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In this article, a mathematical model for beams with partially delaminated layers is
presented to investigate their behavior by using Euler–Bernoulli beam theory. The principal
advantage of the element is that it allows the modeling of delamination anywhere in
the structure. The region without delamination is modeled to carry constant peel and
shear stresses; while the region with delamination is modeled by assuming that there
is no peel and shear stress transfer between the top and bottom layers. Moreover, in
the interfaces between the regions with and without delamination, both displacements
and forces continuity conditions are imposed. The accuracy of the models is verified by
comparing results with previously published data.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Vibration and shape control using piezoelectric sensors and actuators have attracted significant attention in recent years.
The aspect of vibration control of plates by piezoelectric materials was studied by Yang and Huang [1] and Piéfort et al. [2].
These models are based on the classic theory of laminated plates which neglects the effects of the transverse shear. Finite
element model to predict the vibrations of the piezoelectric actuators is presented by Taleghani and Campbell [3]. Basic ac-
tuator and sensor equations of composite shell structures with piezoelectric layers are presented by Tzou and Gadre [4] and
Tzou [5]. In previous studies, the adhesive layers are not modeled and the fundamental assumption is that the piezoelectric
layers are perfectly bonded onto the host structures. Lee et al. [6] studied a composite beam with arbitrary lateral and lon-
gitudinal multiple delamination. Finite element methods have been developed using the layerwise theory by Kim et al. [7].
An improved analytical model for delamination in composite beams, using a second-order shear-thickness deformation dis-
placement field, was introduced by Hamed et al. [8]. Tan and Tong [9] developed dynamic analytical model for identification
of a delamination embedded in a laminated composite beam. It was noted that the piezoelectric sensor can only effectively
identify the size and location of a delamination which is beneath the sensor. Mahieddine and Ouali [10] present a finite
element formulation based on the first-order theory of Kirchoff to analyze beams with integrated piezoelectric actuators
and sensors.

To investigate the effects of delamination of piezoelectric layers on vibration control of beam, a mathematical model
based on Euler–Bernoulli beam theory is developed. The delaminated region of the beam is modeled by assuming that there
is no stress between the top and bottom layers. Both displacement continuity and force equilibrium conditions are imposed
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Nomenclature

AB , AT Cross-section area of bottom and top layers re-
spectively

b Width of the beam
D Electric displacement matrix
E Electric field matrix
Ez Electric field relative to z
ē Piezoelectric stress coefficient matrix
ḡ Permittivity constant matrix
hB ,hT Thickness of bottom and top layers respec-

tively
k Parameter characterizing the bonding condi-

tions
L Beam’s length
MB , MT Bending moments of bottom and top layers re-

spectively
M ′

B , M ′
T First spatial derivatives of MB and MT respec-

tively
P Load per unit length
Q B , Q T Transverse shear forces of bottom and top lay-

ers respectively
Q ′

B , Q ′
T First spatial derivatives of Q B and Q T respec-

tively
Ō Elastic stiffness
T B , T T Axial stress resultants of bottom and top lay-

ers respectively
T ′

B , T ′
T First spatial derivatives of T B and T T respec-

tively
uB , uT Displacements, of bottom and top layers re-

spectively, relative to x

u′
B , u′

T First spatial derivatives of uB and uT respec-
tively

u′′
B , u′′

T Second spatial derivatives of uB and uT re-
spectively

u′′′
B , u′′′

T Third spatial derivatives of uB and uT respec-
tively

üB , üT Second time derivatives of uB and uT respec-
tively

w B , w T Displacements, of bottom and top layers re-
spectively, relative to z

w ′
B , w ′

T First spatial derivatives of w B and w T respec-
tively

w ′′
B , w ′′

T Second spatial derivatives of w B and w T re-
spectively

w ′′′
B , w ′′′

T Third spatial derivatives of w B and w T re-
spectively

w ′′′′
B , w ′′′′

T Fourth spatial derivatives of w B and w T re-
spectively

ẅ B , ẅ T Second time derivatives of w B and w T respec-
tively

z Spatial coordinate
εB , εT Strains for bottom and top layers respectively
ν Natural frequency
σ Peel stress
ρB ,ρT Mass densities of bottom and top layers re-

spectively
τ Shear stress
τ ′ First spatial derivative of τ

between the regions with and without delamination. The accuracy of the approach is verified by comparing results with
previously published data.

2. Mathematical formulation

In the present work the delamination is modeled as a crack which separates the beam into a top (T ) and bottom (B)
layers. It is assumed that the delamination results in different transverse and axial displacements for the top and bottom
layers.

