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Abstract

The Note presents the formulation of a class of two-scale damage models involving a micro-structural length. A homogeniza-
tion method based on asymptotic developments is employed to deduce the macroscopic damage equations. The damage model
completely results from energy-based micro-crack propagation laws, without supplementary phenomenological assumptions.

We show that the resulting two-scale model has the property of capturing micro-structural lengths. When damage evolves, the
micro-structural length is given by the ratio of the surface density of energy dissipated during the micro-crack growth and the
macroscopic damage energy release rate per unit volume of the material.

The use of fracture criteria based on resistance curves or power laws for sub-critical growth of micro-cracks leads to quasi-brittle
and, respectively, time-dependent damage models. To cite this article: C. Dascalu, C. R. Mecanique 337 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Local theories of damage generally do not involve characteristic lengths. For energy based models (e.g. [1]), the
damage evolution is controlled by the rate of energy released per unit volume of the material.

The energy approach of fracture considers the rate of energy released per unit crack surface to characterize the
crack growth (e.g. [2]). Fracture is a size-dependent phenomenon and models of size effects for fracture have been
proposed (e.g. [3]) to account for the experimental observations.

Many attempts to obtain local damage models from micro-crack growth analysis by change of scale techniques
have been performed in the last decades (e.g. [4–7]). Although micro-structural lengths are sometimes involved in the
upscaling procedures, the final damage formulations generally do not involve characteristic lengths. Very often, the
micromechanical models are based on some phenomenological assumptions, at the macro-scale, that supplement the
homogenization analysis.

The aim of this Note is at proposing a general formulation of damage that completely results from the change-
of-scale analysis and the appropriate choice of the damage parameter, without supplementary assumptions on the
macroscopic damage response. The resulting two-scale theory will involve both microscopic surface energy density
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Fig. 1. Fissured medium with locally periodic microstructure.

of fracture and macroscopic volume density of energy released by damage. We show that the derived damage criterion
involves the ratio of the two energy densities which is a material characteristic length. Such characteristic length has
been introduced previously by different authors (e.g. [8–10]) in different contexts. Here, it appears naturally in the
damage criterion as a consequence of the homogenization analysis.

When damage evolves, we show that this material length corresponds to micro-structural size parameters like the
mutual distance between neighbor micro-cracks, the size of the quasi-brittle process zone for micro-cracks or other
material lengths governing failure at the micro-scale. The proposed homogenization approach naturally captures the
microscopic lengths and the presence of a characteristic length in the damage criterion is showed to be an intrinsic
property of the new model.

The present formulation extends our recent results [11,12] that concerned the purely brittle case. We focus on the
identification of intrinsic features of the macroscopic model, independent of particular sizes of the microstructure.
The homogenized damage equations are deduced in the limit of indefinitely small microscopic periods, as it is proper
to the asymptotic homogenization approach [13].

Starting from micro-fracture criteria based on fracture resistance curve and power laws for sub-critical growth, we
deduce quasi-brittle and, respectively, time-dependent damage models. To our knowledge, such damage models have
not been obtained before through asymptotic homogenization.

2. Effective elastic behavior of a micro-fractured body

The effective elastic behavior for bodies with cracks was studied, for instance, in [14,13,11] in the framework of
the asymptotic homogenization theory for periodic media. We recall here some basic results that are necessary for
development of the damage model.

Consider a two-dimensional isotropic elastic medium containing a large number of small cracks. A (locally) pe-
riodic distribution of micro-cracks is assumed, so as one can locally find a periodicity cell, of length ε, containing
one crack (see Fig. 1). The length ε, also representing the mutual distance between centers of neighbor micro-cracks,
characterizes the size of the microstructure. The cracks are assumed to be straight and of length dε .

As it is proper to the asymptotic homogenization method, we consider a suite of periodic structures, indexed over ε,
and we evaluate the limit, as ε → 0, of the corresponding solutions of the mechanical problems. In what follows, we
assume that the length dε and orientation of micro-cracks are such that, at the limit when ε approaches 0, they vary
smoothly inside the elastic body.

Let B denote the initial heterogeneous medium represented by a bounded two-dimensional domain with a smooth
external boundary and C the union of all the microcracks inside B. In the solid part Bs = B \ C , we have the equilibrium
equations

∂σ ε
ij

∂xj

= 0, σ ε
ij = aijklexkl

(
uε

)
(1)

where uε and σ ε are the displacement and the stress fields, aijkl are the elasticity coefficients and where we considered

the strain tensor exij (uε) = 1
2 (

∂uε
i

∂xj
+ ∂uε

j

∂xi
) with respect to x coordinates. We assume that the cracks are open and

traction-free: σ εN = 0, where N is the unit normal vector to the crack faces, as in Fig. 2. We remark that the case
of fully closed cracks, with frictionless contact, could also be considered [14,13,11], leading to a different overall
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Fig. 2. Rescaling of the unit cell to the microstructural period of the material.

behavior. These two states for micro-cracks lead to different homogenized coefficients in tension and compression
[14,11].

