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Abstract

Three-dimensional simulations of the buoyant convection in a cylindrical container heated from below are presented. Both the
thresholds for the onset of the convection and the nonlinear evolution of this convection are calculated. The simulations concern two
configurations: a cavity with a rigid upper surface (Rigid-Rigid case) and a cavity with a non-constrained free surface (Rigid-Free
case). The results show a similar variation of the primary thresholds with the aspect ratio for the two configurations. In contrast,
the nonlinear evolution of the convection is much changed between the two configurations. In particular, subcritical secondary
branches with a very large subcriticity are obtained in the R-F case. To cite this article: A. El Gallaf et al., C. R. Mecanique 337
(2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Convection arising in a layer heated from below is a classical problem in fluid mechanics. This problem has more
recently induced new research activities to take into account finite-size containers, particularly cylindrical contain-
ers. When the layer is confined between two rigid upper and lower boundaries, the flow is buoyancy driven and the
governing parameter is the well-known Rayleigh number. For a comprehensive introduction and a bibliographical
review of the buoyancy driven instability in closed cylindrical containers, we refer to the work of Touihri et al. [1]
and the references therein. The dynamics and the bifurcation scenarios become more complicated in the presence of
an upper free surface, especially since there is a geometry related inhomogeneity. The flow patterns observed above
the critical thresholds are strongly influenced by the absence of reflection symmetry in the mid-plane of the container.
A consequence is the prevalence of hexagonal structures in extended domains. In comparison to the closed container
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(Rigid-Rigid case), the presence of an upper free surface (Rigid-Free case) also allows the development of an extra
driving mechanism due to the surface tensions. This mechanism is denoted as the Marangoni effect and its influence
is quantified by the Marangoni number. The respective influence of gravity and capillarity on the onset of convective
flows largely depends on the thickness of the layer (height of the container). For a fixed container radius, this depen-
dence is observed with respect to the aspect ratio A (= radius/height) of the container. In small aspect ratio boxes,
the flow is mainly gravity driven while the Marangoni effect is dominant for flattened boxes. In boxes of intermedi-
ate sizes, both effects can be effective and the problem is known as the Marangoni–Bénard problem. The reference
experimental work on the Marangoni–Bénard instability in circular containers has been performed by Koschmieder
and Prahl [2]. More recent works have measured the free surface deformation associated with the flow pattern [3,4].
Linear stability studies on the Marangoni–Bénard problem have taken into account the simultaneous variation of the
Marangoni and Rayleigh numbers when the applied vertical temperature difference is progressively increased (Za-
man and Narayanan [5], Dauby et al. [6]). They verified that for small aspect ratios buoyancy is dominant while
for large aspect ratios Marangoni effect is dominant. They made comparisons with the experiments of Koschmieder
and Prahl [2] and found critical values 20% higher than in the experiments. The three-dimensional studies about the
nonlinear evolution of the convection in cylindrical containers are few. We can mention the recent work of Assemat
et al. [7] in the case of the pure Marangoni convection.

Our work is devoted to the buoyancy driven convection in cylindrical containers. We want to see the influence
played by the dynamical condition at the upper boundary. For that, both R-R situations with a solid upper surface
(no-slip condition) and R-F situations with a non-constrained free surface are considered. In both cases, the tem-
perature at the upper surface will be considered as nearly uniform, either fixed or resulting from a high Bi number.
Three-dimensional simulations using continuation techniques will be performed which will allow to calculate both
the thresholds for the onset of convection and the nonlinear evolution of the emerging convective flows. The govern-
ing equations and the numerical techniques will be briefly described in the next section. Results will be presented in
Section 3 and a conclusion summarizing the main observations will then be given.

2. Governing equations

We consider an incompressible fluid layer confined in a cylinder between two (Rigid-Rigid case) or one (Rigid-
Free case) perfectly heat-conducting horizontal circular plates and a lateral adiabatic side wall. The cylinder of aspect
ratio A = R/H is exposed to a vertical gravitation acceleration g and to a vertical temperature gradient �T/H =
(Tb − Tt )/H directed from bottom to top. Tb and Tt are the bottom and top temperatures in the diffusive regime,
respectively, H is the layer thickness (or cylinder height) and R the cylinder radius. The fluid is assumed to be
Newtonian with constant physical properties, except that the fluid density ρ depends linearly on temperature in the
buoyancy term.