Under these assumptions, the axial (U ) and transverse (W ) displacements for the top (T ) and bottom (B) layers are
written as

U T (x, z) = uT (x) − z · w ′
T (x) (1)

U B(x, z) = uB(x) − z · w ′
B(x) (2)

W T (x, z) = W T (x) (3)

W B(x, z) = W B(x) (4)

where a prime denotes differentiation with respect to x.
The strain relations for a piezoelectric layer (top) and beam (bottom) associated with the displacement field are given by

εT = u′
T − z · w ′′

T (5)

εB = u′
B − z · w ′′

B (6)

The piezoelectric constitutive equations, which neglect the thermal effects, can be expressed by [11–14]:

σ = Q̄ · ε − ēT · E (7)

D = ē · ε + ḡT · E (8)
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Fig. 1. Free-body diagram of an infinitesimal beam element with top and bottom layers.

For a beam problem, one can use σy = τyz = τxy = 0. The stress in the top and bottom layers is given by

σT = Q̄ 11 · εT − ẽ31 · Ez (9)

σB = Q̄ 11 · εB (10)

For the segment including the piezoelectric layer and the beam, the free-body diagram is shown in Fig. 1. From this figure
the equation of motion can be derived as follows

ρT · AT · üT = T ′
T + b · τ (11)

ρT · AT · ẅT = Q ′
T + b · σ + P (12)

M ′
T + b · hT

2
· τ − Q T = 0 (13)

ρB · AB · üB = T ′
B − b · τ (14)

ρB · AB · ẅ B = Q ′
B − b · σ (15)

M ′
B + b · hB

2
· τ − Q B = 0 (16)

where hi (i = T , B) denotes the thickness, b is the width of the beam, τ and σ are the shear and peel stress, T , Q and M
are the axial stress resultant, transverse shear force and bending moment, respectively, Ai (i = T , B) are the cross-section
areas, P is the load per unit length, ρi (i = T , B) are the mass densities of the layers.

The stress and the resultant moment in Eqs. (11)–(16) are

T T = ĀT · u′
T − B̄ T · w ′′

T − E1 (17)

MT = B̄ T · u′
T − D̄T · w ′′

T − E2 (18)

T B = ĀB · u′
B − B̄ B · w ′′

B (19)

MB = B̄ B · u′
B − D̄ B · w ′′

B (20)

with

ĀT =
h2∫

0

Q̄ 11 · b · dz; ĀB =
0∫

−h1

Q̄ 11 · b · dz (21)

B̄ T =
h2∫

0

Q̄ 11 · b · z · dz; B̄ B =
0∫

−h1

Q̄ 11 · b · z · dz (22)

D̄T =
h2∫

0

Q̄ 11 · b · z2 · dz; D̄ B =
0∫

−h1

Q̄ 11 · b · z2 · dz (23)

E1 =
h2∫

0

ē31 · b · Ez · dz; Ē2 =
0∫

−h1

ē31 · b · Ez · dz (24)

Substituting Eqs. (17)–(20) into (11)–(16), the equation of motion will be
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Table 1
Material parameters used in calculations.

x [m] PZT-5H Si

Q 11 [1010 N/m2] 12.6 16.6

Q 12 [1010 N/m2] 7.95 63.9

Q 13 [1010 N/m2] 8.41 63.9

Q 33 [1010 N/m2] 11.7 16.6

Q 44 [1010 N/m2] 2.3 79.6

Q 66 [1010 N/m2] 2.35 79.6

e31 [C/m2] −6.5 –

e33 [C/m2] 23.3 –

e15 [C/m2] 17.0 –

g11 [nF/m] 0.1503 0.1045

g22 [nF/m] 0.1503 0.1045

g33 [nF/m] 0.13 0.1045

ρ [kg/m2] 7500 2330

Table 2
Deflections for the clamped-free beam.

x [m] w [m] from FE w [m] from present model Error

0.000000 0.000000 0.000000 0.000000
0.033333 −2.216622e–4 −2.216622e–4 4.729826e–11
0.066667 −8.378124e–4 −8.378124e–4 4.949883e–11
0.100000 −1.780080e–3 −1.780080e–3 5.182010e–11
0.133333 −2.986606e–3 −2.986606e–3 5.420637e–11
0.166667 −4.402042e–3 −4.402042e–3 5.656910e–11
0.200000 −5.977553e–3 −5.977553e–3 5.876678e–11
0.233333 −7.670813e–3 −7.670813e–3 6.087850e–11
0.266667 −9.446009e–3 −9.446009e–3 6.291718e–11
0.300000 −1.127384e–2 −1.127384e–2 6.488764e–11
0.333333 −1.313152e–2 −1.313152e–2 6.669922e–11
0.366667 −1.500276e–2 −1.500276e–2 6.825461e–11
0.400000 −1.687780e–2 −1.687780e–22 6.941856e–11

