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The present article focuses on the modelling of chemo-mechanics couplings in polymer
matrix materials exposed to thermo-oxidative environments at high temperatures (150 ◦C).
The coupling between oxygen reaction–diffusion and mechanics is put in evidence
theoretically through the employment of a unified approach, based on the thermodynamics
of irreversible processes; it is found that oxygen reaction–diffusion in the polymer matrix
can be influenced by the strain tensor, in particular by its trace and by its spatial gradients.
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r é s u m é

Le présent article s’intéresse à la modélisation des couplages entre l’oxydation et la
mécanique dans les résines de type époxy soumises à un environnement dit « haute
température » (150 ◦C). Le couplage entre le schéma mécanistique de réaction diffusion de
l’oxygène et la mécanique est abordé théoriquement en utilisant une approche classique
de la thermodynamique des processus irréversibles. Il est montré que le phénomène de
diffusion–réaction peut être influencé par le tenseur des déformations mais aussi par le
gradient spatial de la trace des déformations.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Aging in fibre reinforced polymer composites is represented by the long-term action of physical, chemical and mechanical
phenomena such as creep, water absorption, thermo-oxidation, UV light: polymeric resins are particularly reactive to the
environment at high temperatures, while carbon fibres are stable.

In particular, thermo-oxidation is the coupled reaction–diffusion of oxygen occurring in polymer matrices at high tem-
peratures, a chemical process accompanied by the formation of volatile products and the local disruption of the polymer
macromolecular chains; these phenomena lead to mass and density variations, irreversible shrinkage strains and may pro-
mote a consistent change of the local mechanical properties (Young’s modulus, critical stress, fracture toughness, among
others).
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The cited effects may give rise in turn to fibre-matrix debonding close to the external surfaces exposed to the environ-
ment and promote the onset of matrix microcracking under the thrust of thermo-mechanical solicitations in air or oxygen
rich environments [1].

Multi-physical couplings are responsible for such mechanisms and they can be particularly marked when the interaction
between polymer materials (and polymer composites) and gas/liquid rich environments is concerned.

Historically, there is a large body of literature (and different approaches) concerning strong diffusion–mechanics couplings
occurring in water and gas transport in polymeric materials.

For instance, Larché and Cahn [14,15] starting from the Gibbs theory of thermodynamics equilibrium for solid mixtures
[16] developed a linearised and a nonlinear theory for “a solid which absorbs fluids, a material in essence comparable macro-
scopically to a sponge or microscopically to a gelatine”, like polymeric materials that absorb solvents, and substitutional solid
solutions in which atoms diffuse by a vacancy mechanism.

Truesdell [17] developed a theory of mixtures in which a system is considered as an assembly of different sub-systems
occupying the same space at the same time. Each sub-system is allowed to exchange mass, momentum and energy with
any other sub-systems but the conservation principles for mass, momentum and energy of the mixture must be respected.
Finally, the second law of thermodynamics, expressed through an entropy inequality for the whole mixture should be
identically satisfied for any admissible process, given by an arbitrary solution of the cited balance equations.

An improved version of such theory, taking into account materials with memory, has been presented by Lustig et al. [18].
Weitsman [19] and Carbonell and Sarti [20] developed approaches which are intermediate between Gibbs/Larché and

Cahn and Truesdell/Lustig. Their approaches are based on the Thermodynamics of Irreversible Processes (TIP) and impose
global balances on the whole mixture, which is composed of a solid solvent and a solute, without giving a precise descrip-
tion of the evolution of the sub-systems.

These approaches are for elastic and viscoelastic materials and are explicitly devoted to polymers and polymer-based
composites. Their relative simplicity is dictated by the necessity to explain complex experimental phenomena (anomalies in
the absorption process) through straightforward and manageable models.

In particular Weitsman [19] shows how an applied or a self-induced stress may assist water diffusion in elastic and
viscoelastic materials identifying eventually an apparent diffusion coefficient dependent on stress and on the mechanical
properties of the materials. The apparent diffusivity, in turn, may have a remarkable effect on the solute concentration
profiles inside the material, affecting the induced stress.

Recently, Rambert et al. [21,22] Valancon et al. [23], presented coupled numerical models of water and gas transport
in polymers based also on TIP, enhancing the direct couplings which may exist between heat transfer, mass transport,
chemical reaction and mechanical behaviour. These works put in evidence the complex multi-physical behaviour of polymer
materials; diffusion phenomena may driven by stress and, conversely, the elastic and viscoelastic response of polymers may
be influenced by diffusion. In particular, water/gas diffusion in the polymeric material may be accelerated by the stress state
within the material and follow a path which is oriented by stress gradients.

The literature singles out two possible effects of strain (stress) on mass and species diffusion: the effect of strain (stress)
intensity (see, for instance, Larché and Cahn [14,15]) and the effect of the gradient of the strain (stress) tensor (see, for
instance, Weitsman [19] and Rambert et al. [21]).

Concerning thermo-oxidation mechanisms in polymers and polymer matrix composites, there is a large body of recent
work (see, for instance, Colin et al. [2,3], Decelle et al. [4], McManus et al. [5], Schieffer et al. [6], Tandon et al. [7], Tsotsis
et al. [8]); in particular, Colin et al. [2,3] have developed a mechanistic-based scheme which describes thermo-oxidation
reaction–diffusion phenomena at the molecular scale.

