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This Note presents the study of transient flow under forced convection in buried co-
axial exchanger. The wall temperature as well as the wall heat flux and the heat transfer
coefficient are unknown. A hybrid model consisting of a finite element method at the
boundary (BEM) for the heat transfer problem on the boundary and a finite volume
method (FVM) to solve the laminar flow inside solves this problem. The development of
the BEM method is based on the Green’s function theory. This conjugate method allows
one to have fast results and to foresee the thermal behaviour of the exchanger. The heat
transfer coefficients are investigated. The results are compared to those obtained using the
commercial CFD package Fluent.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The studies that relate to the non-established flow in an annular conduct subjected to a time-dependent heat flux,
through the walls, are scarce [1–8]. This type of flow can be found at the inlet of the heat exchangers. The development
of a complete model [2] has a major importance in the study of storage and recuperation of energy from the ground using
buried vertical exchangers. The model using the Green’s function theory [9] enables an entire calculation of the temperature
evolution of such systems. However, it requires the use of several parameters such as the local heat transfer coefficient,
which is difficult to be precisely measured and quantified. Several experimental and numerical studies were carried out
[5–15], establishing correlations or empirical expressions of the convective heat transfer coefficient.

The main purpose of this Note is to determine the heat transfer coefficient of an exchanger in permanent contact with
a semi-infinite medium such as the ground. The equations of energy in both parts of the system; solid and fluid, are
established and coupled with the continuity relations of temperature and heat flux at the contact surface. Based on the
Green’s function theory, the energy equation in the semi-infinite and three-dimensional solid medium (ground volume), is
transformed into an integral equation to be solved in a finite and two-dimensional medium (exchanger surface). Hence,
a system of differential and integral equations governing the velocity and temperature fields is obtained. A combination
between the finite volume method (FVM) and the boundary element method (BEM) allows a numerical resolution of this
system. Several thermal parameters such as the temperature field and the local and average heat transfer coefficients are
deduced.

The results from this established model are compared to the results obtained from a CFD code, Fluent. The CFD package
Fluent is used to solve the conjugate system of equations, for the fluid and the soil, consisting of the continuity equation,
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Nomenclature

aso diffusivity of the ground . . . . . . . . . . . . . . . . . m2/s
a f diffusivity of the fluid . . . . . . . . . . . . . . . . . . . m2/s
D H hydraulic diameter, D H = 2(Ri − rex) . . . . . . . m
G Green’s function
Ḡ Laplace transform of Green’s function
h local heat transfer coefficient at the

wall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W m−2/K
h∞ average heat transfer coefficient at the wall

(fully developed flow). . . . . . . . . . . . . . . W m−2/K
k f thermal conductivity of the fluid . . . W m−1/K
ks thermal conductivity of the ground W m−1/K
L length of the exchanger . . . . . . . . . . . . . . . . . . . . . m
�n the outer normal on surface (S)

P∗ dynamic pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . Pa
Pr Prandtl number, dimensionless
�r vector-position in the space
�r′ vector-position in the space where the tem-

perature is evaluated
Re Reynolds number, Re = W0 D Hρ f /μ, dimen-

sionless
rex radius of the central tube . . . . . . . . . . . . . . . . . . . m
Ri radius of the exchanger . . . . . . . . . . . . . . . . . . . . . m
t time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s

T temperature at point �r and t . . . . . . . . . . . . . . . . K
Te inlet temperature of the fluid in the inner

tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
Tm mean temperature of the fluid in annular

space at z and t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
T w temperature of the exchanger wall at z and

t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
T0 initial temperature field in the soil

T (�r, t = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
u radial velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m/s
v orthoradial velocity . . . . . . . . . . . . . . . . . . . . . . . m/s
w axial velocity in annular space . . . . . . . . . . . m/s
W0 average velocity of fluid in the annular

space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m/s
W ′

0 average velocity of fluid in the central
tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m/s

z axial coordinate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

Greek symbols

δ time step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
Φ heat flux density . . . . . . . . . . . . . . . . . . . . . . . W/m2

ν f cinematic viscosity of the fluid . . . . . . . . . . m2/s
ρ f fluid density . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg/m3

the momentum equations (only in the fluid) and the energy equation. This package is based on the finite volume method,
and requires all relevant boundary conditions to be defined. The Fluent Gambit software tool is used to generate the com-
putational mesh. Finally, the outcomes of this in-house model are in conformity with the results given by the CFD package
Fluent.

