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A rigorous analytical solution is presented for a compressible solid with a central void
under dynamic hydrostatic tension. It is revealed that for a solid with a preexisting central
void under the dynamic loading, the yielding is nucleated preferentially in the zone near
the void surface rather than on the void surface. For a void forming under the dynamic
load, the subsequent yielding will always initiate in the region with the depth below 1/4
longitudinal wavelength from the void surface.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Une solution analytique rigoureuse est présentée pour un solide compressible comportant
une cavité centrale sous une tension dynamique hydrostatique. Pour un solide muni d’une
cavité centrale pré-existante, la limite d’élasticité est obtenue préférentiellement dans une
zone proche de la cavité plutôt qu’à sa surface. Pour une cavité formée sous charge
dynamique, la limite d’élasticité résultante apparaîtra toujours dans une zone dont la
distance à la cavité ne dépasse pas 1/4 de la longueur d’onde longitudinale du matériau.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Mechanical responses of materials with voids have attracted great research interests [1–14]. In recent years, extensive
works have been done concerning the dynamic response of materials with a central void under hydrostatic tension [15–19].
This type of load is important in dynamic loading case, as pointed out by Wright [18], since under an impact loading, the
interaction of a reflection wave with other waves can generate a nearly hydrostatic tension stress at high loading rates. The
hydrostatic tension stress will promote void nucleation and growth, and lead to rupture eventually. However, the previous
works generally treat the solid as incompressible [2,6,20], or use the elastic–plastic boundary which is derived from the
static case [9,15], assuming that the yielding always initiates on the surface of the void and the elastic–plastic boundary will
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propagate outwards when loading increases [17]. To the authors’ knowledge, few attempts have been made to investigate
whether or not the yielding will initiate on the void surface for a compressible solid under dynamic loading. It is plausible
that the yielding under dynamic loading may also initiate in the inner compressible solid due to the interaction between
the incident wave and the reflection wave from the free surface of voids.

The present Note aims to explore the yielding nucleation sites under different conditions. A rigorous analytical solution
for the mechanical response of compressible solid with a central void under dynamic hydrostatic tension is obtained, and
the conclusion may facilitate a controlled formation of void structures of engineering interests.

2. Theory

The representative volume element (RVE) used in this work is a sphere with radius r0 and with a concentric void with
radius a. This type of RVE is widely used in the literature to study either the mechanical properties of porous materials or
the void nucleation and growth [15,21]. The RVE is subjected to a dynamic hydrostatic tension P (t) at the outer surface.
Supposing the solid is isotropic, the displacement u in spherical coordinates {r, θ,φ} only has a nonzero component ur due
to symmetry, i.e. u = ur er = uer , where er is the unit vector along the radial direction. The equilibrium equation for stress
tensor σ under spherical coordinates is given by:

∂σrr

∂r
+ 1

r
(2σrr − σθθ − σϕϕ) = ρü (1)

where ρ is the mass density. For isotropic linear elastic materials, the constitutive equation writes: σ = 2με + λ tr(ε)I ,
where λ and μ are Lame constants, ε is the strain tensor, and I is the second-order identity tensor. The symmetric con-
dition gives εθθ = εφφ and σθθ = σϕϕ . For small deformations, the strain components follow εrr = ∂u/∂r and εθθ = u/r.
Substituting these relations into Eq. (1) leads to:
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where cl = √
(λ + 2μ)/ρ is the longitudinal wave speed of elastic solid. For arbitrary P (t) on the outer boundary of RVE,

we can obtain the load amplitude p(ω) in the frequency domain by using Fourier transformation:

p(ω) =
∞∫

−∞
P (t)e−iωt dt (3)

