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Analytical expressions for anisotropic tensor dimension
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The vector space dimension of a linear behavior operator, such as the elasticity tensor,
depends on the symmetry group of the material it is defined on. This Note aims at
introducing an easy and analytical way to calculate this dimension knowing the material
symmetry group. These general results will be illustrated in the case of classical and strain-
gradient elasticity.
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r é s u m é

La dimension de l’espace vectoriel d’un opérateur linéaire de comportement, comme le
tenseur d’élasticité, dépend des symétries du milieu matériel. L’objectif de cette Note
est de présenter une méthode simple et analytique pour de déterminer ces dimensions
connaissant le groupe de symétrie matérielle. Ces résultats généraux seront illustrés dans
les cas de l’élasticité classique et du second gradient.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The case of a general linear behavior will be considered here. This behavior is supposed to be modeled by a tensor, and
attention will be focused on the link between the symmetry of the material domain and the number of coefficients needed
to correctly define the tensor. In Section 2 some basic definitions about symmetries will be summed up. Some notes about
classical tensor decompositions will then be recapped in Section 3. The fundamental notion of G-invariant harmonic tensor
space will be introduced in Section 4. Our main result will be stated in Section 5. And finally some illustrations will be
proposed in Section 6.

2. Physical and material symmetries

Hereafter E 3 will be the 3-dimensional Euclidean physical space. Let G be a subgroup of the orthogonal group in 3-di-
mension O(3), O(3) is the group of isometries of E 3. Let’s define a material M as a 3-dimensional subset of E 3. M is
said G-invariant if the action of G ’s elements transforms M into itself. This set of operation, called the material symmetry
group, will be denoted GM :

GM = {
Q ∈ O(3), Q � M = M

}
(1)
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where � stands for the Q action upon M. Now consider a physical property P defined on M, the set of operation letting
the behavior be invariant is the physical symmetry group, denoted GP :

GP = {
Q ∈ O(3), Q � P = P

}
(2)

P will be described, in the following, by an nth-order tensor denoted Tn . T
n will stand for its related vector space. If the

property is modeled by an even order tensor, the former definition could be reduced to the study of SO(3), the group
of orthogonal transformations whose determinant equals +1. This hypothesis will be made in this Note.1 The material
symmetry group and the physical one are related by the mean of Neumann’s principle [1]:

GM ⊆ GP (3)

meaning that each operation leaving the material invariant leaves the physical property invariant. Nevertheless, as shown
for tensorial properties using Hermann’s theorems [2], physical properties can be more symmetrical than the material.

In E 3 GP is conjugate with a closed subgroup of SO(3) [1]. The collection of those subgroups is [3]:

Σ := {
I, Z p, D p,SO(2),O(2), T , O, I,SO(3)

}
(4)

with I the identity group; Z p the pth-order cyclic group, i.e. the symmetry group of a p-fold-invariant chiral figure; D p the
(2p)th-order dihedral group, i.e. the symmetry group of a regular p-gone2; SO(2) the continuous group of rotations and
O(2) the continuous group of orthogonal transformations in 2-D. T will stand for the tetrahedron symmetry group, O for
the octahedron one and I for the icosahedron one.

To study tensor symmetry classes an elementary parts decomposition is needed. Such a decomposition is, in literature,
known as harmonic [4,3] or irreducible [5,6].

3. Tensor decomposition

3.1. Harmonic decomposition

The orthogonal irreducible decomposition of a tensor is known as harmonic decomposition. In E 3, it is an O(3)-invariant
decomposition well known in group representation theory. It allows us to decompose any finite order tensor as a sum of
irreducible ones [6,5]. This decomposition can be written:

Tn =
∑
k,τ

D(n)k,τ (5)

where tensors D(n)k,τ are components of the irreducible decomposition, k denotes the order of the harmonic tensor em-
bedded in D(n) and τ separates same order terms. This decomposition establishes an isomorphism between T

n and a direct
sum of harmonic tensor vector spaces H

k [4]. It is written

T
n ∼=

⊕
k,τ

H
k,τ (6)

but as explained in [3] this decomposition is not unique. On the other side, the O(3)-isotypic decomposition [7] (Eq. (7))
grouping same order terms is unique:

T
n ∼=

n⊕
k=0

αkH
k (7)

with αk being the H
k multiplicity in the decomposition. Harmonic tensors are totally symmetric and traceless. In R

3 the
associated vector space dimension is:

dim H
k = 2k + 1 (8)

For simplicity sake, when there is no risk of misunderstanding, spaces αkH
k will be denoted K αk : i.e. the harmonic space

order (K ) to the power of its multiplicity (αk). Family {αk} is a function of tensor space order and index symmetries. Several
methods exist to compute this family [5,6,8]. A classical example is the space of elasticity tensors. In 3-D, it is isomorphic to
02 ⊕22 ⊕4 which is a 21-dimensional vector space [4]. This decomposition is O(3)-invariant, but can further be decomposed
considering O(2) group action.