The locally periodic microstructure which is reproduced from the unit cell Y = [0,1]× [0,1] by rescaling with the
small parameter ε so that the period of the material is εY , as in Fig. 2. The two distinct scales are represented by the
macroscopic variables x and the microscopic variables y = x/ε. In the unit cell Y we denote the crack by CY and
solid part by Ys = Y \ CY . The length of CY is d = dε/ε. According to the method of asymptotic homogenization
(e.g. [13]), we look for expansion of uε in the form

uε(x, t) = u(0)(x,y, t) + εu(1)(x,y, t) + ε2u(2)(x,y, t) + · · · (2)

where u(i)(x,y, t), x ∈ Bs , y ∈ Y are smooth functions and Y -periodic in y.
Substituting the expansion (2) into Eq. (1) and the traction-free boundary conditions we obtain boundary value

problems for the different orders of ε, formulated on the unit cell Y . It can be shown (e.g. [14,13]) that the function
u(0) = u(0)(x, t) is independent of y variable, representing the macroscopic displacement field.

For given u(0)(x, t), for open traction-free cracks, we deduce [14,13] the following boundary-value problem for the
function u(1):

∂

∂yj

(
aijkleykl

(
u(1)

)) = 0, in Ys (3)

aijkleykl

(
u(1)

)
Nj = −aijklexkl

(
u(0)

)
Nj , on CY (4)

and with periodicity boundary conditions on the external boundary of the cell.
The microscopic correction u(1) has a linear dependence of the macroscopic deformations: u(1)(x,y, t) =

ξpq(y)expq(u(0))(x, t). Here, the characteristic functions ξpq(y) are elementary solutions of (3)–(4), for the particular
macroscopic deformations expq(u(0)) = δpq .

By introducing the mean value operator 〈·〉 = 1
|Y |

∫
Ys

·dy, where |Y | is the measure of Y , we can prove [14,13] that

Σ
(0)
ij ≡ 〈

σ
(0)
ij

〉 = Cijkl(d)exkl

(
u(0)

)
(5)

where σ
(0)
ij = aijkl(exkl(u(0)) + eykl(u(1))) and

Cijkl(d) = 1

|Y |
∫
Ys

(
aijkl + aijmneymn

(
ξ kl

))
dy (6)

are the homogenized coefficients. The effective constitutive relation (5) should be used in the macroscopic equilibrium
equation.

The previous formulae are valid for every crack micro-orientation in the periodicity cell. If we denote by θ the
angle made by the crack line with the horizontal direction, then the effective coefficients are functions of d and θ :
Cijkl = Cijkl(d, θ). The couple (d, θ) completely characterizes the state of damage at a given macroscopic point.
These coefficients can be computed by solving the unit cell problem for every d and θ and the functions (2) can be
obtained by interpolation of the coefficients computed for a certain number of orientations and lengths of the crack.
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3. Homogenization of energy balance: Damage equations

For the description of the evolution of damage the previous equilibrium problem should be completed with damage
equations. In this section we obtain a general damage equation as the result of homogenization of the microscopic
balance of energy for propagating micro-cracks.

For the initial problem, the fracture energy release rate during crack extension can be expressed as

Gε = lim
Dε→O

∫
∂Dε

e · b
(
uε

)
n ds (7)

where Dε is a disk of infinitesimal radius, surrounding the crack tip O , with n the outward normal to the disk Dε ,
e is the unit vector in the propagation direction (see Fig. 2) and bij (uε) = 1

2amnklexkl(uε)exmn(uε)δij − σε
jku

ε
k,i is the

configurational stress tensor.
The energy-release rate Gε depend on the crack length l and the orientation θ . The crack propagation is described

by the following laws:

Gε � Gf ; l̇ � 0; l̇(Gε − Gf ) = 0 (8)

where Gf is the critical fracture energy of the material. These relations should be completed with the reduced dissi-
pation inequality:

Df ≡ Gεl̇ � 0 (9)

We will assume that the critical fracture energy Gf may depend on the micro-structural size, the crack length and
velocity.

As concerns the dependence of θ , the existing criteria are generally independent of those concerning the extension
(e.g. [2]). A simple choice, made in [11], is to consider that microcracks are initiated in the direction of maximum
energy release and that this direction is maintained after. Pre-existing micro-cracks will extend in their own direction.
One can construct more complex behaviors in which, for different loadings, different families of microcracks may be
activated. These are beyond the objectives of this paper. In what follows, we assume that the microcracks maintain
their orientation during the propagation. This orientation may vary with respect to the macroscopic variable x.