Olivier et al. [9–12] have contributed validating the mechanistic model by Colin et al. [2,3] and, on the bases of such
model have developed a coupled reaction–diffusion–mechanics model within the formalism of TIP. The model is able to
catch stress localisation occurring during thermal oxidation and to predict eventually the oxidation induced fibre-matrix
debonding. Validation of the model has been provided by Gigliotti et al. [13] through comparison between the predicted and
the experimentally measured thermo-oxidation induced shrinkage profiles in IM7/977-2 carbon–epoxy composite materials
exposed to oxidative environments.

In all the cited approaches the coupling between reaction–diffusion and mechanics is weak; the chemical fields have an
effect on the mechanicals ones, but mechanics – the state of strain and stress in the polymeric matrix – has no influence
on oxygen reaction–diffusion.

A contribution by Popov et al. [34,35] concerning the ozone–polymer interaction shows that the direct effect of level of
stress on the chemical reaction can be considered of the second order.

The question about how to evaluate strong chemo-mechanics coupling effects in polymer and composite materials is a
quite complex issue, since all experimental tests engender spatial gradients. Moreover, in order to be interpreted, such tests
need thus to be guided by a chemo-mechanics coupled model. In particular, such a model should help identifying all the
possible forms of couplings and design relevant coupled tests.

The aim of the present article is to assess chemo-mechanics couplings by taking into account different forms of coupling
(direct and indirect couplings). More precisely, we want to put into evidence theoretically the influence of the strain tensor
and of its spatial gradients on the oxygen reaction–diffusion mechanism. Chemo-mechanics couplings are put into evidence
theoretically through the employment of a unified approach, based on TIP (De Groot [24], Prigogine et al. [25]), following a
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formalism similar to that developed by Rambert et al. [21,22] and by Rabearison et al. [26] for polymeric resins submitted
to curing processes, in which crosslinking reaction phenomena play a primordial role.

The paper is divided as follows: in Section 2 the classical reaction–diffusion model by Colin et al. [2,3] is briefly recalled,
reviewing results already published [9–12], and putting into evidence the need for a fully coupled formulation, which is
more consistent from a thermodynamics point of view.

In Section 3 mechanics–diffusion couplings are modelled in a general setting and discussed. In Section 4 conclusions and
perspectives are finally presented.

2. Classical mechanistic scheme and its experimental assessment

The present section recalls results which have already been presented in [9–12], with a short introduction to a mecha-
nistic scheme model for thermo-oxidation of epoxy resin based composites developed by Colin et al. [2,3]. This model has
been also employed in [13] for validation purposes.

In particular in this section we want to review how chemo-mechanics couplings have been handled out until today
within the context of the classical mechanistic scheme.

The classical mechanistic models thermo-oxidation at the molecular scale following the closed loop scheme:

(I) POOH + γ PH → 2P• + H2O + vV (k1, initiation)

(II) P• + O2 → PO2
• (k2, propagation)

(III) PO2
• + PH → POOH + P• (k3, propagation)

(IV) P• + P• → IP1 (k4, ending)

(V) P• + PO2
• → IP2 (k5, ending)

(VI) PO2
• + PO2

• → IP3 + O2 (k6, ending) (1)

In this scheme the global oxidative reaction generates hydro peroxides POOH reactants and a substrate consumption phe-
nomenon due to PH concentration. The scheme identifies ten different chemical species: POOH, PH, H2O, V (volatiles), O2,
P• , PO2

• (the symbol • identifies free radicals) and three species of inactive products, IP1, IP2 and IP3. Volatiles are com-
posed by different molecules though, for convenience, only one average volatile molecule is considered. Fibres are supposed
to be thermally and chemically stable through the whole process.

Assuming that the volatile species escape instantaneously from the material (no volatiles diffusion), the coupled system
of differential equations related to the classical mechanistic scheme (1) and governing thermo-oxidation reaction–diffusion
is given by:

∂[O2]
∂t

= −k2
[
P•][O2] + k6

[
PO2

•]2 + DO2∇2[O2]
∂[POOH]

∂t
= k3[PH][PO2

•] − k1[POOH]
∂[PH]

∂t
= −k3[PH][PO2

•] − γ k1[POOH]
∂[PO2

•]
∂t

= k2
[
P•][O2] − k3[PH][PO2

•] − k5
[
PO2

•][P•] − 2k6
[
PO2

•]2

∂[P•]
∂t

= 2k1[POOH] − k2
[
P•][O2] + k3[PH][PO2

•] − 2k4
[
P•]2 − k5

[
PO2

•][P•] (2)

in which k1, . . . ,k6 are rate constants and DO2 is the oxygen diffusion coefficient. The first equation of (2) governs oxygen
reaction–diffusion, the first term on the right side of the equation being the reaction “source”, the second one being the
diffusion term. In order (2) to be solved, initial and boundary conditions must be specified for the species. Usually, the
oxygen concentration at the exposed surface is supposed to be related to the external pressure through the classical Henry
law:

[O2]s = pS (3)

in which S is the solubility coefficient. Other sorption laws can be specified for high pressures (see for instance [9]), however
the Henry law is appropriate for low pressures.

Oxygen reaction–diffusion is usually characterised by a global parameter, the concentration of oxidation products, Q ,
defined by:

Q (x, y, z, t) =
t∫
−d[O2]

dτ
dτ (4)
0
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Eqs. (1) to (4) describe and simulate the chemical phenomena related to thermo-oxidation in the polymer matrix material.
Coupling with mechanics can be achieved in a relatively straightforward way by calculating the shrinkage strains due to
the chemical reaction–diffusion phenomena and by employing them as free strains in the mechanical equations (compat-
ibility, equilibrium and constitutive equations). In this case the coupling is weak since the chemical fields are calculated
independently from mechanics.

