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In this study, microscopic deterministic and analytical contact models that take the proper-
ties of engineering surfaces into account have been developed. Geometrical characteristics
of rough surfaces are deduced using the standard procedure for roughness and waviness
parameters. These models allow the analyses of the asperities behaviour and real contact
area. Comparison between the analytical and deterministic results shows a good correla-
tion. The microscopic model is often enabling to simulate the real structure with complex
geometry, so, a homogenisation technique has been developed. The interface of the equiv-
alent model has been governed by the microscopic model results. Sensitivity of models
responses to the random pulling of surfaces parameters has been also analysed.

© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The topographies of interacting surfaces can have a significant influence on the global physical and mechanical be-
haviours of a technical system. There is, for example, a direct relation between the thermal and electromagnetic resistivity
between interacting bodies and the real area of contact between the mating surfaces. In fact, real area results from the
combination of the surface topography and geometry (roughness) with the mechanical behaviour of the asperities, which
for metallic materials will undergo elastic, elastoplastic or plastic deformations, depending on their mechanical characteris-
tics. So, resolving industrial problems requires often mechanical and topographic analyses at macroscopic and microscopic
scale.

Many researchers have studied the microscopic behaviours of rough surfaces [1–3]. The first elastic contact model was
developed by Greenwood and Williamson (GW) in 1966 [4]. This model represents the roughness by a number of hemi-
spheres with the same curvature radius R and a Gaussian asperity height distribution. A relationship is found from the
assumption that deformation is elastic (Hertz [5]), with no interaction between asperities during contact with a smooth
rigid plan. The real contact area and the total force are expressed in terms of the distance separating the smooth surface
and the mean plan of the rough surface. The GW model defines the plasticity index ψ :

ψ = E∗

H

√
σ

R
(1)

where E∗ is the combined Young’s modulus of the two surfaces, σ is the standard deviation of summit heights, R is the
curvature radius, H is the hardness material. For moderate contact pressures, ψ indicates the average deformation mode of
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the rough surface. The deformation is elastic for ψ < 0.6, fully plastic for ψ > 1 and elastoplastic for 0.6 < ψ < 1. However,
contact area and mean pressure on each asperity are not known in the range of the plasticity index 0.6 < ψ < 1.

Abbott and Firestone [6] built a model, where deformations of the asperities are taken to be entirely plastic. This model
equates the contact between a rigid plan and the rough surface to the truncation of a surface by a plan. The real area is
estimated to be a straightforward geometrical intersection of the plan and the rough surface. The contact pressure is given
by the plastic flow pressure H of the rough surface.

Zahouani and Sidoroff [7] presented a method for the elastic–plastic analysis of this contact problem and showed that
such approach can provide a significant understanding of the influence of the surface roughness upon the progressive
development of the contact area under increasing normal load.

F. Robbe-Valloire et al. [8,9] determined a global load and real contact area at the contact of two rough surfaces for a
given separation distance between them. Roughness has been described using probabilistic model based on the quantifi-
cation of the variability in the summit altitude and the asperity radius. This model will be used in this work to compare
numerical results of microscopic model. The Robbe-Valloire model has been taken because it gives not only a realistic
description of the profile but also uses the concept of the sum surface.

In recent years, attempts were made to analyse contact of rough surfaces by means of numerical simulation. Among
them there are works of Robert L. Jackson and Jeffery L. Streator [10] who describe a non-statistical multi-scale model of
the normal contact between rough surfaces. The model considers the effect of having smaller asperities located on top of
larger asperities in repeated fashion. Parameters describing the surface topography (asperity density and asperity radius) are
calculated from an FFT performed of the surface profile. The model predicts a real contact area as a function of contact load.
The limitation of this model is that the model assumes that all asperities at a given frequency behave identically in term of
deformation, load support, etc.

