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Abstract

To enhance the temporal resolution of the PIV measurements of pseudo-periodic turbulent flows, Proper Orthogonal Decompo-
sition (POD) has been previously used to time interpolate PIV database. In this note, it is demonstrated that such POD interpolation
is equivalent to the classical mathematical interpolation when dealing with the whole POD eigenfunctions, since POD is a linear
transform. In fact, the POD-based time interpolation is only valid for the large scale structures of the flow. The advantage of using
POD procedure resides in its efficiency in extracting the dominant flow structures. In this sense, other interpolation methods such
as turbulent filtering procedures could provide similar results. To cite this article: E. Bouhoubeiny, P. Druault, C. R. Mecanique
337 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Understanding the dynamics of the transport of momentum, heat, mass and noise in turbulent flows is of funda-
mental and practical significance in many branches of engineering involving fluid flow. For such investigation, the
characterization of the three-dimensional structures present in turbulent flows remains a great challenge due to their
influence on mixing processes, noise emission, heat transfer processes, etc. Experimentally, if one wants to access
the dynamics of large scale structures, not only a satisfactory spatial resolution of the instantaneous flow field is
required but also a satisfactory temporal resolution of the flow pattern. Furthermore, space- and time-resolved exper-
imental database are more and more needed for numerical simulations of turbulent flow. Indeed, such experimental
database could be used not only to validate numerical database but also to provide initial and/or inflow boundary
conditions [1]. However, a high space- and time-resolved measurements of the three velocity components in a three-
dimensional complex turbulent flow field remains still difficult. For instance, concerning the time resolution, even if
the recent development of Time Resolved PIV system with a repetition rate superior to 10 kHz has a great future
potential for unsteady turbulent flow analysis, its implementation remains still complex to be fully generalized. Com-
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mercial TRPIV system with several hundred Hz time resolution is then an alternative solution. However with such
equipment, to access a high time flow resolution, it is necessary to develop post-processing tools which reconstruct
the lack of available experimental information.

To enhance the spatial resolution of measurements, a lot of methodologies including Linear Stochastic Estima-
tion [2,3], Proper Orthogonal Decomposition (POD) [4,5], kriging methods [5,6], classic mathematical interpolations
(linear, splines, . . . ), have already been developed to reconstruct the lack of spatial data. For instance, specific appli-
cations of POD called gappy POD have been developed for reconstructing missing data [4]. These last methodologies
are based on the minimization of the error between the valid data and its POD expansion using a small subset of
the available eigenfunctions. Such mathematical tools have been applied with success to reconstruct gappy data from
Particle Image Velocimetry (PIV) measurements [6,7]. Recently, some new reconstruction methodologies based on
the kriging approach have also demonstrated their potential in accurately reconstructing spatial missing PIV data [6].

Conversely, the time interpolation from successive PIV images has not been extensively studied in the past. Druault
et al. [8] have developed a new method for interpolating the time velocity information between two consecutive PIV
vector field measurements in a spark ignition pseudo-periodic engine flow. Indeed, by performing a POD over the
whole available Time Resolved PIV (TRPIV) velocity field snapshots, temporal POD coefficients were cubic spline
interpolated in time permitting to recover the time information between two consecutive PIV snapshots. With such
time interpolation, an analysis of the dynamics of the large scale flow structures occurring in such a flow was then
possible.

Based on this preliminary work, we propose in this note to compare this POD-based interpolation method to the
direct cubic spline interpolation. Then, a discussion of the PIV database time interpolation is provided.

2. Mathematical description of PIV database and POD application

Assume that TRPIV measurements have been performed in a pseudo-periodic turbulent flow such as a spark igni-
tion engine flow. In such a flow, to access to the time-space flow dynamics, it is necessary to try to synchronize the
engine speed with the Time Resolved PIV system. Based on a classical TRPIV system of several hundred Hz, it is
possible to perform several vector field measurements per engine cycle for selected engine speeds. We then assume
that such TRPIV measurements provide Nt instantaneous two-dimensional velocity vector fields V (tk,Xij ); with k

varying from 1 to Nt and (i, j) varying from 1 to nx and ny respectively (where nx × ny corresponds to the total
number of PIV measurement locations). These measurements are supposed to be performed during a great number
of engine cycles. The following developments will be performed only for one velocity component called u. Similar
developments can be done for the other velocity components.