For the R-F case, a Newton law of cooling, −λ∂zT = h(T − Tg), expresses the heat transfer between the free
surface and the ambient gas at constant temperature Tg (λ is the liquid thermal conductivity, and h is the heat exchange
coefficient). As a consequence, Tt = [−Bi(Tb − Tg)/(1 + Bi)] + Tb , where Bi = hH/λ is the Biot number. Moreover,
the upper surface is assumed to be flat and free of surface tension.

The convective flow is governed by the incompressible Navier–Stokes equations coupled to an energy equation.
Using H , H 2/ν, ν/H and �T (ν is the kinematic viscosity) as scales for length, time, velocity and temperature (the
dimensionless temperature is θ = (T − Tt )/�T ), these equations take the following form:

∇ · u = 0 (1)
∂u

∂t
+ (u · ∇)u = −∇p + ∇2u + Ra Pr−1θez (2)

∂θ

∂t
+ (u · ∇)θ = Pr−1∇2θ (3)

where Pr = ν/κ is the Prandtl number and Ra = βg�T H 3/(νκ) is the Rayleigh number (κ is the thermal diffusivity
and β the thermal expansion coefficient). Knowing that no-slip boundary conditions are applied at the rigid walls, the
boundary conditions are given by

u = 0 and
∂θ = 0 at r = A (4)

∂r
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u = 0 and θ = 1 at z = 0 (5)

u = 0 and θ = 0 at z = 1 (R-R) (6)
∂u

∂z
= ∂v

∂z
= w = 0 and

∂θ

∂z
+ Bi θ + 1 = 0 at z = 1 (R-F) (7)

The conductive rest state solution corresponds to a linear temperature profile along the vertical coordinate which, in
dimensionless form, is given by θ(z) = 1 − z.

In the three-dimensional cylindrical cavity, the governing equations are solved using a spectral element method [1].
The time discretization is carried out using a semi-implicit splitting scheme and a continuation technique based on a
Newton solver is implemented, which allows both steady state solving and direct calculation of the bifurcation points
as described in Henry and Ben Hadid [8]. The primary bifurcation points at which convection is triggered need first
to be calculated. Due to the symmetries of the problem which include those of the O(2) symmetry group, the modes
which are involved are Fourier modes with an azimuthal variation expressed as exp(imϕ) (principally the m = 0,
1 and 2 modes). Then the steady solutions branches which emerge at these bifurcation points can be followed by
continuation and bifurcation diagrams showing how these solutions evolve and are connected can be plotted.

3. Results

3.1. Accuracy and precision

After mesh refinement tests, a mesh with (Nxy × Nz) = (320 × 10) points has been chosen for all calculations,
where Nxy represents the number of points in the circular section of the cylinder and Nz the number of points in
the vertical direction. This mesh enables a precise computation of the critical thresholds for the whole range of
parameters considered (accuracy estimated at 0.1%). A good agreement was found between our results and those given
by previous authors (Touihri et al. [1] for the R-R case and Dauby et al. [6] for the R-F case). As an example, Touihri
et al. estimated a first transition at Rac = 2260.13 for R-R cavities with A = 1 and our code gives Rac = 2260.06. For
R-F cavities with Bi = 1, Dauby et al. found a critical value Rac = 1628.20 for an aspect ratio A = 1 to be compared
with our Rac = 1628.11.

3.2. Thresholds for the onset of convection

The thresholds Rac for the onset of convection (which are independent of Pr) are given in Fig. 1 as a function of
the aspect ratio A for the R-R case (Fig. 1(a)) and the R-F case for Bi = 100 (good approximation for a thermally
conducting upper boundary) (Fig. 1(b)). Only the lowest thresholds corresponding to the first three Fourier modes
are plotted, and the true critical threshold at which a stable convective flow is first triggered is given by the lowest
value. For both R-R and R-F cases, there is a clear stabilization effect induced on the thresholds by the confinement.
The evolution of the critical threshold is also not regular because, depending on the aspect ratio, different modes are
involved. For the small values of A (narrow cylinders with A roughly below 1), a one-roll m = 1 mode is involved at
the critical threshold, whereas for larger A (flat cylinders for which the lateral constraint is weaker) different modes
are successively involved, first the axisymmetric m = 0 mode and then again the m = 1 mode. In fact, for small values
of A, the lateral confinement constrains the convective structures (only a limited number of convective rolls can be
formed). This explains that the convective one roll m = 1 mode is dominant for cells having very small values of A. For
larger A, it is the axisymmetric (two-roll) m = 0 mode which is then preferred, before the m = 1 mode becomes again
dominant. This m = 1 mode has in fact evolved with the increase of A and is now a three-roll structure. The evolution
from one roll to three rolls by the simultaneous creation of two small rolls along the boundaries is initiated in the
range 1.1 < A < 1.3 where changes of curvatures are observed in the critical curves for this mode. This evolution also
keeps all the symmetries of the m = 1 mode. Finally, for large values of A, the critical modes have closer thresholds
as the modes can easily adapt themselves to the geometry by adding extra rolls near the end walls.