According to Colin et al. [2,3] and Decelle et al. [4] volatiles departure is responsible for chemical shrinkage, which
engenders mass, density and local volume variations, thus local strain.

The polymer shrinkage strain, ESH , can be expressed in the following form:

ESH = 1

3

�V

V 0
I = 1

3

(
�m

m0
− �ρ

ρ0

)
I (5)

in which I is the second order identity tensor, V and V 0, m and m0, ρ and ρ0 are the actual and the initial volume, mass
and density, respectively. The reader is referred to Refs. [2–4] for further discussion about the terms appearing in Eq. (5).

Residual stresses of thermal, hydrothermal and chemical nature, S, can be calculated according to the following elastic
constitutive equation under the hypothesis of small strain:

S = C : (E − ET − EH − ESH)
(6)

in which S is the stress tensor, C is the elasticity tensor, E is the total strain tensor, ET and EH are the free thermal and
hygroscopic expansion strain tensors, respectively. Eq. (6) takes into account through ET and EH the possible contribution
of thermal or hydrothermal free strains.

Eqs. (5) and (6) represent a first form of weak coupling. Strains and stresses are calculated from the oxygen reaction–
diffusion equations; the concept of free thermo-oxidation induced polymer shrinkage strain is essential for stress evaluation.

Another form of weak chemo-mechanics coupling which may be defined as indirect consists in taking into account the
effects of the chemical reaction–diffusion phenomena on the material behaviour law of the polymer.

For instance, the thermo-oxidation induced local changes of elastic modulus can be expressed as a function of the
concentration of oxidation products, as follows:

C = C(Q ) (7)

The parameters of the classical mechanistic scheme can be identified through mass loss tests at several temperatures (see,
for instance, [4] and [27]). It is a “global” technique similar to weight testing of resin and composite samples to assess water
absorption/desorption.

Another technique, which can be defined as “local” and that has been employed for validation purposes (see, for in-
stance, [10–12]), consists in measuring – at room temperature – the indentation elastic module (EIT) profiles of oxidised
resin samples and to relate them to the concentration of oxidation products – Eq. (4). Thanks to these tests, functional
relationships of the type (7) can be also identified, at room temperature.

The literature [9–12] shows that the temporal evolution of the EIT spatial profiles – measured at room temperature –
correlates well with that of the calculated Q spatial profiles. In particular, the following explicit form for EIT(Q ) has been
identified (MPa):

EIT(Q ) = 5510 − 1469 exp(−0.48Q ) (8)

Indentation Elastic Modulus measurements are thus a good way of validating and identifying, locally, the mechanistic
scheme and the weakly coupled chemo-mechanics model, since they are able to catch experimentally the evolution of
the Q spatial profiles.

Moreover, functional relationships such as (8) can be effectively constructed and identified through EIT measurements.
Once identified, the model can be employed for the simulation and the prediction of the thermo-oxidation induced

shrinkage profiles in composite materials exposed to oxidative environments [13].

3. Chemo-mechanics coupled model

As shown in Section 2 two chemo-mechanics couplings effects can be singled out within the context of the classical
mechanistic scheme.

The first one is the effect of the chemical reaction on the free chemical shrinkage strain, ESH (Eq. (5)), the second one is
the effect of the chemical reaction on the EIT module (Eqs. (7) and (8)). Both effects have a direct impact on the residual
stress state of the polymer (Eq. (6)).

However the direct effect of mechanics on the mechanistic oxygen reaction–diffusion scheme (Eq. (2)) has never been
taken into account in the existing literature concerning thermo-oxidation.

A basic question which arises is: which form of chemo-mechanics couplings may exist within the context of TIP and for
the particular problem of thermo-oxidation of a polymer matrix.

The present section provides thus an attempt to put into evidence theoretically the chemo-mechanics couplings including
strong and direct couplings.
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3.1. Diffusion–mechanics fully coupled model

The assumption of “local equilibrium” is formulated by TIP: each part of a material system can be approximately consid-
ered, at each time, as being in thermal equilibrium. In TIP, all the notions which can be precisely defined only at equilibrium
in thermostatics (for instance, temperature, entropy or potentials) are postulated.

Considering an elementary volume of matrix as a perfect homogeneous mixture of polymer and mobile chemical species,
for instance oxygen, the mass balance of each ith mobile species, of mass fraction Yi , within an elementary volume can be
written as (see, for instance, Prigogine et al. [25] and Germain et al. [29]):

ρ
∂Yi

dt
=

nr∑
r=1

νir Mi wr − ∇ · jmi (9)

in which ρ is the density, νir the stoichiometric coefficient of the rth reaction, Mi the molar mass of the ith species, wr

the rth reaction rate, jmi the mass flux of the ith species and nr the total number of reactions.
Eq. (9) may be written in an equivalent form:

∂Y ∗
i

dt
=

nr∑
r=1

νir wr − 1

Mi
∇ · jmi (10)

by introducing the molar concentration Y ∗
i = ρYi/Mi , i.e. the number of moles per unit volume.

In order to develop a fully coupled chemo-mechanics model we make use of a procedure which is typical of TIP and
which consists in introducing and defining dissipation and thermodynamic potentials from which the state and the evolution
equations can be found by derivation.