R.S. Sayles [11] presented a numerical method using inversion approach. Real contact area in function of load has been
compared with previous methods. A good agreement has been shown. He also presented distribution of rough surface
pressure and the subsequent sub-surface stress effects they create. The numerical method has been applied to a two- and
three-dimensional topography data.

M. Ciavarella et al. [12] studied a decrease of the elastic contact area in the elastic contact of fractal random surfaces
when increasing roughness. They developed a numerical method using Fourrier and Weierstrass random series and involving
a uniform distribution of pressure. Results of their method are compared with two recent models of Ciavarella [13] and
Persson [14,15]. They show that both theories tend to underpredict the contact area.

D. Goerke and K. Willner [16] build a half space numerical model which describes the elastoplastic normal contact of
isotropic fractal surfaces. Results of this numerical model are compared with experimental data which are obtained from
contact tests of several aluminium specimens. The pressures versus gap curves were compared in both models. They show
a good compliance except for small loads during unloading.

W. Everett Wilson et al. [17] developed a multiscale numerical model of rough surfaces to predict a real area of contact
and surface separation as a function of load. Results of this model have been compared with existing statistical contact
models. Comparison has shown qualitatively similar results. In accordance with concerns in previous works [10,13] that the
iterative calculation of real contact area in multiscale methods does not converge, this work not only tests but also gives
conditions required for convergence in these techniques.

More recently, B. Buchner et al. [18] developed a new concept based on a combination of the bearing area curve and a
model asperity representing the average asperity slope of the original surface profile. The new approach allows the determi-
nation of the real contact area-load relation for any surface compressed by a flat tool without excessive effort. Comparison
of the new concept calculations and the data obtained by simulating the upsetting of the original profile shows a good
correspondence.

The aim of this Note is to analyse analytically the contact between rough surfaces and to simulate numerically a mi-
croscopic contact. Geometrical characteristics of rough surfaces are deduced from an experimental profile and using the
standard procedure for roughness and waviness parameters (ISO12085) [19]. Comparison between deterministic and ana-
lytical studies has been discussed. The analytical model has been chosen because it allows on the one hand to take into
account the roughness and waviness parameters and on the other hand to use the concept of the sum surface used in
deterministic model. The evolution of real contact area and the sensitivity of the model response to the random pulling of
the geometrical characteristics have been analysed.

Finally, an equivalent model based on the homogenisation technique has been presented. The interfacial behaviour of
this model has been governed by the curve deduced from the microscopic model. The homogenisation technique has been
validated by comparing the stress and strain states of the two models.

2. Analytical study

2.1. Microgeometry standard parameters (motif parameters)

This work is based on a standardised method [19] for determining the surface microgeometry. This description has
already been used by F. Robbe-Valloire [20,21]. The measurements were performed with a classical stylus profile instrument
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Fig. 1. Geometrical characteristics of a motif.

currently available on the commercial market. The obtained profile has been filtered, using a two-step procedure, into two
profiles which successively provide roughness parameters and afterwards waviness parameters.

First the profile’s main peak and valley are identified. Signal processing is obtained by means of a graphical method
drawing upon the concept of a so-called “motif” defined as that part of the profile found between two peaks. The geomet-
rical characteristics of the motif number i are as follows (Fig. 1):

• H1i is the height between the left peak and the deepest valley;
• H2i is the height between the right peak and the deepest valley;
• Ti is the smaller value of H1i and H2i ;
• Ri is the mean height (H1i , H2i) of the motif i;
• ARi is the horizontal distance between the peaks of the motif i.

Four conditions have been used to combine or not two motifs. These conditions give the principal peaks and permit the
calculation of roughness parameters:

• R is the average of the height values Ri of the motifs;
• AR is the average of the width values ARi of the motifs;
• SR is the root mean square of the Ri values;
• SAR is the root mean square of the ARi values.

With the motifs of roughness, it is possible to keep only the summits of the peaks and to reply the same methodology.
This second step gives a new type of motif called a waviness motif. So, waviness parameters called W , AW , SW , and SAW
have been obtained.