If the evolution of the thresholds looks similar in the R-R and R-F cases, a more detailed comparison between the
two cases show that the values of A at which the transitions between the modes occur are slightly larger for the R-F
case: the first transition from m = 1 to m = 0 is changed from A ≈ 0.91 for the R-R case to A ≈ 1.03 for the R-F case,
and the second transition from m = 0 to m = 1 is changed from A ≈ 1.57 to A ≈ 1.85. Moreover, the values of the
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Fig. 1. Evolution of the primary thresholds Rac for the onset of buoyancy induced convection in a cylindrical container as a function of the aspect
ratio A. The three main convective modes (Fourier modes m = 0, 1 and 2) are considered. The results are shown for (a) the R-R case (solid upper
boundary) and (b) the R-F case (non-constrained free upper boundary).

thresholds are larger in the R-R case than in the R-F case (Rac = 11 191 compared to Rac = 3212 and Rac = 1371
compared to Rac = 1185 for A = 0.5 and 2, respectively) which indicates a stabilization induced by the upper rigid
boundary, this stabilization being particularly strong for small aspect ratio cylinders. Finally, the differences in the
boundary conditions between the R-R and R-F cases create differences in the symmetries: a reflection symmetry with
respect to the horizontal mid-plane is effective in the R-R case, but does not exist in the R-F case. This will affect the
nature of the first bifurcations: in the R-R case, this reflection symmetry is broken at the onset of convection so that
all these bifurcations are pitchforks whereas in the R-F case, only the bifurcations associated with non-axisymmetric
modes (m � 1) are pitchforks as the bifurcation associated with the axisymmetric mode does not break any symmetry
and is then transcritical. In the next section, we will see how differently the primary axisymmetric flows will evolve
in the two R-R and R-F cases.

3.3. Nonlinear evolution of the convection

The nonlinear evolution of the steady convective regimes initiated at the primary thresholds is depicted through
bifurcation diagrams. These diagrams show the vertical velocity w0 at the center of the cavity as a function of the
Rayleigh number Ra. Stable regimes are plotted as solid lines and unstable regimes as dashed lines. With the choice
of w0, the bifurcations associated to the axisymmetric mode appear symmetric when they are pitchforks (the solutions
on one branch are obtained from those on the other by reflexion in z) and they appear non-symmetric when they are
transcritical. In the former case, we therefore only need to present the evolution of one of the two branches. In the
diagrams, the flows on the different branches are also depicted through plots of the vertical velocity w at mid-height,
with dark (light) shading indicating w < 0 (w > 0). The calculations have been done for Pr = 1.

The bifurcation diagram given in Fig. 2 has been obtained in the R-R case for an aspect ratio A = 1. As shown in
Fig. 1(a), for this aspect ratio convection is initiated by an axisymmetric m = 0 mode at Rac = 2260. The bifurcation
is a supercritical pitchfork and the two branches of dynamically equivalent axisymmetric solutions remain stable
until a secondary bifurcation point located at RaS = 3003. The destabilization at this point is associated with critical
m = 2 modes and the supercritically emerging branches correspond to solutions defined to within a rotation around
the cylinder axis (circular pitchfork bifurcation). These m = 0/2 solutions (combination of the axisymmetric m = 0
solution and m = 2 modes) consist of two counter-rotating and parallel rolls which preserve two symmetries, i.e. the
reflection symmetries with respect to the two vertical central planes either parallel or perpendicular to the roll axes.
The m = 0/2 branches are stable up to another steady bifurcation point. Another bifurcation diagram was obtained
for a cylinder of aspect ratio A = 1.5. This bifurcation diagram is simpler as the primary axisymmetric flow initiated
at a pitchfork bifurcation point at Rac = 1895 remains stable in the range of studied Rayleigh numbers (Ra < 20 000).