In order to construct these potentials first the stress and strain tensor, S and E respectively, are decomposed into their
spherical (Ss,Es) and deviatoric (Es,Ed) components:

Ss = 1

3
tr SI, Sd = S − Ss, Es = 1

3
tr EI, Ed = E − Es (11)

The strain/stress decomposition finds its motivation in the hypothesis – put forward in [28] at the molecular scale – that
the oxidation reaction does not influence the bulk modulus K of the epoxy polymer matrix; in this case, only the shear
modulus of the polymer depends on the chemical reaction, G = G(Q ). It should be also noted that in a linearised setting
tr E = tr Ean + tr Ee + tr ET + tr EH + tr ESH , that is, the trace of the total strain tensor (E) is equal to the sum of the traces
of the elastic strain tensor (Ee), the inelastic strain tensor (Ean) and the thermal (ET ), hygroscopic (EH ) and irreversible
chemical shrinkage free strain tensors (ESH), respectively. In turn the free strain tensors can be related to the respective
volume relative variations (�V /V 0)

β and to the respective Jacobian, Jβ , by relations of the type tr Eβ = (�V /V 0)
β = Jβ − 1.

Linear relations are usually employed so that tr Eβ = ∑
i γβ�β , in which γβ are coefficients of thermal, hygroscopic or

chemical expansion and �β is the related variation (β = T , H or SH). According to TIP and employing the strain/stress
decomposition the generalised Gibbs equation can be written as:

T ds = de − 1

ρ
tr S d tr E − 1

ρ
Sd : dEd −

ns∑
i=1

μi dYi +
niv∑
j=1

f j · dv j (12)

In Eq. (12) T is the temperature, s the specific entropy per unit mass (J/kg K), e the specific internal energy per unit mass
(J/kg), μi is the chemical potential of the ith specie (J/kg). v j represents a set of internal variables, f j are the associated
thermodynamic “forces”, ns is the total number of chemical species and niv is the total number of internal variables. In
Eq. (12) the term

∑
i μi dYi can be also expressed by the equivalent

∑
i

1
ρ μ∗

i dY ∗
i in which μ∗

i = μi Mi is the chemical
potential of the ith specie per unit mole (J/mol).

The second principle can be expressed as follows:

ρ
ds

dt
= 1

T

(
S : dEan

dt
− ∇ · q + r −

ns∑
i=1

μi

(
nr∑

r=1

νir Mi wr − ∇ · jmi

)
+ ρ

niv∑
j=1

f j · dv j

dt

)
(13)

in which q the heat flux and r the internal heat source. According to Prigogine et al. [25] the entropy variation can be
decomposed into an exchange term and internal term, that is:

ρ
des

dt
= −∇ ·

(
1

T

(
q −

ns∑
i=1

μijmi

))
+ 1

T
r

ρ
di s

dt
= 1/T S : dEan

dt
+ q · ∇ 1

T
+

(
1

T

) nr∑
Ar wr −

ns∑
jmi · ∇ μi

T
+ ρ/T

niv∑
f j · dv j

dt
(14)
r=1 i=1 j=1
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the internal term is due to internal dissipation due to irreversible phenomena, the exchange term includes heat flux terms
that compensate the entropy variation promoted by internal dissipation. The internal dissipation term must be greater than
zero for irreversible transformation, while it is equal to zero for reversible transformations.

In Eq. (14) Ar defined by:

Ar = −
ns∑

k=1

νkr Mkμk = −
ns∑

k=1

νkrμ
∗
k (15)

represents the “affinity”, in the sense of De Donder [25,29].
In the present context internal dissipation terms due to inelastic strains and internal variables can be discarded, therefore,

by introducing the entropy flux term jS as follows:

jS = 1

T

(
q −

ns∑
i=1

μijmi

)
(16)

the dissipation, Φ , is finally given by:

Φ = −jS · ∇T +
nr∑

r=1

Ar wr −
ns∑

i=1

jmi · ∇μi (17)

It is interesting to note [30,31] that the dissipation can be written in synthetic form as the product of a generalised ther-
modynamic force and a generalised thermodynamic velocity:

Φ = y · ż � 0 (18)

Then, following Lord Rayleigh [32], assuming the existence of a dissipation function, D(ż), which is function of the gener-
alised velocities, and of its Legendre–Frenchel transform, D∗(y), function of the generalised forces, it is possible to deduce
generalised forces and generalised velocities in a straightforward way, through:

y = ∂D

∂ ż
, ż = ∂D∗

∂y
(19)

In the present context the dissipation function and its Legendre–Frenchel transform can be written:

D = D(jS , wr, jmi), D∗ = D∗(−∇T , Ar,−∇μi) (20)

By defining an equivalent strain E∗ = Ed : Ed and by choosing a quadratic dissipation potential, being close to thermodynamic
equilibrium:

D∗ = 1

2
(−∇T ) · BT

(
tr E,E∗) · (−∇T ) + 1

2

nr∑
r=1

Br
(
tr E,E∗)A2

r

+ 1

2

ns∑
i=1

(−∇μi) · Bμ i
(
tr E,E∗) · (−∇μi) +

ns−1∑
i=1

ns∑
j=1

(−∇μi) · Cμ i j
(
tr E,E∗) · (−∇μ j) (21)

in which BT , Br and Bμ i , Cμ i j are strain-dependent coefficients associated, respectively, to heat transfer, chemical reaction
and diffusion, the reaction rate and mass flux are finally given by:

wr = ∂D∗

∂ Ar
= Br

(
tr E,E∗)Ar = −Br

(
tr E,E∗) ns∑

k=1

νkr Mkμk = −Br
(
tr E,E∗) ns∑

k=1

νkrμ
∗
k

jmi = ∂D∗

∂(−∇μi)
= −Bμ i

(
tr E,E∗) · ∇μi − Cμ i j

(
tr E,E∗) · (−∇μ j)