ρT · AT · üT − ĀT · u′′
T + B̄ T · w ′′′

T = −E ′
1 + k · (b · τ ) (25)

ρT · AT · ẅT − B̄ T · u′′′
T + D̄T · w ′′′′

T = −E ′′
2 + k ·

(
b · h2

2
· τ ′ + b · σ

)
+ P (26)

ρB · AB · üB − ĀB · u′′
B + B̄ B · w ′′′

T = k · (b · τ ) (27)

ρB · AB · ẅ B − B̄ B · u′′′
B + D̄ B · w ′′′′

B = k ·
(

b · h1

2
· τ ′ + b · σ

)
(28)

k is parameter characterizing the bonding conditions between the piezoelectric layer and the beam:

k = 0: Debonding

k = 1: Perfect bonding

3. Numerical results

In order to test the accuracy of the present work, several examples of beams with a piezoelectric actuator bonded as a
top layer are considered.

In the first example a beam without delamination was considered and the results are compared to a finite element
model [10]. The beam’s length, width and thickness are L = 0.4 m, b = 0.03 m, and hB = 0.007 m, the thickness of the
piezoelectric layer is hT = 0.003 m, a uniformly distributed load of 103 N m−2 is applied. The parameters of the beam and
piezoelectric elements used in calculations are listed in Table 1.

The deflections for the clamped-free and clamped-clamped beams, as computed using Eqs. (21)–(24), are compared with
those obtained by the use of an FE model [10]. In Tables 2 and 3, the results show that the deflections computed with the
use of the present model are in good agreement with the finite element (FE) model results.

In the second example a beam with delamination between the top and bottom layers was considered. Figs. 2 and 3 show
the axial displacement for the clamped-free and clamped-clamped beams, respectively.
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Table 3
Deflections for the clamped-clamped beam.

x [m] w [m] from FE w [m] from present model Error

0.000000 0.000000 0.000000 0.000000
0.033333 −3.282879e–5 −3.282879e–5 3.075542e–12
0.066667 −1.085249e–4 −1.085249e–4 3.009594e–12
0.100000 −1.977867e–4 −1.977867e–4 2.905288e–12
0.133333 −2.778238e–4 −2.778238e–4 2.692712e–12
0.166667 −3.323576e–4 −3.323576e–4 2.446617e–12
0.200000 −3.516208e–4 −3.516208e–4 2.281747e–12
0.233333 −3.323576e–4 −3.323576e–4 2.234577e–12
0.266667 −2.778238e–4 −2.778238e–4 2.243927e–12
0.300000 −1.977867e–4 −1.977867e–4 2.288599e–12
0.333333 −1.085249e–4 −1.085249e–4 2.260317e–12
0.366667 −3.282879e–5 −3.282879e–5 2.332458e–12
0.400000 0.000000 0.000000 0.000000

Fig. 2. Axial displacement for the clamped-free beam.

Fig. 3. Axial displacement for the clamped-clamped beam.

Figs. 4 and 5 show the axial displacement of the clamped-free beam for the top and bottom layers, respectively. It can
be seen that their displacements increase with the thicknesses of the layers.

An electric voltage is applied to the actuator bonded on the top surface of host beam. The results of deflections for
clamped-free beam are compared to those obtained for a beam without electric voltage application in Fig. 6. The results
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Fig. 4. Axial displacement of top layer.

Fig. 5. Axial displacement of bottom layer.

Table 4
Natural frequencies for the clamped-free beam.

Mode ν (s − 1) FE ν (s − 1) present model Error (%)

1 48.9255786 48.9243002 0.00
2 306.633498 306.352539 0.00
3 858.669041 856.666434 0.02
4 1682.55496 1675.51232 0.07
5 2781.36637 2762.91361 0.18
6 4154.88062 4114.91146 0.39

show that the behavior of the beam is affected by the delamination when a voltage input is applied to the piezoelectric
layer.

The lowest 6 order natural frequencies computed with the present model are compared with the exact frequencies
as shown in Table 4. The material and geometric characteristics are the same as in the previous example problems. The
differences of the 1st- to the 6th-order natural frequencies are less than 0.4%.

4. Conclusion

A model of beams with delamination using Euler–Bernoulli beam theory is developed in this paper. Numerical results
are presented to study the influence of delamination. The differences between the deflections computed from present model
and previously computed data show that the results agree very closely. It is shown that the axial displacement increases
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Fig. 6. Comparison of deflections with and without electric charge applied.

with the increasing of the thickness of layers. The frequencies computed with the model based on the formulation presented
in this Note are in good agreement with the exact results. This shows the validity of the assumptions adopted in the present
article.
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