nombres d’écrasement supérieurs à 1. Une voie possible de traiter cette nonlinéarité dans un
système dynamique est exemplifiée pour une butée aérodynamique. Pour citer cet article : M. Arghir, P. Matta, C. R. Mecanique
337 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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Nomenclature

A0,A1,B0 parameters of the transfer function
B1,B slider width . . . . . . . . . . . . . . . . . . . . . . . . . . m
C damping . . . . . . . . . . . . . . . . . . . . . . . . . Ns/m
F force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N
H transfer function
h thin film thickness . . . . . . . . . . . . . . . . . . . . m
K stiffness . . . . . . . . . . . . . . . . . . . . . . . . . . . N/m
L length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
M mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg
Np number of pads of the thrust bearing
P pressure averaged over the thin film

thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pa
Pa atmospheric pressure . . . . . . . . . . . . . . . . . Pa
R1,2 thrust bearing inner/outer radius . . . . . . . m
r, θ, z cylindrical coordinate system
� real part
S thrust bearing surface, π(R2

2 − R2
1) . . . m2

t time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s

V linear velocity . . . . . . . . . . . . . . . . . . . . . . m/s
W load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N
β1, β thrust bearing pad angular amplitude
Λ compressibility number
σ squeeze number
Ω thrust bearing rotation speed . . . . . . . . . . 1/s
ω squeeze angular velocity . . . . . . . . . . . . . 1/s
ω0 natural speed . . . . . . . . . . . . . . . . . . . . . . . . 1/s
μ dynamic viscosity . . . . . . . . . . . . . . . . . . Pa s
ζ damping ratio
υ volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m3

� small perturbation
1D, 2D one/two dimensional

Superscripts

∼ complex number
· time derivative

1. Introduction

Gas lubrication theory is based on the same simplifying assumptions as the incompressible lubrication [1], all
stemming from the presence of two very different length scales H and R (or L) of the order H/R ≈ 10−3: negli-
gible inertia and body forces, constant pressure over the thin film thickness, isothermal and laminar flow (the last
two assumptions can easily relaxed). For comparison, the ratio of the two length scales intervening in the boundary
layer theory is 10−2 and the convective inertia forces are not negligible. Lubrication theory is generally (but not ex-
haustively) applied for the study of journal and thrust bearings or for dynamic sealing systems. Although it is a very
mature domain disposing of specific modeling tools, such as the Reynolds equation, some aspects can pose interpre-
tation problems and need to be underlined. The compressibility of the thin lubricant film is such of an aspect. Its
influence on the static characteristics (load capacity) is well known but the way it affects the dynamic stiffness and
damping (characteristics needed for describing the vibration regime) is not clearly quantified. The aim of the present
work is to underline the influence of the gas compressibility on the dynamic characteristics and to convey a simple
solution of including them in a vibration model. This is done by using a usual gas (air) in conjunction with a model
problem (the 1D slider) and a simple mechanical component (the thrust bearing) were the compressible Lubrication
theory is applied.

2. The 1D slider

The main peculiarities brought in by the compressibility of the air film can be best explained by analysing first
a 1D slider of infinite width as the one depicted in Fig. 1 (step or “Rayleigh slider”). The 1D slider is the simplest
problem analyzed in the Lubrication theory and the source of basic lifting mechanisms. It is supposed that the two
plates are closely spaced so that h1,2/B , B1 ≈ 10−3 and the lower one has a horizontal velocity V . The appropriate
dimensionless Reynolds equation yields:

∂

∂x̄

(
P̄ h̄3 ∂ �P

∂x̄

)
= Λ

∂

∂x̄
(P̄ h̄) + σ

∂

∂t̄
(P̄ h̄), Λ = 6μV B

Pah
2
2

, σ = 12μωB2

Pah
2
2

(1)

x̄ = x/B, P̄ = P/Pa, h̄ = h/h2, t̄ = ωt (2)
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Fig. 1. Static pressure variation of the 1D step slider.

Fig. 2. Static load of the 1D step slider.