Based on the PIV velocity snapshots, a snapshot POD [10] leads to the following flow decomposition:

u(tk,Xij ) =
Nmod∑
n=1

a(n)(tk)Φ
(n)
u (Xij ) (1)

where a(n) are the POD temporal coefficients and Φ
(n)
u are the spatial POD eigenfunctions of projection relative to u

velocity component [11]. Nmod is the total mode number of the POD decomposition and in our case, Nmod = Nt .
Details of the implementation of the snapshot POD procedure can be found in Holmes et al. [9] or in Druault et

al. [8].
We propose to interpolate velocity field in time from successive instantaneous PIV vector fields, for instance

between u(tk1,Xij ) and u(tk1+1,Xij ) with k1 ∈ [1,Nt − 1]. For such a purpose, two procedures are considered:
(i) the direct time interpolation of raw PIV database u(tk,Xij ), and (ii) the time interpolation of POD eigenfunctions
a(n)(tk) computed from raw PIV database. For a sake of clarity, the spatial variable Xij will be omitted in the following

formulae: u(tk1) and Φ
(n)
u will be used instead of u(tk1 ,Xij ) and Φ

(n)
u (Xij ) respectively.

3. Mathematical cubic spline interpolation

Based on the knowledge of u(tk1) and u(tk1+1), k1 ∈ [1,Nt −1], the cubic spline time interpolation is implemented
to estimate uint(t), with t in [tk1 , tk1+1]. Such interpolation provides a polynomial of the third order of the following
shape:
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uint(t) = C0
k1

+ C1
k1

(t − tk1) + C2
k1

(t − tk1)
2 + C3

k1
(t − tk1)

3 (2)

with Cl
k1

(l = 1,4) coefficients are expressed as follows:

C0
k1

= u(tk1) (3)

C1
k1

= u(tk1+1) − u(tk1)

tk1+1 − tk1

− tk1+1 − tk1

6

[
2u′′(tk1) + u′′(tk1+1)

]
(4)

C2
k1

= u′′(tk1)

2
(5)

C3
k1

= 1

6(tk1+1 − tk1)

(
u′′(tk1+1) − u′′(tk1)

)
(6)

where ′ and ′′ indicate the partial and second-order partial derivative in the t direction respectively.

4. Use of proper orthogonal decomposition for time interpolation

Another way for interpolating TRPIV database in time consists in using the POD decomposition [8]. Such flow
decomposition leads to the separation of time and space variables and instantaneous velocity component u(tk1) can
be expressed with Eq. (1). The time interpolation of the TRPIV database is then reduced to the interpolation of POD
temporal coefficients. The cubic spline time interpolation in the [tk1, tk1+1] interval of the nth POD eigenfunction
leads to the following formula:

a
(n)
int (t) = D

0(n)
k1

+ D
1(n)
k1

(t − tk1) + D
2(n)
k1

(t − tk1)
2 + D

3(n)
k1

(t − tk1)
3 (7)

where Dl
k1

(l = 1,4) coefficients have similar expressions as the Cl
k1

ones (see Eqs. (3)–(6)) replacing u with a(n):

D
0(n)
k1

= a(n)(tk1) (8)

D
1(n)
k1

= a(n)(tk1+1) − a(n)(tk1)

tk1+1 − tk1

− tk1+1 − tk1

6

[
2a(n)′′(tk1) + a(n)′′(tk1+1)

]
(9)

D
2(n)
k1

= a(n)′′(tk1)

2
(10)

D
3(n)
k1

= 1

6(tk1+1 − tk1)

(
a(n)′′(tk1+1) − a(n)′′(tk1)

)
(11)

Based on this time interpolation, instantaneous velocity field is reconstructed as follows (see Eq. (1))

uint.pod(t) =
Nmod∑
n=1

a
(n)
int (t)Φ(n)

u (12)

Spatial eigenfunctions φ
(n)
u remain the same as the ones initially computed.

5. Comparative analysis of both interpolation procedures

A comparative analysis of both interpolated results is now performed. Using the fact that instantaneous velocity
field can be expressed in the POD basis, Cl

k1
coefficients are re-arranged into the following equivalent equations:

C0
k1

= u(tk1) =
Nmod∑
n=1

a(n)(tk1)φ
(n)
u =

Nmod∑
n=1

D
0(n)
k1

φ(n)
u (13)

Doing the same thing with the coefficient C1
k1

(Eq. (4)), we obtain:

C1
k1

=
Nmod∑(

a(n)(tk1+1) − a(n)(tk1)

tk1+1 − tk1

− tk1+1 − tk1

6

[
2a(n)′′(tk1) + a(n)′′(tk1+1)