= −Bμ i(tr E,E∗)
Mi

· ∇μ∗
i − Cμ i j(tr E,E∗)

M j
· ∇μ∗

j (22)

Eq. (22a) expresses the reaction rate wr as a function of the chemical potential. Eq. (22b) relates the mass flux to the
gradient of the chemical potential. It has to be noted that by Eqs. (21) and (22b) the mass flux of the ith species is related
not only to the gradient of its own chemical potential (Fick’s first law) but also to the gradient of the chemical potential of
the jth species (with j �= i). The tensor Cμ i j relates the mass flux of the ith species to the gradient of the chemical potential
of the jth species.
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By substituting (22a) and (22b) into (10) gives:

∂Y ∗
i

dt
=

nr∑
r=1

νir
(

Br
(
tr E,E∗)Ar

) − 1

Mi
∇ ·

(
−Bμ i(tr E,E∗)

Mi
· ∇μ∗

i

)
− 1

Mi
∇ ·

(
−Cμ i j(tr E,E∗)

M j
· ∇μ∗

j

)

=
nr∑

r=1

νir

(
−Br

(
tr E,E∗) ns∑

k=1

νkrμ
∗
k

)
− 1

Mi
∇ ·

(
−Bμ i(tr E,E∗)

Mi
· ∇μ∗

i

)

− 1

Mi
∇ ·

(
−Cμ i j(tr E,E∗)

M j
· ∇μ∗

j

)
(23)

Eq. (23) expresses the general form of the mass balance equation for each ith mobile species, dependent on the choice of
the chemical potential per unit mole, μ∗

i . Obviously, Eq. (23) must be solved with the adequate boundary conditions, which
will be discussed later.

By an opportune choice of μ∗
i , it is possible to recover the system of Eqs. (2) of the classical mechanistic scheme by the

general expression (23). For instance, if the chemical potential of the ith species is proportional to its own concentration,
and the mass flux of the ith species does not depend on the gradient of the chemical potential of the jth species (with
j �= i), Eq. (22b) corresponds to the so-called second Fick’s law which is employed in the classical mechanistic scheme (the
diffusion term in the first of Eqs. (2)), as will be detailed later.

Now we search for a general expression for μ∗
i , dependent on the strain tensor, in order to put into evidence the direct

chemo-mechanics couplings in Eqs. (23). Once a suitable law for μ∗
i is identified, we apply it to the chemical mechanistic

scheme of thermo-oxidation (1) to recover the fully coupled partial differential equations that govern the thermo-oxidative
reaction–diffusion phenomenon.

In order to identify a proper form for μ∗
i , it is necessary to introduce a thermodynamic potential, a scalar function of all

the state variables and of the internal variables, if any.
The introduction of a thermodynamic potential helps specifying a “collection” of state equations, including proper ex-

pressions for the chemical potential of each species and material constitutive relations.
It is useful to remind that thermodynamic potentials can be rigorously defined only at equilibrium. However, since

classical TIP concerns near equilibrium processes it is reasonable to suppose that even outside equilibrium potentials can
be defined as functions of the same variables at equilibrium. Moreover, each part of a material system, at each time, can be
approximately considered in thermal equilibrium. These assumptions form the basis of the axiom of local state.

The specific Helmoltz free energy per unit mass (J/kg), ψ , is then taken quadratic, convex with respect to the state
variables (the trace of the total strain tensor, tr E, its deviatoric part, Ed , the mass fraction, Yi or, equivalently, the molar
concentration, Y ∗

i ) and to the internal variables (if any) and concave with respect to the temperature; the temperature
dependency will not be written explicitly (isothermal conditions only are studied in the present context) in order to simplify
calculations:

ψ = ψ
(
tr E,Ed, Y ∗

i

)
(24)

For example, the thermodynamic potential may be expressed as:

ψ
(
tr E,Ed, Y ∗

i

) = 1

ρ

(
3

2
K (tr E)2 + G

(
Q

(
Y ∗

i

))
E∗

)

+
ns∑

i=1

1

ρ

(
Ci tr EY ∗

i + αi
(
tr E,E∗)RT

(
Y ∗

i

(
ln

(
Y ∗

i /Y ∗0
i

) − 1
)) + μ0∗

i Y ∗
i

)
(25)

in which K is the bulk modulus, G(Q (Y ∗
i )) the reaction dependent shear modulus, αi(tr E,E∗), Ci are chemo-mechanics

coupling coefficients to be identified. In particular αi(tr E,E∗) is a strain-dependent coefficient related to the solubility,
which plays a role in the sorption process, as we will see later. Finally μ0∗

i is a reference chemical potential which may
depend on temperature and pressure (standard conditions) but does not depend on molar concentration and Y ∗0

i is a
reference molar concentration so that the ratio (Y ∗

i /Y ∗0
i ) corresponds to the chemical activity of the ith species. It should be

noted that, in Eq. (25), the molar concentration Y ∗
i corresponds to the chemical activity of the ith species by assuming a

reference molar concentration Y ∗0
i equal to 1 (mol m−3 if Y ∗

i is expressed in mol m−3).
The state laws, including an expression for the chemical potential, can be recovered from ψ , as follows:

tr S = ∂ρψ

∂ tr E
= 3K tr E+

ns∑
i=1

(
∂αi(tr E,E∗)

∂ tr E
RT

(
Y ∗

i

(
ln

(
Y ∗

i

) − 1
)) + Ci Y

∗
i

)

Sd = ∂ρψ

∂ tr Ed
= 2G

(
Q

(
Y ∗

i

))
Ed + 2

ns∑(
∂αi(tr E,E∗)