Assuming the symmetric extension of micro-cracks, from (3)–(4) and the periodicity conditions we deduce the
global balance of energy on the unit cell:

d

dt

∫
Ys

1

2
aijkleykl

(
u(1)

)
eyij

(
u(1)

)
dy + Gε

ε

dd

dt
= 0 (10)

Using this relation and following the results in Dascalu et al. [11] it can be proved that, for ḋ �= 0, we have

Gε

ε
= −1

2

dCijkl(d)

dd
exkl

(
u(0)

)
exij

(
u(0)

)
(11)

where the right member Yd ≡ − 1
2

dCijkl (d)

dd
exkl(u(0))exij (u(0)) is the damage energy release rate. We note that this

relation is entirely deduced from microstructural assumptions, without any assumptions on the scaling of energy.
This scaling with ε is naturally appearing in the derivation of the damage equation (11). For evolving damage, the
previous relation shows that the microstructural length ε makes the link between the surface energy dissipated during
micro-crack propagation and damage energy dissipated per unit volume. This energy scaling property will assure the
presence of the internal length ε in the damage law.

Using (11) from the micro-crack evolution laws (8) we deduce the damage laws

Yd � Gf

ε
; ḋ � 0; ḋ

(
Yd − Gf

ε

)
= 0 (12)

Dd ≡ Yd ḋ � 0 (13)

The presence of a material length in the damage model given by the relations (12), or in the limit form by (16), appears
to be new for first order micromechanical damage models. In this respect, the present model extends the one for the
brittle case in [11].
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In this contribution we assume that the critical fracture energy is given as a constitutive function of the microscopic
size ε, the crack length l and velocity l̇. In terms of the damage variable d = l/ε, the fracture energy can be expressed
as

Gf = Gf (d, ḋ, ε) (14)

Eqs. (12)–(14) correspond to a finite micro-structural parameter ε > 0. Following the asymptotic homogenization ap-
proach (e.g. [13]) we consider a family of elasto-damage problems, for different length-scales ε, and look for the limit
of the sequence of solutions to these problems as ε → 0 and the damage equations fulfilled by this “homogeneous”
limit solution. It is not our aim, in this Note, to formulate the mathematical framework and to give details of the proof
of the convergence, but just to sketch out the way in which one may construct a local damage model with internal
length by homogenization of the energy balance law for evolving micro-cracks.

At the limit ε → 0 in Eqs. (12), in order to have a finite fracture energy dissipation it is necessary that

lim
ε→0

Gf (d, ḋ, ε)

ε
= G0(d, ḋ)

l0
(15)

where the limit fracture energy G0(d, ḋ) > 0 and the internal length l0 > 0 assures dimensional homogeneity.
If the condition (15) is fulfilled, we can take the limit in (12) to obtain

Yd � G0

l0
; ḋ � 0; ḋ

(
Yd − G0

l0

)
= 0 (16)

This limit result reveals the presence of a length-scale parameter as an intrinsic property of the homogenized damage
laws. The last relation in (16) shows that when damage evolves (ḋ �= 0) the internal length becomes equal to the ratio
of micro-fracture surface energy G0 (J/m2) and macro-damage volume energy Yd (J/m3) dissipations:

l0 = G0

Yd

(17)

We remark that this characteristic length, expressed as the ratio of fracture and damage energies, has been used
previously by different authors (e.g. [8–10]) in different contexts. Here it appears naturally in the damage criterion
(16) as a consequence of the homogenization analysis.

A consistency condition associated with the last relation in (16) may be obtained by using (11) and (15), yielding
the damage evolution law:

∂G0

∂ḋ
d̈ +

(
∂G0

∂d
+ l0

2

d2Cijkl

dd2
exkl

(
u(0)

)
exij

(
u(0)

))
ḋ + l0

dCijkl

dd
exkl

(
u̇(0)

)
exij

(
u(0)

) = 0 (18)

Note that for constant G0 the length parameter l0 does not appear explicitly in this law, but only in the criterion (16).

4. Brittle, quasi-brittle and subcritical evolutions

In this section we consider particular fracture criteria for micro-cracks and we obtain the corresponding damage
laws. For each damage model, we give conditions under which the relations (15–16), (18) are fulfilled.