2.2. Description of the rough surfaces using Robbe-Valloire model

Greenwood and Williamson [4] introduced a statistical description in the variability of summit altitudes and proposed a
curved shape of asperities with a constant radius.

Whitehouse and Archard [22] and Nayak [23] admit variation in asperity radius instead of merely in the summit altitudes.
This study describes asperity geometry by F. Robbe-Valloire’s approach [8,9]. This approach assumed a perfect circular

shape of asperities radius with a lognormal distribution. The mean radius of asperity is deduced from dimensional charac-
teristics of each motif. The value is given by the following relation:

ρi = 1

16

AR2
i

Hi
(2)

ρi changes from one asperity to another but it is possible to specify values of its variability.
The mean value ρm is expressed by:

ρm = 1 AR2 + SAR2

(3)

16 R
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The associated root mean square value ρrms is given by:

ρrms = 1

16

AR2

R

√
SR2

R2
+ 4

SAR2

AR2
(4)

The distribution function of radius is

F (ρ∗) = 1

c1ρ∗√2π
exp

[
− 1

2c2
1

(lnρ∗ − c2)
2
]

(5)

with

ρ∗ = ρ

ρrms
, c1 =

√
ln

(
ρ2

rms

ρ2
m

+ 1

)
and c2 = ln

(
ρm

ρrms

)
− ln

(
ρ2

rms

ρ2
m

+ 1

)

F. Robbe-Valloire assumes a normal distribution for the altitude of asperity summit. The mean value of summits altitude
is Zm = 0 and root mean square value is:

Zrms = 0.35
√

W 2 + SW2 (6)

The distribution function of summits altitude is:

f (z) = 1

Zrms
√

2π
exp

[
−1

2

(
Z − Zm

Zrms

)2
]

(7)

2.3. Analysis of the contact between two rough surfaces

In this study, we transform the contact between rough deformable surfaces into the contact between a smooth rigid
surface and a rough deformable which is called sum surface. Microgeometry and mechanical characteristics of the sum
surface are deduced from each surface in contact.

• Microgeometry of the sum surface
The microgeometry parameters of the sum surface results from parameters of each surface in contact. Thus, the follow-
ing relations give microgeometric parameters of the sum surface from parameters of each surface in contact:

R = R1 + R2 and W = W1 + W2 (8)

SR =
√

SR2
1 + SR2

2 and SW =
√

SW2
1 + SW2

2 (9)

AR = 1

2
(AR1 + AR2) and AW = 1

2
(AW1 + AW2) (10)

SAR =
√

SAR2
1 + SAR2

2 and SAW =
√

SAW2
1 + SAW2

2 (11)

• Mechanical characteristics of the sum surface
– Elasticity of the sum surface

Young’s modulus is deduced from Young’s modulus of each surface in contact using a classical relation:

1

Eq
= 1

2

(
1 − ν2

1

E1
+ 1 − ν2

2

E2

)
(12)

– Plasticity of the sum surface
The yield stress of the material constituting the sum surface corresponds to the lowest value of the yield stress of
each surface in contact.

2.4. Results

2.4.1. Description of the simulated contact
Profiles of the two rough studied surfaces 1 and 2 are presented in Fig. 2. These geometrical characteristics are deduced

using the standard procedure previously described. The microgeometrical parameters of the sum surface are also calculated
using the previous relationship (Table 1).

The two surfaces 1 and 2 have a Poisson ratio of ν = 0.3 and respectively Young’s module of 60 and 68 GPa. So, the
material of the sum surface has the following properties: Young’s module: E = 70 GPa, Poisson ratio: ν = 0.3 and yield
stress of the material: Rpe = 38 MPa. The apparent contact area is A0 = 3.8 mm.
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(a)

(b)

Fig. 2. Profiles of the contacting surfaces: (a) surface 1, (b) surface 2.