∂E∗ RT
(
Y ∗

i

(
ln

(
Y ∗

i

) − 1
)))

Ed
i=1
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μ∗
i = ∂ρψ

∂Y ∗
i

= ∂G(Q (Y ∗
i ))

∂Y ∗
i

E∗ + Ci tr E + αi
(
tr E,E∗)RT ln Y ∗

i + μ0∗
i (26)

By substituting Eq. (26c) into Eq. (15) the affinity Ar becomes:

Ar = −
ns∑

k=1

νkrμ
∗
k = −

ns∑
k=1

νkr

(
∂G(Q (Y ∗

k ))

∂Y ∗
k

E∗ + Ck tr E + αk
(
tr E,E∗)RT ln Y ∗

k + μ0∗
k

)
(27)

By substituting Eq. (26c) into (23) the mass balance of each ith mobile species, of molar concentration Y ∗
i , within an

elementary volume can be written as:

∂Y ∗
i

∂t
=

nr∑
r=1

νir

(
−Br

(
tr E,E∗) ns∑

k=1

νkr

(
∂G(Q (Y ∗

k ))

∂Y ∗
k

E∗ + Ck tr E + αk
(
tr E,E∗)RT ln Y ∗

k + μ0∗
k

))

− 1

Mi
∇ ·

(
−Bμ iαi(tr E,E∗)

Mi
· ∇

(
∂G(Q (Y ∗

i ))

∂Y ∗
i

E∗ + Ci tr E + αi
(
tr E,E∗)RT ln Y ∗

i + μ0∗
i

))

− 1

Mi
∇ ·

(
−Cμ i jαi(tr E,E∗)

M j
· ∇

(
∂G(Q (Y ∗

j ))

∂Y ∗
j

E∗ + C j tr E + α j
(
tr E,E∗)RT ln Y ∗

j + μ0∗
i

))
(28)

Eq. (28) describes reaction–diffusion of the ith species and is characterised by the sum of three terms. The first one is the
reaction term; the second one is a diffusion term dependent on the gradient of the chemical potential of the ith species
itself, the third one is a diffusion term depending on the gradient of the chemical potential of the jth species.

In particular, concerning the reaction part,

– Br(tr E,E∗) is a reaction coefficient which may depend on the strain tensor,

– the term
∑ns

k=1 νkr
∂G(Q (Y ∗

k ))

∂Y ∗
k

E∗ follows from the dependency of G on Q thus on Y ∗
i , which has been proven experimen-

tally in Section 2. This term must be present at least theoretically,
– the term Ck tr E is homologous to the chemical shrinkage strain term in Eq. (31) whose existence is proved experimen-

tally; therefore this term should be present at least theoretically,
– the term αi(tr E,E∗)RT ln Y ∗

i is specific to the chemical reaction and is essential to construct the mechanistic scheme,
as it will be shown later. It should be noted that αi may depend on strain.

The diffusion part is characterised by the spatial gradients of both chemical and mechanical quantities, still involving the
deviatoric part and the trace of the strain tensor, E∗ and tr E respectively, and a classical diffusion term, depending on the
species concentration, Y ∗

i .
The last diffusion term, involving the strain dependent tensor Cμ i j , is relevant when coupling between the fluxes of

different mobile chemical species does exist.
Boundary conditions for Eq. (28) can be found by imposing – at the interface between the environment and the “solvent”

material – the equality of the chemical potentials of the gaseous species and of the species dissolved within the material.
The chemical potential of the gaseous species, μ∗

g , can be classically written:

μ∗
g = μ0∗

g + RT ln
(

p/p0) (29)

where μ0∗
g is the gas reference potential, p is the gas pressure and p0 is a reference pressure. The chemical potential μ∗

is of
a species dissolved within the material at the interface with the environment, (Y ∗

is) can be written (following Eq. (26c)):

μ∗
is = ∂G(Q (Y ∗

is))

∂Y ∗
is

E∗ + Cis tr E + αis
(
tr E,E∗)RT ln

(
Y ∗

is/Y ∗0
is

) + μ0∗
is (30)

We remark that when Eq. (30) does not depend on E∗ and tr E – and with μ0∗
g = μ0∗

is – we may recover interface boundary
conditions which are analogous to the classical Henry’s law.

As a last general remark we note that E∗ and tr E may be the effect of an external applied strain/stress or the result
of the self-generated strains/stresses related to the reaction–diffusion process itself through the free chemical shrinkage
strain, ESH .

The former case is usually referred in the literature as stress-assisted diffusion.
The second case is usually referred in the literature as self-assisted diffusion.

3.2. Recovery of the classical mechanistic scheme for thermo-oxidation

In order to recover the mechanistic scheme by Colin et al. [2], Eq. (2), some assumption should be made, that is:

– only one mobile species must be considered, thus the tensor Cμ i j must be zero,
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– the chemical reaction is not affected by mechanics, therefore the Br and the Bμ i coefficients are constant,

– the terms
∑ns

k=1 νkr
∂G(Q (Y ∗

k ))

∂Y ∗
k

E∗ and Ck tr E and its spatial gradients are assumed to be negligible,

– the coefficients αi(tr E,E∗) do not depend on the strain components.