Our first example is the brittle damage model. In a recent paper [11], we showed that a brittle damage model is
obtained through homogenization if a Griffith fracture criterion is assumed for micro-cracks. The critical fracture
energy was considered to be a constant, independent on the internal length parameter. Here we consider the case of
a critical fracture energy which is a constitutive function of the internal length Gf = Gf (ε). In this case, the limit
condition (15) is fulfilled for a linear dependence on ε: Gf = Gcε

cf
, where Gc is constant fracture energy and the length

cf assures dimensional homogeneity. The damage evolution law then becomes

(
1

2

d2Cijkl

dd2
exkl

(
u(0)

)
exij

(
u(0)

))
ḋ + dCijkl

dd
exkl

(
u̇(0)

)
exij

(
u(0)

) = 0 (19)

The length cf is not appearing in this evolution law; its influence on the damage response is given by the criterion (16).
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Fig. 3. 1D quasi-brittle elasto-damage response in tension. The curves, for different material lengths cf , show micro-structural size effects. Snap-
back behavior is obtained for values of d close to 1.

For finite-length microscopic periods, the role of cf is taken by the distance between neighbors micro-cracks ε,
in (12). Numerical examples, in the case of constant Gf were presented in [11,12], showing size effects for the damage
response.

The second example concerns the quasi-brittle failure at the small scale. To model the quasi-brittle effects, we adopt
the point of view of [10,3] and consider the equivalent crack in an elastic matrix but which propagation is controlled
by a resistance curve. Consider the critical fracture energy given by [3]:

Gf (d, ε) = Gc

ε(d − d0)

cf

(20)

where cf could be related to the size of the process zone, d0 is the initial value of damage (normalized crack-length)
and Gc is the corresponding initial fracture resistance. We consider cf and Gc as constant parameters of the propagation
criterion, independent on ε.

At the limit in (15) becomes

lim
ε→0

Gf (d, ε)

ε
= Gc(d − d0)

cf

(21)

The parameter cf now becomes the material length in the homogenized model. The corresponding damage evolu-
tion law (18) takes the form:

(
Gc + cf

2

d2Cijkl

dd2
exkl

(
u(0)

)
exij

(
u(0)

))
ḋ + cf

dCijkl

dd
exkl

(
u̇(0)

)
exij

(
u(0)

) = 0 (22)

We note that the process zone characteristic length cf is naturally captured by the damage equations.
The one-dimensional response of the deduced elasto-damage model is presented in Fig. 3. The material parameters

are: Young modulus E = 2e9 Pa, Poisson ratio ν = 0.3, the critical fracture energy Gc = 100 J/m2. The three curves
correspond to different values of the material length cf , showing micro-structural size effects for the homogenized
response. We also note the snap-back behavior that occurs for values of d close to 1. It can be shown that this regime
corresponds to that of unstable propagation of micro-cracks.

For the last example we assume a sub-critical propagation criterion for micro-cracks. Consider the mode I growth
described by a law of the type of that proposed by Charles [15,16]:

dl = cf
(

KI

)2

(23)

dt τ0 K0
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Fig. 4. 1D subcritical damage response, in tension, for different values of the micro-structural parameter cf .

where K0 is a limit value of the mode I stress intensity factor KI and where we followed Salganik et al. [16] by
introducing the size of the process zone cf and the characteristic time τ0. The sub-critical exponent was taken equal
to 2. Using the relation between the stress intensity factor and the energy-release rate we obtain for the critical fracture
energy:

Gf (ḋ, ε) = εGcτ0

cf

ḋ; Gc = K2
0

E′ (24)

where E′ = E

1−ν2 . As for the previous example, we assume that K0, τ0 and cf are constant parameters of the subcritical
propagation law, independent of the size ε. In this case, at the limit ε → 0, we get

lim
ε→0

Gf (ḋ, ε)

ε
= Gcτ0

cf

ḋ (25)

showing the presence of cf which becomes the material length of the homogenized model. The damage evolution law
(18) now reads:

Gcτ0d̈ + cf

2

d2Cijkl

dd2
exkl

(
u(0)

)
exij

(
u(0)

)
ḋ + cf

dCijkl

dd
exkl

(
u̇(0)

)
exij

(
u(0)

) = 0 (26)

The 1D response, in tension, predicted by the elasto-damage model is represented in Fig. 4, for different values of
the material length cf . The material parameters are: Young modulus E = 2e9 Pa, Poisson ratio ν = 0.3, the critical
fracture energy Gc = 100 J/m2, process zone size cf = 10−3 m and characteristic time τ0 = 107 s.

For a given material, the interaction between the microscopic internal length and a characteristic size of the macro-
structure will lead to macro-structural size effects.

5. Conclusions

We constructed a two-scale damage model for locally periodic micro-crack distributions using asymptotic devel-
opments homogenization. At the microscopic level an energy-based propagation criterion was considered and the
macroscopic damage equations were deduced exclusively through the change of scale procedure. It has been showed
that the new damage evolution equations naturally capture microscopic lengths. Their presence in the macroscopic
damage law leads to size effects. The general two-scale approach was illustrated for quasi-brittle and, respectively,
sub-critical damage models, which appear to be deduced for the first time within the asymptotic homogenization
method.
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