2.4.2. Normal load transmitted by contact
Because of the variability of summit altitude and radius of the asperities, we take the two parameters as variables. Three

classical stages of deformation have been considered: elastic, elastoplastic and plastic. The position “d” of the smooth and
rigid surface from the mean line of summits altitude of the rough and deformable surface has been also defined (Fig. 3).

Thus, local contact can occur only on the asperities having a summit altitude Z exceeding “d”. Such asperities are
deformed by interference δ = Z − d.

In order to determine the normal forces transmitted through elastic, elastoplastic and plastic asperities the following
relations have been used [8,9]:
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Table 1
Microgeometrical parameters of the rough surface

Surface 1 Surface 2 Sum surface

R (μm) 1.13 2.05 3.19
SR (μm) 0.27 0.76 0.81

AR (μm) 137 177 157
SAR (μm) 63 105 122

W (μm) 0.47 6.45 6.92
SW (μm) 0.07 0.83 0.84

AW (μm) 654 1299 976
SAW (μm) 122 256 284

Fig. 3. Schematic description of the distance between the two surfaces.

Q elast = 1.2
A0

AR2

Zmax∫
z=d

ρmax∫
ρe

W1 f (z)F (ρ)dZ dρ (13)

Q elastoplast = 1.2
A0

AR2

Zmax∫
z=d

ρe∫
ρep

W2 f (z)F (ρ)dZ dρ (14)

Q plast = 1.2
A0

AR2

Zmax∫
z=d

ρep∫
0

W3 f (z)F (ρ)dZ dρ (15)

with:

W1 = 2

3

(
δ3 E2

qρ
)1/2

W2 = 2π

3
ρ(2δ − δe)Rpe
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(
1

6
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ρ
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(

δ

27.4
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(

δ

3976

)(
Eq
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zmax and ρmax are the maximum values for altitude and the radius of asperities on a given surface. The global load on the
contact is given by:

Q = Q elast + Q elastoplast + Q plast

Fig. 4 shows the evolution of the apparent contact pressure Q
A0

with the distance “d” separating surfaces. Apparent
contact pressure in this case increases from 0 to 47 MPa which corresponds in a total crush of asperities above the mean
line of the summits altitude.

2.4.3. Cumulative area of contact
It is possible to obtain the real area of contact transmitted by the normal load through the three stages of deformations

using the following expressions:

Aelast(d) = 1.2
A0

AR2

Zmax∫ ρmax∫
π(z − d)ρ f (z)F (ρ)dZ dρ (16)
z=d ρe
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Fig. 4. Evolution of apparent contact pressure as a function of the distance “d”.

Fig. 5. Evolution of the ratio Ar/Aa in function of the mean separation distance.

Aelastoplast(d) = 1.2
A0

AR2

Zmax∫
z=d

ρe∫
ρep

π
[
2(z − d) − δe

]
ρ f (z)F (ρ)dZ dρ (17)

Aplast(d) = 1.2
A0

AR2

Zmax∫
z=d

ρep∫
0

π
[
2(z − d) − δe

]
ρ f (z)F (ρ)dZ dρ (18)

Thus, the real contact area is:

Ar(d) = Aelast(d) + Aelastoplastic(d) + Aplastic(d)

Fig. 5 illustrates the evolution of the ratio of the real contact area to the apparent contact area in function of separation
distance “d”. The ratio Ar/Aa increases when the distance “d” decreases.

3. Deterministic microscopic model

3.1. Deterministic model

As described previously the contact between two rough surfaces is transformed to the contact between a rough surface
and a perfectly smooth plan. The material’s behaviour of the rough surface is modulated using large deformation and
elastoplastic theory. More specifically, the plastic flow is described via the Von Mises plasticity criterion. The material’s
characteristics used previously have been taken (Young modulus of 70 GPa, a Poisson ratio of 0.3 and a constant yield stress
σpe of 38 MPa). A non-linear elastoplastic behaviour has been used (Fig. 6).
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Fig. 6. Stress–strain hardening curve.