By Eq. (27) the affinity Ar becomes in this case:

Ar = −
ns∑

k=1

νkrμ
∗
k = −

ns∑
k=1

νkr
(
αk RT ln Y ∗

k + μ0∗
k

)
(31)

The affinity related to each reaction is equal to zero at equilibrium so that:

Ar = RT ln
K (T , p)

(Y ∗
1 )ν1r α1(Y ∗

2 )ν2r α2 · · · (Y ∗
ns)

νnsr αns

= RT ln
((Y ∗

1 )ν1r α1)eq((Y ∗
2 )ν2r α2)eq · · · ((Y ∗

ns)
νnsr αns )eq

(Y ∗
1 )ν1r α1(Y ∗

2 )ν2r α2 · · · (Y ∗
ns)

νnsr αns
(32)

where:

ln K (T , p) = −
∑ns

k=1 νkrμ
0∗
k

RT
(33)

or, equivalently:

K (T , p) = ((
Y ∗

1

)ν1r α1
)

eq

((
Y ∗

2

)ν2r α2
)

eq . . .
((

Y ∗
ns

)νnsr αns
)

eq (34)

in which the subscript eq represents equilibrium values.
Then, Eq. (28) becomes:

∂Y ∗
i

dt
=

nr∑
r=1

νir

(
−Br

ns∑
k=1

νkr
(
αk RT ln Y ∗

k + μ0∗
k

)) − 1

Mi
∇ ·

(
−Bμ i

Mi
· ∇(

αi RT ln Y ∗
i + μ0∗

i

))
(35)

or, equivalently, in terms of the affinity, Ar :

∂Y ∗
i

dt
=

nr∑
r=1

νir(Br Ar) − 1

Mi
∇ ·

(
−Bμ i

Mi
· ∇(

αi RT ln Y ∗
i + μ0∗

i

))
(36)

that is:

∂Y ∗
i

dt
=

nr∑
r=1

νir

(
Br RT ln

((Y ∗
1 )ν1r α1)eq((Y ∗

2 )ν2r α2)eq · · · ((Y ∗
ns)

νnsr αns )eq

(Y ∗
1 )ν1r α1(Y ∗

2 )ν2r α2 · · · (Y ∗
ns)

νnsr αns

)

− 1

Mi
∇ ·

(
−Bμ i

Mi
· ∇(

αi RT ln Y ∗
i + μ0∗

i

))
(37)

In the classical mechanistic scheme only oxygen diffusion is considered; therefore BμO2 �= 0. Then, the oxygen reaction–
diffusion equation (the first equation of the set of Eqs. (2)) can be recovered by considering reactions II and VI of the
scheme in Eq. (1), that is:

∂[O2]
∂t

= RT

{
νO2–2

[
B2 ln

([P•]νP•–2 αP• )eq([O2]νO2–2 αO2 )eq([PO2
•]νPO2

•αPO2
•
)eq

([P•]νP•–2αP• )([O2]νO2–2 αO2 )([PO2
•]νPO2

•αPO2
•
)

]

+ νO2–6

[
B6 ln

([PO2
•]νPO2

•–6 αPO2
•
)eq([PO2

•]νPO2
•–6αPO2

•
)eq([IP3]νIP3 αIP3 )eq([O2]νO2–2αO2 )eq

([PO2
•]νPO2

•–6αPO2
•
)([PO2

•]νPO2
•–6αPO2

•
)([IP3]νIP3 αIP3 )([O2]νO2–2αO2 )

]}

− 1

MO2

∇ ·
(

−BμO2

MO2

· ∇(
αO2 RT ln[O2] + μ0∗

O2

))
(38)

in which [IP3] represents the concentration of the inactive products IP3 appearing in reaction VI.
In order to recover the mechanistic scheme it is necessary to further hypothesise that all the αi involved in all reactions

are equal to unity. Then, by following a procedure which is classical in chemical thermodynamics (see for instance Lebon et
al. [33]) and which considers chemical processes occurring close to equilibrium conditions equation (38) becomes:

∂[O2]
∂t

= RT B2

[PO2
•]eq

([
PO2

•]) − RT B2

[P•]eq[O2]eq

([
P•][O2]

) + RT B6

[PO2
•]2

eq

([
PO2

•]2)

+ RT B6

[IP ] [O ]
([IP3][O2]

) + BμO2 RT

M2 [O ] ∇ · ∇([O2]
)

(39)

3 eq 2 eq O2 2 eq
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in which the molar concentration values [X] now represent – for each considered species – a small variation with respect
to an equilibrium condition.

We note that – in order to recover the mechanistic scheme (the first of Eqs. (2)) from Eq. (39):

– the inverse reaction terms RT B2[PO2
•]eq

([PO2
•]) and RT B6[IP3]eq[O2]eq

([IP3][O2]) are discarded,

– the term RT B2[P•]eq[O2]eq
corresponds to the k2 constant employed in the mechanistic scheme,

– the term RT B6
[PO2

•]2
eq

corresponds to the k6 constant employed in the mechanistic scheme,

– the term
BμO2 RT

M2
O2[O2]eq

corresponds to the DO2 constant employed in the mechanistic scheme; therefore, in such scheme,

the diffusion coefficient should depend on the oxygen molar concentration at equilibrium.

Eq. (39) must be solved with opportune boundary conditions, which are found by imposing – at the interface between the
environment and the “solvent” material – the equality of the chemical potentials of the gaseous oxygen and of the oxygen
dissolved within the material.

In particular, by employing Eqs. (29) and (30), by ignoring the dependency on E∗ and tr E – and with μ0∗
g = μ0∗

[O2]s – we
may recover the classical Henry’s law, Eq. (3), with the solubility coefficient, S , given by:

S = [O2]0
s

p0 exp(α[O2]s)
(40)

3.3. Extension of the classical mechanistic scheme by including strong chemo-mechanics couplings

At this stage of the development it is possible to generalise the mechanistic scheme by Colin et al. [2,3], taking into ac-
count coupling with mechanics. Without loosing generality, only oxygen diffusion is considered, as in Section 3.2: therefore
Cμ i j = 0 and BμO2 �= 0.