For linear elastic materials, the displacement under a dynamic load P (t) can be calculated according to superposition
principle:

u(r, t) = 1

2π

∞∫
−∞

up(r,ω)eiωt dω (4)

where up(r,ω) is the displacement amplitude for RVE subjected to a load p(ω)exp(iωt). Substituting Eq. (4) into Eq. (2)
gives:
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where the dimensionless radius r̃ = rω/cl = 2πr/λl with λl = 2πcl/ω is the longitudinal wavelength and U (r̃,ω) = up(r,ω).
Eq. (5) indicates that the term in the brackets must be zero, thus the solution is:

U (r̃) = c1

(
sin r̃

r̃2
− cos r̃

r̃

)
+ c2

(
cos r̃

r̃2
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r̃

)
(6)

c1 and c2 can be determined by the boundary conditions σrr(ã) = 0 and σrr(r̃0) = p exp(iωt), where r̃0 = r0(ω/cl) and
ã = a(ω/cl).

The stress amplitudes are obtained as:

σrr

p
= r̃3

0

r̃3

S1 cos d̃ + S2 sin d̃

S0
1 cos d̃0 + S0

2 sin d̃0
,

σθθ

p
= r̃3

0

r̃3

S3 cos d̃ + S4 sin d̃

S0
1 cos d̃0 + S0

2 sin d̃0
(7)

where d̃ = r̃ − ã, d̃0 = r̃0 − ã. The terms Si = Si(r̃, ã) (i = 1,2,3,4) are defined as:
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Fig. 1. Dimensionless deviatoric stress σ̃d = σd/p variation with radius for dynamic loading case with ã = 0.

S1(r̃, ã) = 4(r̃ − ã)(4 + ãr̃ξ)

S2(r̃, ã) = 4ξ(r̃ + ã)2 − (ãr̃ξ + 4)2 − 16ãr̃

S3(r̃, ã) = 2
(
ãr̃

(
ãξ + 2r̃(ξ − 2)

) − 4(r̃ − ã)
)

S4(r̃, ã) = (
8ãr̃ + (

4 − ξ ã2)(r̃2(ξ − 2) + 2
))

(8)

and S0
i = Si(r̃0, ã). ξ = λ/μ + 2 = 2(1 − v)/(1 − 2v) is uniquely determined by Poisson’s ratio v of solid. Generally, 0 < v <

0.5, thus ξ > 2. The hydrostatic stress σm = σm I and the deviatoric stress σ d = (σd/3)(2er ⊗ er − eθ ⊗ eθ − eφ ⊗ eφ) are
calculated by σm = (σrr + 2σθθ )/3 and σd = σrr − σθθ , where {er, eθ , eφ} are unite vectors in spherical coordinates, and the
symbol “⊗” denotes tensor product.

The von Mises stress σe = √
(3/2)σ d : σ d is equivalent to |σd|, the absolute value of σd . For a static loading case with a

loading p on the surface of RVE, the solution writes:

σ s
e = p
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0

2r3
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, σ s
m = p

r3
0
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(9)

Eq. (9) suggests that for static loading case, von Mises stress σ s
e monotonically decreasing with the increase of r, thus the

initiation of yielding is always on the surface of the void. For a = 0, Eq. (9) gives σ s
e = 0, meaning that the material never

yields. However, under dynamic loading case, for a = 0, Eq. (7) gives:

σ̃d = 2r̃3
0

r̃3

3r̃ cos r̃ − (3 − r̃2) sin r̃

4r̃0 cos r̃0 − (4 − r̃2
0ξ) sin r̃0

(10)

where σ̃d = σd/p is the dimensionless deviatoric stress. It is clear that σ̃d is not uniform along the radial direction, as shown
in Fig. 1. This indicates that for dynamic loading cases, the material may yield even in the absence of the void. The radius r̃c

denoting the site where the maximum value of σd (σ max
d ) is achieved can be calculated by solving the equation ∂σd/∂ r̃ = 0,

i.e. tan r̃c = r̃c(9 − r̃2
c )/(9 − 4r̃2

c ). The first positive root gives r̃c ≈ 3.3421. If |σ max
d | achieves the yielding limit σy , yielding

will initiate at r̃ = r̃c . Since rc only depends on the wavelength λl , for a RVE with size r0 < rc , the initiation of yielding
would always occur at the outer surface of RVE. This is quite different with the conclusion for the static loading cases.