This equation is solved with imposed (atmospheric) pressure boundary conditions at its left and right ends.
Fig. 1 depicts the pressure variation for different compressibility numbers and steady working conditions, i.e. σ =
ω = 0. Fig. 2 depicts the corresponding static load obtained by integrating the pressure field. The solution depends
not only on x/B , h1/h2 and B1/B as for an incompressible fluid, but the compressibility number Λ has now a strong
influence. For Λ → 0 the pressure variation corresponds to the incompressible solution while for high Λ the pres-
sure tends toward an asymptotic solution. Fig. 2 shows that with increasing Λ the dimensionless load capacity of
the compressible slider tends toward a constant value while for an incompressible lubricant it increases linearly with
the sliding velocity. This typical result for compressible lubrication stems from the fact that the right-hand side of
the steady Reynolds equation Λ∂(P̄ h̄)/∂x̄ must have a finite value for high Λ. It then results that Ph = const. for
Λ → ∞. The result is coherent with the assumption of an isothermal evolution of the gas because it can be alterna-
tively written as P dϑ = P/ρ = const. where dϑ = hdx L is the fluid volume for the 1D slider of length L.

This well-known result reflects a fundamental characteristic of compressible lubrication that can be found also for
the unsteady (vibration) regime engendered by a squeeze motion of the plates. In order to enable an analytic solution
for the compressible unsteady squeeze regime, the 1D slider can be simplified even more by considering only two
infinitely long parallel plates of width B . The pressure between the two plates is generated by the oscillatory squeeze
motion of the upper plate. The Reynolds equation yields:

h3 ∂2P 2

∂x2
= 24μ

∂

∂t
(Ph) (3)

with boundary conditions, x = 0, ∂P/∂x = 0 and x = ±B/2, P = Pa . An analytic solution is obtained under the
assumption of a low amplitude squeeze oscillatory motion of the upper plate:

h(t) = h0 + �h(t) (4)

�h(t) = �(
�h̃ejωt

)
, j = √−1, |�h̃| 
 h0 (5)

It is supposed that the pressure has a similar variation [2]:

P(t) = Pa + �P(x, t) (6)

�P(x, t) = �[
�P̃ (x)ejωt

]
, j = √−1,

∣∣�P̃ (x)
∣∣ 
 Pa (7)
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Fig. 3. Dynamic load capacity of the 1D parallel slider.

where it was recognized that if the oscillatory squeeze motion is absent, ω = 0 then the zeroth order pressure is
P0 = Pa . Following the small perturbation assumption1

h3P 2 = (
h3

0 + 3h2
0�hejωt + · · ·)(P 2

a + 2Pa�Pejωt + · · ·) ≈ h3
0P

2
a + 2h3

0Pa�Pejωt + 3h2
0P

2
a �hejωt (8)

hP ≈ h0Pa + h0�Pejωt + Pa�hejωt (9)

the Reynolds equation yields:

∂2(�P )

∂x2
= 12μjω

Pah
2
0

�P + 12μjω

h3
0

�h (10)

with boundary conditions, x = 0, ∂(�P )/∂x = 0 and x = ±B/2, �P = 0. The analytic solution of this differential
equation is:

�P

Pa

= �h

h0

[
ch(

√
σejπ/4x/B)

ch(
√

σejπ/4/2)
− 1

]
, σ = 12μωB2

Pah
2
0

(11)

The dynamic load is obtained by integrating the first order pressure field.

�F = 2L

B/2∫
0

(P − Pa)dx = �F̃ejωt , �F̃ = LBPa

�h̃

h0

[
2

th(
√

σejπ/4/2)√
σejπ/4

− 1

]
(12)

The modulus of the dimensionless dynamic load, |�F̃ |/LBPa is depicted in Fig. 3. Also depicted on Fig. 3 is the
modulus of the dimensionless load for the incompressible parallel slider obtained under the small perturbation as-
sumption2:

�F̃ incomp = LBPa

σ

12

�h̃1

h0
e−jπ/2 (13)

1 For simplifying equations, superscript ∼ and operator � were dropped.
2 Relation (13) was obtained by discarding the cavitation phenomenon and film rupture that occurs in incompressible lubrication for pressures

slightly below Pa .
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Fig. 4. Dynamic coefficients of the 1D parallel slider.

Fig. 3 shows that the modulus of the dynamic load given by (12) tends to a constant value with increasing excitation
speed while the dynamic load of the incompressible parallel slider is linearly increasing. This is exactly the same
characteristic as the one depicted in Fig. 2 for the static load excepting the fact that the parameter Λ is replaced by σ .