Fig. 7. Boundary conditions, dimensions and mesh used in numerical simulation.

Fig. 8. Profile of the sum surface.
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Fig. 9. Distance between the rigid plane and the mean line profile for different displacements: (a) u = 0, (b) u �= 0.

Fig. 10. Evolution of the ratio Ar/Aa with the distance “d” for analytical and numerical models.

2D model has been used using ABAQUS/Standard. The width of the two contacting bodies is 3.8 mm. The height of the
smooth rigid body is 1 mm and height of the deformable rough body is 0.8 mm. Free mesh types have been considered.
They are particularly refined near the interface having a size between 3 and 5 μm, but are sufficiently large away from the
rough surface having a size of 100 μm. Dimensions and boundary conditions of the model are shown in Fig. 7. Loading
is achieved by monitoring the smooth and rigid plan quasi-static displacement (dynamic effects are neglected), which is
pushed vertically into the volume to investigate the crushing.

In this model, the same roughness and waviness parameters of the sum surface have been considered. A Matlab program
has been developed in order to obtain coordinates of summits and valleys of the sum surface profile from roughness
and waviness parameters presented in Table 1. This program allows the regeneration of both the waviness and roughness
profiles while assuming that waviness and roughness parameters have a lognormal distribution. The surface profile has been
obtained using a superposition of the roughness profile upon the waviness one.

The summits and valleys coordinates of this profile have been introduced in the 2D numerical model using python
scripts. Afterwards, they have been interpolated by splines. Fig. 8 showed a simulated profile.

In order to evaluate the real contact area, nodes of a rough surface which have a contact with the rigid body have been
obtained. So, to verify if a node is in contact or not with the rigid, contact pressure relative to surface nodes has been
controlled. The node is in contact with the rigid, if the pressure is different from zero. Real contact area has been deduced
for several increments relative to different values of the distance “d” separating contacting surfaces (Fig. 9).

Fig. 10 presents analytical and deterministic results of the evolution of the ratio Ar/Aa with the distance “d”. The
deterministic and analytical curves have the same tendency and the maximum relative error between two models is 9%.
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Fig. 11. Evolution of the apparent contact pressure as a function of the distances “d” for analytical and numerical models.

(a)

(b)

Fig. 12. Sensitivity of the model responses to the random pulling of roughness parameters (10 pullings): (a) Ar/Aa , (b) apparent contact pressure.
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Fig. 13. Schematic representation of micro–macro scale: (a) micro, (b) macro.

The apparent contact pressure has also been analysed. Fig. 11 presents the analytical and deterministic results of the
evolution of the apparent contact pressure as a function of the distance “d”. It shows that for the two models the apparent
contact pressure increases by decreasing the distance “d”.

The difference between the two models is essentially due to the difference between assumptions. In fact, in the analytical
model, the spherical asperities have been considered. However, in the deterministic model, summits have been related using
splines. Moreover, in the deterministic model, the elastoplastic behaviour and interaction between asperities have been taken
into account.

3.2. Sensitivity of the model response to random pulling of the profile parameters

The previous results have been obtained for one random pulling of the roughness and waviness parameters (R , SR, AR,
SAR, W , SW , AW and SAW). Therefore, the study of the effect of the random pulling on the response of the deterministic
model is important. The evolution of the ratio (Ar/Aa) and apparent contact pressure with the separation distance surfaces
for 10 arbitrary pulling of the roughness profile has been analysed. Fig. 12 illustrates the dispersion of these evolutions with
the distance “d”. It shows that the model response depends on the random pulling. This dispersion can govern the evolution
of deformation modes of asperities as well as some physical properties such as thermal contact resistance.

4. Deterministic equivalent model

4.1. Homogenisation technique

In the industrial cases, real structures with large dimensions have been often used. Therefore, taking into account the
topographic rough surfaces of these structures becomes complex and the numerical generation of the profile of large di-
mension surfaces is difficult and the computing time becomes very important.