])
φ(n)

u (14)

n=1
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Using Eq. (9), it becomes: C1
k1

= ∑Nmod
n=1 D

1(n)
k1

φ
(n)
u . In a similar way, the following relations are obtained:

C2
k1

=
Nmod∑
n=1

D
2(n)
k1

φ(n)
u and C3

k1
=

Nmod∑
n=1

D
3(n)
k1

φ(n)
u (15)

Based on these last equations, Eq. (2) becomes:

uint (t) =
Nmod∑
n=1

(
D

0(n)
k1

+ D
1(n)
k1

(t − tk1) + D
2(n)
k1

(t − tk1)
2 + D

3(n)
k1

(t − tk1)
3)φ(n)

u (16)

which corresponds exactly to Eq. (12) that is whatever t in [tk1 , tk1+1], uint(t) = uint.pod(t). It is then demonstrated
that when interpolating the whole available POD eigenfunctions, such time interpolation is exactly the same as the
direct interpolation of raw available data.

6. Discussion

In this note, it is demonstrated that based on TRPIV database, the time cubic spline interpolation of the whole
POD eigenfunctions is reduced to the time cubic spline interpolation of the raw available PIV database. This result
is directly linked to a property of the POD procedure which is a linear transform allowing the separation of time and
space variables of the velocity field. When dealing with the whole available POD temporal coefficients, using POD
is favourable only in the sense that we have to interpolate Nmod = Nt scalar functions corresponding to the POD
coefficients instead of performing nx × ny time interpolations for each velocity component.

In fact, as it has been previously noticed [8], the cubic spline interpolation of POD coefficients is only satisfactory
for the first POD coefficients. The determination of the number of the first POD modes which can be accurately
modelled with cubic spline interpolation is directly correlated to the sampling frequency of the TRPIV system and
to the in-cylinder engine turbulent flow under consideration. Conversely, the mathematical time interpolation of high
POD mode numbers may be questionable. Indeed, the PIV sampling frequency is smaller than the one associated with
the corresponding small scale structures which might not then be accurately time interpolated.

As a first conclusion, performing a time interpolation from successive PIV images is only valid for the large
scale flow structures. The advantage of using POD flow decomposition for such interpolation resides in its efficiency
in extracting the dominant modes corresponding to the large scale energetic structures. Such time reconstruction
procedure can be related to other ones based on gappy POD which are used for the space interpolation of PIV data [7].
Indeed, gappy POD procedure takes into account also a small subset of the available POD modes.

Otherwise, other mathematical procedures could be used for performing a similar time interpolation from succes-
sive PIV images obtained in such a pseudo-periodic flow. Indeed, it seems that filtering methods such as turbulence
filtering procedures [12] and/or wavelet flow decomposition or others can be similarly applied to TRPIV database in
order to extract the velocity data information associated with the large scale flow structures. Resulted filtering PIV
database could be then time interpolated with the aid of classical mathematical procedures. We attempt that the imple-
mentation of these other methods will provide similar results as the ones deduced from POD-based time interpolation.

As a second conclusion, when dealing with pseudo-periodic flows, any mathematical tool allowing the extraction
of the large scale flow structures from successive PIV images, can be used for time interpolating these structures.

Implementating mathematical post-processing tools aiming at time reconstructing the large scale flow dynamics of
a pseudo-periodic flow is of great interest for many reasons. First, such time reconstruction leads to an accurate flow
dynamic description of the large scale flow structures during an engine cycle. Based on this available time resolved
database, new analyses can then be performed like the cyclic variability analysis [13] which is of great importance for
the engine efficiency and for reducing the exhaust emission. Second, having a two-dimensional experimental database
with a high time resolution may offer some new possible applications related to the analysis and comparison with
Large Eddy Simulation database. Third, knowing that TRPIV system at the repetition rates required for in-cylinder
flows (superior to 10 kHz) is not routine, commercial lower speed TRPIV system (≈500 Hz) may be an alternative
solution. This last TRPIV system allows to access vector fields of greater consistency and quality that we expect
could be produced when using a 10 kHz repetition rate. The implementation of the time reconstruction procedure
is then of interest in that high quality vector fields can be obtained at lower repetition rate from direct experimental
measurements and vector fields at a higher temporal sampling rate are then deduced.
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Finally, these mathematical developments can also have some experimental measurement applications in other
flows exhibiting quasi-periodic phenomena associated with a regular passage of large scale flow structures.
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