Eq. (28) becomes:

∂[O2]
∂t

=
{
νO2–2

(
−B2

(
tr E,E∗) ns∑

k=1

νkr

(
∂G(Q (Y ∗

k ))

∂Y ∗
k

E∗ + Ck tr E + αk
(
tr E,E∗)RT ln Y ∗

k + μ0∗
k

))

+ νO2–6

(
−B6

(
tr E,E∗) ns∑

k=1

νkr

(
∂G(Q (Y ∗

k ))

∂Y ∗
k

E∗ + Ck tr E + αk
(
tr E,E∗)RT ln Y ∗

k + μ0∗
k

))}

+ BμO2(tr E,E∗)
M2

O2

∇ · ∇
(

∂G(Q ([O2]))
∂[O2] E∗ + CO2 tr E + αO2

(
tr E,E∗)RT ln[O2] + μ0∗

[O2]
)

(41)

Again Eq. (41) must be solved by imposing opportune boundary conditions such as those specified in Section 3.1, Eqs. (29)
and (30).

In Eq. (41) chemo-mechanics couplings appear in several different forms.
The dependency of G on Q ([O2]), which is proven experimentally makes the term ∂G(Q ([O2]))

∂[O2] E∗ appearing in Eq. (41).
However, since E∗ follows from a product of strain tensors and we are within the framework of the small strain hypoth-

esis, these terms can be neglected in a first approximation. Moreover the variation of G with respect to the concentration
of oxidation products (Eq. (8)) is quite weak.

By ignoring the ∂G(Q ([O2]))
∂[O2] E∗ term Eq. (41) and its boundary condition (30) can be written, respectively:

∂[O2]
∂t

=
{
νO2–2

(
−B2

(
tr E,E∗) ns∑

k=1

νkr
(
Ck tr E + αk

(
tr E,E∗)RT ln Y ∗

k + μ0∗
k

))

+ νO2–6

(
−B6

(
tr E,E∗) ns∑

k=1

νkr
(
Ck tr E + αk

(
tr E,E∗)RT ln Y ∗

k + μ0∗
k

))}

+ BμO2(tr E,E∗)
M2

O2

+ ∇ · ∇(
CO2 tr E + αO2

(
tr E,E∗)RT ln[O2] + μ0∗

[O2]
)

(42)

μ∗[O2]s = C[O2]s tr E + α[O2]s
(
tr E,E∗)RT ln

([O2]s/[O2]0
s

) + μ0∗
[O2]s (43)

Chemistry kinetics is dependent on tr E and E∗ through the coefficients B2, B6 and αi .
On the other hand diffusion kinetics is influenced by mechanics through the term BμO2.
The tr E term influences directly the chemical reaction through the Ck tr E terms and modifies the diffusion path through

the ∇ · ∇(CO2 tr E) term.
The tr E term influences also the boundary condition through the C[O2]s coefficient.
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Eq. (41) presents a certain degree of complexity and must be solved numerically also due to the presence of a boundary
condition explicitly depending on strain.

At this stage of the theoretical development we may think about possible experimental tests to be done in order to
quantify thermo-oxidation chemo-mechanics couplings.

Two “families” of tests should be conceived; the first test should be done by imposing a uniform strain field on the
material sample in order to evaluate the effect of the magnitude of the tr E and E∗ terms on the oxygen reaction–diffusion.
This test should be, in turn, performed on thin and thick samples in order to check the effect of mechanics on the sorption
process (sample saturation) and on the diffusion process, respectively.

A second test should be performed on samples subjected to strain gradients in order to enhance the effect of such
gradients on the diffusion path.

As shown in Section 2, Indentation Elastic Modulus measurements are able to catch experimentally the evolution of the
Q spatial profiles, they have been proven effective for validating the classical thermo-oxidation mechanistic scheme.

The idea is to employ the same technique in samples thermo-oxidised under an applied external strain/stress.
Results from an experimental activity on chemo-mechanics couplings employing EIT measurements in polymer thermo-

oxidised resins will be the object of a future communication by the authors.

4. Conclusions and perspectives

The aim of the present article was to construct and to assess a chemo-mechanics coupled model for polymer matrix
materials exposed to thermo-oxidative environments at high temperature, in which oxygen reaction–diffusion phenomena
take place.

In order to do this, first, an uncoupled mechanistic scheme of oxygen reaction–diffusion operating at the molecular scale
has been presented in its “classical” form (Colin et al. [2]). Moreover a way to handle weak coupling between chemical and
mechanical fields has been shortly reviewed.

A chemo-mechanics coupled model has been then constructed starting from thermodynamics considerations and, in
particular, employing the thermodynamics of irreversible processes.

It has been shown theoretically that the chemical reaction may directly depend on the strain tensor, in particular should
be influenced by tr E and its spatial gradients.

The classical mechanistic model for oxygen reaction–diffusion independent of mechanical variables [2,3] has been also
recovered by introducing simplifying hypotheses, which have been explicitly stated.

In fact, the model presented in this article represents a possible development of the mechanistic scheme taking into
account direct and indirect couplings with mechanics.

Work is under progress in order to assess experimentally the fully coupled chemo-mechanics model.
Different tests typologies have been proposed at the end of Section 3. Results from an experimental activity on chemo-

mechanics couplings employing EIT measurements in polymer thermo-oxidised resins will be the object of a future com-
munication by the authors.
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