So, it is necessary to build a macroscopic equivalent model which allows on the one hand to simulate the real large
dimension structures and on the other hand, to take into account the effect of the rough contact surfaces.

We propose in this work to set up a methodology allowing studying the macroscopic scale analyses based on the micro-
scopic results. The strategy suggested considers that the interfacial behaviour of the equivalent model has been governed by
the synthesis curve (apparent contact pressure–separation distance) deduced from the microscopic model (Fig. 13).

The same boundary conditions of the microscopic model have been used. Quadrangular elements have been used and
the meshes are particularly refined near the rough surface.
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(a)

(b)

Fig. 14. Vertical displacement for F = 100 N and relative to microscopic and equivalent model with the: (a) y position, (b) x position.

4.2. Validation of homogenisation technique

The correlation between microscopic and the equivalent model has been studied using a comparison between stress and
strain (displacement) relative to different horizontal and vertical paths. Two vertical and one horizontal path have been
considered for the microscopic model (Fig. 13). The first vertical path is relative to a peak; however, the second corresponds
to a valley. The horizontal path has been considered at 1/3 of depth away from the rough surface. Equivalent paths have
been considered for the equivalent model. Vertical and horizontal (at 1/3 of depth) paths of equivalent model have also
been considered.

Displacements relative to the different vertical and horizontal paths have been illustrated respectively in Figs. 14a
and 14b. These displacements have been obtained for a relatively low normal load (100 N). Fig. 14a shows that near to
the fixed base, the difference between displacements of two models is not significant. However, near to the rough surface,
this difference becomes more important. This behaviour is governed essentially by the presence of the asperities in the
interface. Fig. 14a shows also that the displacement in the peak is larger than the one of the valley. In fact, during the
beginning of the loading, contact has occurred in the peaks and therefore they are more loaded.
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(a)

(b)

Fig. 15. Vertical displacement relative to equivalent model for 10 interfacial curves as a function of: (a) y position, (b) x position.

The vertical displacement relative to the horizontal path at 0.53 mm from the bottom surface has been also analysed.
Fig. 14b presents the results relative to microscopic and equivalent model. It shows that the microscopic path presents
more fluctuation than the equivalent one. This fluctuation is due to the presence of the asperities in the rough surface of
microscopic model.

The same analysis has been investigated for a larger normal load (F = 284 N). It shows that the path disturbance near
the rough surface is less than these obtained in the previous case.

4.3. Sensitivity of the equivalent model response to the random pulling of the profile parameters

Sensitivity of the equivalent model response to the random pulling of microscopic profile of the surface has been anal-
ysed. Fig. 15 illustrates the evolution of vertical displacement relative to the vertical and horizontal paths for a normal load
F = 450 N which corresponds to a final increment of the analysis. These displacements have been obtained using 10 curves
of interfacial microscopic model which correspond to 10 pullings of the profile. It shows that there is no difference between
results. We deduce that the equivalent model is not sensitive to random pulling of the profile of the microscopic model.

5. Conclusion

In this study, contact between rough deformable surface and rigid smooth plan has been investigated. Microscopic and
equivalent macroscopic models have been developed. Roughness parameters for the microscopic model were deduced using
the standard procedure for roughness and waviness parameters ISO12085. Elastoplastic behaviour of the rough surface
allows taking into account the different deformation modes of asperities. This model allows also analysing the real contact
area with the distance separating surfaces. Results of deterministic microscopic model have been validated with an analytical
study and a good correlation is found. The deterministic model responses are not very sensitive to the random pulling of
the different parameters.

An equivalent model using a homogenisation technique has also been developed. This model makes it possible to sim-
ulate complex and large-sized structures while taking into account the topographic characteristics. The interfaces in the
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equivalent model have been governed by a synthesis curve deduced from the microscopic model. The validation of the
homogenisation technique was also carried out through the analysis of the displacement states. The sensitivity of the equiv-
alent model to the random pulling of the microscopic profile has been also realised.
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