1 This hypothesis is made here just for sake of conciseness. The introduced method can be directly extended to odd order tensors.
2 D p contains Z p and mirror symmetry.
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3.2. Cartan decomposition

So O(2)-action will be considered here. Under this action the harmonic space H
k can be decomposed as [3]:

H
k ∼=

k⊕
j=0

K
k
j with dim K

k
j =

{
1 if j = 0

2 if j �= 0
(9)

It is referred to as Cartan decomposition of a harmonic tensor space. The relation (9) implies a decomposition containing
subspaces for each j within [0;k]. If H

� j stands for the harmonic tensor space of order j in 2-D space, it could be shown
that for each k K

k
j is isomorphic to H

� j . Therefore, H
k is isomorphic to the following space:

H
k ∼=

k⊕
j=0

H
∗ j (10)

The relation (7) may be thus rewritten:

T
n ∼=

n⊕
k=0

αk

(
k⊕

j=0

H
∗ j

)
∼=

n⊕
k=0

n∑
j=k

α jH
∗k ∼=

n⊕
k=0

βkH
∗k (11)

This O(2)-invariant decomposition grouping same order terms is the O(2)-isotypic decomposition of a 3-D tensor space.
Coming back to the elasticity example, one reminds that, in 3-D, its vector space is isomorphic to 02 ⊕ 22 ⊕ 4. According

to formula (11), its O(2)-isotypic decomposition will be 0∗5 ⊕ 1∗3 ⊕ 2∗3 ⊕ 3∗ ⊕ 4∗ .

4. Invariance condition

Knowing harmonic decomposition of the tensor vector space, dimension of any G-invariant subspace can easily be com-
puted. In order to achieve such a goal, Z p -invariance condition should be detailed for harmonic tensor.

4.1. Z p -invariant harmonic tensor

Let GHk be the group of transformations that let Hk be unchanged, i.e.:

Q ∈ GHk ⇒ Q � Hk = Hk (12)

H
k is isomorphic with

⊕n
j=0 H

∗ j . So, any Hk ∈ H
k is defined by a family of tensors: {H∗ j}. The family order is obviously

j + 1. Thus the invariance condition on Hk can be expressed by j + 1 conditions on the elements of the O(2)-invariant
decomposition. These conditions are of j + 1 different types according to the 2-D harmonic tensor order, i.e.

Q � j H∗ j = H∗ j (13)

where � j is SO(2)-action of on H
∗ j . This action shall easily be expressed in the sequel.

Let H∗ j = (s j, t j) be a H
∗ j vector. Consider a plane rotation, Qrot ∈ SO(2) belonging to Z p . As shown in [3] Qrot acts on

H
∗ j as a Z p

j
generator, i.e. the rotation order p divided by the Cartan subspace indices.

Qrot =
(

cos 2π
p − sin 2π

p

sin 2π
p cos 2π

p

)
; Qrot � H∗ j =

(
cos 2 jπ

p − sin 2 jπ
p

sin 2 jπ
p cos 2 jπ

p

)(
s j

t j

)
(14)

So, if Qrot belongs to GHk then each H∗ j must be Qrot-invariant. The matrix of the Qrot action on H∗ j will be denoted Q( j)
rot .

The invariance condition of H∗ j is the solution of (Q( j)
rot − Id)H∗ j = 0. In other words, ker(Q( j)

rot − Id) has to be studied. A direct
calculation shows that the H∗ j invariance condition under Z p -action is:

j = tp, t ∈ N (15)

Thus, if j �= tp then H∗ j is equal to 0. Therefore Z p H
k , the Z p-invariant H

k planar decomposition, will be:

Z p H
k =

⊕
0�m�	 k

p 

H

∗mp (16)

where 	.
 is the floor function.
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Let us consider Fix
Hk (Z p) the linear subspace of H

k that contains elements fixed under Z p -action; its dimension is:

dim Fix
Hk (Z p) = 2

⌊
k

p

⌋
+ 1 (17)

This relation allows us to determine the dimension of any tensor space left fixed under any SO(3) subgroup action.
A group decomposition will be introduced to highlight this fact.