The bifurcation diagram in the R-F case for an aspect ratio A = 1.5 and a Biot number Bi = 100 is shown in Fig. 3.
This bifurcation diagram looks very different from those obtained in the R-R case. The conduction state is stable up
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Fig. 2. Bifurcation diagram for the buoyancy induced convection developing in a cylinder with a solid upper boundary (R-R case) and an aspect
ratio A = 1 (Pr = 1). Continuous lines indicate stable states and dashed lines unstable states. Black dots indicate steady bifurcation points and
circles Hopf bifurcation points. Insets show vertical velocity contours in the horizontal mid-plane of the cylinder.

Fig. 3. Bifurcation diagram for the buoyancy induced convection developing in a cylinder with a non-constrained free upper boundary (R-F case)
and an aspect ratio A = 1.5 (Pr = 1). Continuous lines indicate stable states and dashed lines unstable states. Black dots indicate steady bifurcation
points and circles Hopf bifurcation points. Insets show vertical velocity contours in the horizontal mid-plane of the cylinder.

to Rac = 1212 where it is now a transcritical bifurcation which is associated to the onset of the axisymmetric flow.
Two branches of axisymmetric solutions emerge, the upper one which is also represented in Fig. 4(a) being subcritical
(the subcriticality is so weak that it cannot be seen on the figure) and the lower one which can be seen more clearly
in Fig. 4(b) supercritical. On the upper branch (up-flow along the axis of the cylinder), the flow remains stable up
to RaS2 = 12 512 where critical m = 2 eigenmodes generate a circle of m = 0/2 solutions. These branches, however,
bifurcate subcritically so that the solutions are unstable until a saddle-node bifurcation at Ra = 2154 where they are
stabilized. The branches are further destabilized by a steady mode in the range 3292 < Ra < 14 948 before they reach
a Hopf bifurcation point at RaH2 = 16 908. On the lower branch (down-flow in the center of the cavity), the scenario
to reach the m = 0/2 solutions is still more complex. The axisymmetric flow remains stable up to RaS1 = 10 112, but
the destabilization is now associated to m = 1 eigenmodes. The circle of m = 0/1 solutions (with only one vertical
plane of symmetry) bifurcate subcritically and are then unstable. Such branches remain unstable and after different
saddle-node bifurcations they terminate at a bifurcation point at RaS′

1
= 5656 where they reach branches of unstable

m = 0/2 solutions. The m = 0/2 solutions remain unstable for increasing Ra. For decreasing Ra, they are eventually
stabilized at a saddle-node bifurcation at Ra = 2382, before they reach a Hopf bifurcation point at RaH1 = 8361.
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Fig. 4. Zooms on the evolution of the subcritical (a) and supercritical (b) primary branches of the bifurcation diagram shown in Fig. 3.

4. Conclusion

We have numerically computed the thresholds for the onset of the buoyant convection and the nonlinear evolution
of this buoyant convection in three-dimensional vertical cylinders heated from below, with a strongly conducting
upper surface and adiabatic side walls. Calculations performed for either a rigid upper surface (R-R case) or a non-
constrained free surface (R-F case) allowed to emphasize the influence of the constraint at the upper surface. It was
shown that the influence of the aspect ratio on the primary thresholds is not much changed between the two cases,
except that the thresholds are lower in the case of the free surface and that the transitions between the different
modes are delayed to larger aspect ratios. On the contrary, the bifurcation diagrams showing the nonlinear evolution
of the flow are much changed between the two cases. Calculations performed in the range of aspect ratios where the
onset of convection is to an axisymmetric flow have shown that in the R-R case the two equivalent axisymmetric
primary branches bifurcate supercritically to m = 0/2 states. In contrast, in the R-F case the two non-equivalent
axisymmetric primary branches are connected to the m = 0/2 states through subcritical transitions, either directly
for one of the axisymmetric branches or through intermediate m = 0/1 states for the other branch. Moreover, the
subcritical transitions lead to branches with a very strong subcriticity so that in a large range of Rayleigh number
values many different solutions co-exist at fixed parameter values.
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