The consequences on the dynamic stiffness and damping (linearized) coefficients can be also underlined from the
analytic solution (12). These coefficients can be identified from the following definition:

�F = K�h + C�ḣ = (K�h̃1 + jωC�h̃1)e
jωt (14)

One obtains:

K̄ = Kh0

LBPa

= �
[

2
th(

√
σejπ/4/2)√
σejπ/4

− 1

]
(15)

C̄ = Ch0ω

LBPa

= �
[

2
th(

√
σejπ/4/2)√
σejπ/4

− 1

]
(16)

The dimensionless dynamic stiffness and damping coefficients are depicted in Fig. 4. The dynamic coefficients stem-
ming from the incompressible slider are both constant (the stiffness is zero while the damping has a nonzero value)
while the ones obtained for the compressible slider vary with the excitation frequency. As shown in Fig. 4, for σ → 0
the compressible and the incompressible coefficients tend to the same values but starting with σ > 1 the dynamic
coefficients of the compressible slider depend on the excitation frequency. For increasing excitation frequency the dy-
namic stiffness of the compressible slider increases while the damping coefficient decreases toward zero. This means
that with increasing excitation frequency the compressible slider becomes stiffer and has a negligible damping. This
is a general characteristic of aerodynamic lubrication that will influence the dynamic properties of thrust and journal
bearings.

3. The 2D thrust bearings

The compressibility influence on the dynamic characteristics is illustrated for one of the most simple gas lubricated
mechanical components. Thrust bearings as the one depicted in Fig. 5 are aimed to support an axial load or to eliminate
the axial degree of freedom of a rotor guided by aerodynamic bearings. The flow field comprised between the runner
(upper part rotating with Ω) and the stepped thrust bearing is 2D because the pressure is considered as being constant
over the thin film thickness.

The gas flow in the thrust bearing is governed by the compressible Reynolds equation in cylindrical coordinates;
in dimensionless form this equation yields:

1 ∂
(

p̄h̄3r̄
∂p̄

)
+ ∂

(
p̄h̄3 ∂p

)
= Λ

∂(p̄h̄) + σ
∂(p̄h̄)

¯ (17)

r̄ ∂ r̄ ∂r̄ r̄∂θ r̄∂θ ∂θ ∂t
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Fig. 5. Thrust bearing geometry and typical pressure field.

Fig. 6. Static characteristics of the thrust bearing.

The boundary conditions are represented by an imposed (atmospheric) pressure on the inner and outer radius as well
as in the feeding grooves separating the thrust bearing pads. The numerical solution of the 2D compressible Reynolds
equation can be obtained by using a finite volume algorithm that will not be presented for brevity. Fig. 6 depicts
the dimensionless axial load capacity and the torque of the thrust bearing. As for the compressible 1D slider the
dimensionless axial load tends toward a constant value with increasing rotation speed and Λ.

The dynamic characteristics of the thrust bearing are obtained by following the small perturbation approach pre-
sented for the 1D slider and given by Eqs. (4)–(9). For example for an axial Z displacement the thin film thickness
and the pressure perturbations are injected into Eq. (17) yielding a first order compressible Reynolds equation. The
perturbed (first order) pressure field is obtained after numerically solving this equation with �P̃ = 0 overall boundary
conditions. The dynamic stiffness and damping (linearized) coefficients are calculated by integrating �P̃ over the
thrust bearing surface.

�F =
∫
S

�P̃ dS = KZ�h + CZ�ḣ (18)

As for the 1D parallel slider, the dynamic coefficients of the thrust bearing depend not only on the working conditions
but also on the excitation frequency (Fig. 7). This nonlinear dependence of the dynamic coefficients KZ and CZ on
the excitation frequency must be carefully considered in any dynamic analysis of a mechanical system incorporating
a compressible thin film. For example if the thrust bearing supports a mass M , the equation of the 1DOF oscillator
yields:
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Fig. 7. Dynamic coefficients of the thrust bearing.

Fig. 8. Viscoelastic model of the squeezed gas film.