4.2. Disjoint union decomposition

Any SO(3) subgroups could be decomposed into disjoint unions of cyclic groups. We got the following result [3]:

D p = ∪̇p Z2 ∪̇ Z p; T = ∪̇4 Z3 ∪̇3 Z2; O = ∪̇3 Z4 ∪̇4 Z3 ∪̇6 Z2; I = ∪̇6 Z5 ∪̇10 Z3 ∪̇15 Z2 (18)

where ∪̇n stands for n repetitions of ∪̇ (disjoint union) which definition is:

Definition 4.1. Let H1, . . . , Hn be subgroups of a group Σ . We say that Σ is the disjoint union of H1, . . . , Hn if:

Σ = H1 ∪ · · · ∪ Hn (19)

Hi ∩ H j = e, for all i �= j (20)

So the notation ∪̇ is used to denote disjoint union and e stands for the identity of Σ .
We further have, in the same reference, the following theorem:

Theorem 4.2. Let Γ be a compact Lie group acting on V and let Σ ⊂ Γ be a Lie subgroup. If Σ admits a disjoint union decomposition,
i.e. Σ = H1 ∪̇ · · · ∪̇ Hk then:

dim
(
Fix(Σ)

) = 1

|Σ |

[
k∑

i=1

|Hi|dim
(
Fix(Hi)

) − (k − 1)dim(V )

]
(21)

where |G| stands for the order of G. Application of Theorem 4.2 to subgroup of SO(3) acting on H
k allows us to obtain the dimension

of G-invariant harmonic space.

Using such a result allows us to compute the dimension of any G-invariant harmonic subspace (G in the set of SO(3)

closed sub-groups).

4.3. Dimension of G-invariant harmonic space

So a straightforward application of those results leads to the following set of relations:

dim Fix
Hk (D p) =

{ 	 k
p 
 + 1 k = 2n

	 k
p 
 k = 2n + 1

; dim Fix
Hk (T ) = 2

⌊
k

3

⌋
+

⌊
k

2

⌋
− k + 1 (22)

dim Fix
Hk (O) =

⌊
k

4

⌋
+

⌊
k

3

⌋
+

⌊
k

2

⌋
− k + 1; dim Fix

Hk (I) =
⌊

k

5

⌋
+

⌊
k

3

⌋
+

⌊
k

2

⌋
− k + 1 (23)

The two former relations could be rewritten in order to make the tetrahedral symmetry to appear:

dim Fix
Hk (O) =

⌊
k

4

⌋
−

⌊
k

3

⌋
+ dim Fix

Hk (T ); dim Fix
Hk (I) =

⌊
k

5

⌋
−

⌊
k

3

⌋
+ dim Fix

Hk (T ) (24)

Now, the knowledge of the harmonic decomposition of a tensor will allow us to construct, according to formula (7), the
dimension of G-invariant tensor subspaces. Some new and analytical relations could be derived according to those formulas.

5. G-invariant tensor subspaces

Combining results previously obtained with the tensor space harmonic decomposition, the following formulas are ob-
tained:
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5.1. Z p -invariance

dim FixT(Z p) = 2
n∑

k=0

αk

⌊
k

p

⌋
+

n∑
k=0

αk (25)

When p > k we obtain 	 k
p 
 = 0 and so βht = ∑n

k=0 αk is the number of transverse hemitropic coefficients. βht is the
dimension of a SO(2)-invariant tensor.

5.2. D p-invariance

dim FixT(D p) =
n∑

k=0

αk

⌊
k

p

⌋
+

	 n
2 
∑

k=0

α2k (26)

When p > k we obtain 	 k
p 
 = 0 and so βht = ∑n

k=0 αk is the number of transverse isotropic coefficients. βit is the dimension
of an O(2)-invariant tensor.