Once the yielding initiates at r = rc , plastic region will form in the vicinity of r̃ = r̃c , and the solid will divide into three
regions, i.e. one plastic region between two elastic regions. When the strain in the plastic region reaches the fracture strain,
the plastic region will be fractured, and the inner elastic region will separate from the mother solid as debris and a void
with the radius slightly larger than rc will form.

Fig. 2 shows the variation of dimensionless deviatoric stress σ̃d with the depth d̃ = r̃ − ã from the void surface for
different void sizes. It is found that for materials with initial void size ã smaller than a specific value ã1, σ̃d decreases
rapidly with the increase of d̃. When ã is larger than ã1 and smaller than a critical value ãc , the decrease of σ̃d may be
slow, and when ã is larger than ãc , σ̃d increases with the increase of d̃. Thus, ã < ãc is definitely a necessary condition for
yielding to initiate on the void surface.
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Fig. 2. Dimensionless deviatoric stress σ̃d = σd/p variation with the depth from the void surface for different void sizes.

Fig. 3. The depth correspondence to maximum value of σd (∂σd/∂ r̃ = 0) in the inner solid near void surface for different void sizes.

Now we consider the specific value of ãc . The derivation of Eq. (7) gives:

σd
∂σd

∂ r̃

∣∣∣∣
r̃=ã

= p2

ã

4r̃6
0(3ξ − 4)(12 + (ã2 − 9)ξ)

(S0
1 cos d̃0 + S0

2 sin d̃0)2
(11)

When ã < ãc , σ̃d will at first decrease as r̃ increases from the void surface according to Fig. 2, which corresponds to
σd(∂σd/∂ r̃)|r̃=ã < 0. Since 3ξ − 4 > 0, Eq. (11) indicates ã < ãc = √

9 − 12/ξ < 3. That is to say, for any ξ values (ξ > 2),
the necessary condition for initial yielding locating on the void surface should be ã < 3. For the void nucleation occurring
under dynamic loading as discussed above, the formed void size r̃c ≈ 3.3421 > 3; this implies that the subsequent yielding
will always occur in the inner solid instead of on the void surface. The location of the maximum value of σd in the inner
solid corresponds to where the yielding initiates and can be found by solving ∂σd/∂ r̃ = 0. Fig. 3 shows the depth of the
potential yielding nucleation sites from the surface of the void d̃ for different void sizes ã. If the void size ã > ãc , the
depth 0 < d̃ < π/2, which indicates d̃ will not exceed π/2, i.e. dmax = λl/4. For ã > 5, d̃ = arctan((ξ − 1)−1ãξ/4) is a good
approximation.
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3. Conclusion and discussion

In summary, the initiation of yielding for compressible materials with a central void under dynamic load is investigated.
For void size larger than a special value ac ≈ 0.4775λl (i.e. ãc = 3), the yielding would always initiate in the solid with some
distance from the void surface. This distance never exceeds 1/4 of the longitudinal wavelength. For dynamic void nucleation,
initiation location is uniquely determined by the wavelength, independent on the RVE size or other material parameters.
The size of the forming void is always larger than ac , and debris is left in the void.

The research may promote the understanding of the void formation of materials under impact loading. For ductile ma-
terials, the elastic–plastic boundary forming during the loading process may induce additional reflection and transmission
waves to make the problem more complex. For brittle materials, once a spherical void forms, with the applying of subse-
quent loading, a new void will form in the solid, and eventually multi-concentric hollow spheres may form. The site of the
subsequent-forming hollow spheres with large radius is at a depth near λl/4 from the void surface, which is nearly uniform.
This allows the possible controlling of the thickness of the forming hollow spheres in radial direction by changing the load-
ing frequencies. The forming structure may be anticipated to be used in some special regions, such as thermal protection,
and micro-wave shielding.
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