M�z̈ + CZ�ż + KZ�z︸ ︷︷ ︸
�Fz

= �W(t) (19)

This equation is nonlinear because KZ and CZ depend on the perturbation squeeze velocity ż. There are two possible
solutions. The first is to use the step jump method based on Duhamel’s integral [3]. The second method is more
appropriate because it offers a better insight into the thrust bearing dynamics by using less parameter. The idea stems
from recognizing that the compressible thin film of a perfect gas behaves as a viscoelastic material when subject to
squeeze [4] & [5]. The usual practice for viscoelastic materials is to replace the usual model made of a linear spring
and a viscous damper by a slightly modified one as depicted in Fig. 8. The transfer function of the viscoelastic model
yields:

H(s) = �z(s)

�F(s)
= B0 + s

A0 + sA1
(20)

where s is the variable of the Laplace transform. If one takes into account the equivalence between Laplace transform
and Fourier transform for a sinusoidal excitation, s = jω one obtains:

�F̃ (ω)

�z̃(ω)
= KZ + jωCZ = A0 + jωA1

B0 + jω
(21)

It then follows that the variable KZ and CZ can be expressed by using only three constants, A0, A1 and B0.3 Their
identification is straightforward by minimizing the nonlinear function:

3 Second order transfer function can be used for enhancing the nonlinear dependence of the dynamic coefficients on the excitation frequency.
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Fig. 9. Unforced response dynamic characteristics of the thrust bearing—mass system.

Minimizer
∑

i

(
KZ + jωiCZ − A0 + jωiA1

B0 + jω

)
(22)

KZ(ω) = A0B0 + ω2A1

B2
0 − ω2

, CZ(ω) = A1B0 − A0

B2
0 − ω2

(23)

An example of this approach is depicted in Fig. 7. It is to be underlined that these transfer functions are only ap-
proximations of the complex impedance based on rational functions. Together with the minimization procedure of
Eq. (22) they simply provide a nonlinear regression. A similar procedure was used by Kleynhans and Childs [6] for
textured annular gas seals and the viscoelastic model depicted in Fig. 8 was also advocated by Brad and Green [7].
Also, an analytic demonstration of first order transfer functions was introduced in [8] and was next used in [9] & [10]
for modeling the dynamic behavior of a circular aerostatic thrust bearing.

The benefits of using this transfer function approach can be best understood when analysing the 1DOF oscillator.
The equation of its dynamic system is obtained by considering Eqs. (19) and (20):

⎧⎨
⎩

�ż

�z̈

�Ḟz

⎫⎬
⎭ =

⎡
⎣ 0 1 0

0 0 −1/M

A0 A1 −B0

⎤
⎦

⎧⎨
⎩

�z

�ż

�Fz

⎫⎬
⎭ +

⎧⎨
⎩

0

�W(t)/M

0

⎫⎬
⎭ (24)

Classical problems as the unforced response or the response to an impact load can be easily answered. Fig. 9 depicts
the natural speed and the damping ratio of the unforced response of the thrust bearing—mass system. The parameters
intervening in the characteristic equation r2 +2ςω0r +ω2

0 = 0 of the 1DOF damped system made of the thrust bearing
and the mass M . The natural speed ω0 and the damping ratio are calculated for different values of the mass M by
using two approaches:

1. by considering the eigenvalues of the matrix given in Eq. (24), i.e. by taking into account the fact that the dynamic
coefficients depend on the excitation frequency,

2. by considering the values of the dynamic coefficients obtained for a very low value of the excitation frequency.

It can be seen that errors are unacceptable if the variation of the dynamic coefficients with the excitation frequency is
discarded: for values of the dimensionless mass lower than 0.1, the natural speed is underestimated and the damping
ratio is largely overestimated. In fact, the system might appear as being overdamped if constant dynamic coefficients
are used while the in reality the damping coefficient decreases with decreasing the dimensionless mass.
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4. Conclusion

The presented results underline the importance of taking into account the dependence of dynamic coefficients of a
compressible thin film on the excitation frequency. As shown by using a very simple 1D example, this should be done
for σ > 1 because the squeeze parameter σ plays the same role as the compressibility number Λ. The analytic results
for the 1D compressible squeeze flow are hereby presented for the first time. As a further example, the frequency
dependence of dynamic coefficients was depicted for a thrust bearing but the effect can be retraced for any mechanical
component lubricated by compressible thin film (journal bearing, dynamic seal, etc.).
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