5.3. T , O and I -invariance

dim FixT(T ) =
n∑

k=0

αk

(
2

⌊
k

3

⌋
+

⌊
k

2

⌋
− k + 1

)
(27)

dim FixT(O) =
n∑

k=0

αk

(⌊
k

4

⌋
+

⌊
k

3

⌋
+

⌊
k

2

⌋
− k + 1

)
(28)

dim FixT(I) =
n∑

k=0

αk

(⌊
k

5

⌋
+

⌊
k

3

⌋
+

⌊
k

2

⌋
− k + 1

)
(29)

The two former expressions could be recasted

dim FixT(O) = dim FixT(D4) − dim FixT(D3) + dim FixT(T ) (30)

and

dim FixT(I) = dim FixT(D5) − dim FixT(D3) + dim FixT(T ) (31)

or:

dim FixT(I) = dim FixT(D5) − dim FixT(D4) + dim FixT(O) (32)

6. Examples

Two examples will be considered: the classical fourth-order tensor of elasticity and the sixth-order tensor of Mindlin
strain gradient elasticity.

6.1. Classical elasticity

Let’s consider ElaC the vector space of classical elasticity tensor. It is the vector space of fourth-order tensor possessing
the classical minor and major index symmetries, i.e.:

C(i j) (kl) (33)

where (.) stands for the minor symmetry and . for the major one. It has been shown [4] that this vector space can be
decomposed as follows:

Ela ∼ 2H
0 ⊕ 2H

2 ⊕ H
4 (34)
C =
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Table 1
The number of coefficients for each physical symmetry class.

GM I Z2 D2 Z3 D3 Z4 D4 Zn>4, Dn>4 T , O I , SO(3)

GElaC I Z2 D2 Z3 D3 Z4 D4 O(2) O SO(3)

dim 21 13 9 7 6 7 6 5 3 2

Table 2
17 different systems of symmetry exist for the sixth-order tensor of Mindlin strain gradient elasticity.

GM I Z2 D2 Z3 D3 Z4 D4 Z5 D5 Z6 D6 Zn>6 Dn>6 T O I SO(3)

GElaA I Z2 D2 Z3 D3 Z4 D4 Z5 D5 Z6 D6 SO(2) O(2) T O I SO(3)

dim 171 91 51 57 34 45 28 35 23 33 22 31 21 17 11 6 5

and so ElaC is defined by the following {αk} family: {2,0,2,0,1}. The following relations are thus obtained:

dim FixElaC(Z p) = 2

(
2

⌊
2

p

⌋
+

⌊
4

p

⌋)
+ 5; dim FixElaC(D p) =

(
2

⌊
2

p

⌋
+

⌊
4

p

⌋)
+ 5 (35)

dim FixElaC(O) = dim FixElaC(T ) = 3; dim FixElaC

(
SO(3)

) = dim FixElaC(O) = 2 (36)

Using these relations the array shown in Table 1 could be constructed, which gives the number of coefficients for each
physical symmetry class.

6.2. Mindlin strain gradient elasticity

Let’s consider ElaA the vector space of Mindlin strain gradient elasticity tensor. It is the vector space of sixth-order tensor
possessing minor and major index symmetries [9], i.e.:

A(i j)k (lm)n (37)

It has been shown [2] that this vector space can be decomposed as follows:

ElaA ∼= 5H
0 ⊕ 4H

1 ⊕ 10H
2 ⊕ 5H

3 ⊕ 5H
4 ⊕ H

5 ⊕ H
6 (38)

and so ElaA is defined by the following {αk} family: {5,4,10,5,5,1,1}. The following relations are thus obtained:

dim FixElaA(Z p) = 2

(
4

⌊
1

p

⌋
+ 10

⌊
2

p

⌋
+ 5

⌊
3

p

⌋
+ 5

⌊
4

p

⌋
+

⌊
5

p

⌋
+

⌊
6

p

⌋)
+ 31 (39)

dim FixElaA(D p) = 4

⌊
1

p

⌋
+ 10

⌊
2

p

⌋
+ 5

⌊
3

p

⌋
+ 5

⌊
4

p

⌋
+

⌊
5

p

⌋
+

⌊
6

p

⌋
+ 21 (40)

dim FixElaA(T ) = 17; dim FixElaA(O) = 11 (41)

dim FixElaC(O) = 6; dim FixElaC

(
SO(3)

) = 5 (42)

Using these relations the array shown in Table 2 could be constructed. According to this procedure, it is shown that 17
different systems of symmetry exist for the sixth-order tensor of Mindlin strain gradient elasticity.

7. Conclusion

In this Note, analytical formulas giving the dimension of a subspace left fixed under SO(3)-subgroups action have been
presented. To our knowledge most of those relations were currently unknown. To be applied to other linear behaviors
the only thing to know is the harmonic decomposition of the tensor vector space. An easy method for computing this
decomposition was proposed in [2]. Following the former approach extension to O(3)-subgroups is straightforward.
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