2. Mathematical formulation of the problem

The system is a co-axial exchanger composed of two concentric tubes inserted in the soil (Fig. 1). The interior tube made
of P.V.C. is considered thermally insulator. The thermal resistance of the exterior tube is supposed to be negligible. The hot
fluid enters the inner tube at temperature Te(t), circulates from top to bottom, and goes up from base in annular space at
average velocity W0.

2.1. Equation of energy propagation in the ground

The ground is supposed homogeneous and isotropic solid medium and its thermal characteristics are considered stable
and independent of the temperature. This medium of storage constitutes a domain (D) surrounded by a boundary surface
(S) (Fig. 1). The surface (S) is the union of the free surface of the soil (St) and the surface of the buried exchanger (Se);
(S) = (Se) ∪ (St). The heat propagation equation in this medium is

1

aso

∂T (�r, t)

∂t
− �T (�r, t) = 0 (1)

Its associated equation is

1

aso

∂G(�r,�r′, t)

∂t
− �G

(�r,�r′, t
) = δ

(�r −�r′) (2)

The Green’s function G(�r,�r′, t) is the solution of Eq. (2); G(�r,�r′, t) is such that it is null for t < 0 and tends towards
δ(�r −�r′) at t = 0. If the point of observation �r′ is located on the surface of the exchanger (Se), it is demonstrated [3] that

T w
(�r′, t

) = 2

t∫
0

∫ ∫
(Se)

aso
[
G
(�r,�r′, t − τ

) �∇T (�r, τ ) − T (�r, τ ) �∇G
(�r,�r′, t − τ

)]�n dS dτ + 2F
(�r′, t

)
(3)

where
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Fig. 1. Geometry of the exchanger.

F
(�r′, t

) =
∫ ∫ ∫
(D)

G
(�r,�r′, t

)
T0(�r)d3r −

t∫
0

∫ ∫
(St)

asoT (�r, τ ) �∇G
(�r,�r′, t − τ

)�n dS dτ (4)

2.2. Boundary conditions at the free surface and at the exchanger surface

The general solution of Eq. (2) is

G
(�r,�r′, t

) = 1

(4πasot)3/2
exp

(
− (�r −�r′)2

4asot

)
(5)

In our study, an imposed surface temperature on (St) equal to the ambient temperature Ta(�r, t) is considered (condition
of Dirichlet)

T (�r, t)z=0 = Ta(�r, t) (6)

The first term of F (�r′, t) which is a domain integral is eliminated in the numerical resolution by using the change of
variable T ′ = T − T0 thanks to the linearity of Eq. (1) and it does not appear explicitly. We evoke the particular case where
the ambient temperature is equal to the soil initial temperature T0 supposed uniform. Consequently, the second term of
F (�r′, t) is null [3].

The contact between the ground and the exchanger is considered perfect. Consequently

T w(�r, t) = T f (�r, t)wall (7)

and

−k f

(
∂T f (�r, t)

∂n

)
wall

= −ks

(
∂T (�r, t)

∂n

)
wall

(8)

Using Eqs. (7) and (8), Eq. (3) becomes

T w
(�r′, t

) = 2

t∫
0

∫ ∫
(Se)

aso

[
k f

ks
G
(�r,�r′, t − τ

) �∇T f (�r, τ ) − T f (�r, τ ) �∇G
(�r,�r′, t − τ

)]�n dS dτ (9)

It is also mentioned that the heat flux density is expressed as follow

�Φ = −k f �∇T f = −k f

(
∂T f (�r, t)

∂r

)
wall

�n = h(Tm − T w)wall �n (10)
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2.3. Equations governing the fluid flow

The fluid density (ρ f ) is supposed constant. The axial symmetry of the system imposes that the flow is plane (v = 0)

and two-dimensional (r, z). The equations governing the fluid flow can be written as follows:
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂r
+ u

r
+ ∂ w

∂z
= 0 (11a)

∂ P

∂r
= 0 (11b)

u
∂ w

∂r
+ w

∂ w

∂z
+ ∂ w

∂t
= − 1

ρ f

∂ P∗

∂z
+ υ f

[
∂2 w

∂r2
+ 1

r

∂ w

∂r

]
(11c)

∂T

∂t
+ u

∂T

∂r
+ w

∂T

∂z
= a f

[
∂2T

∂r2
+ 1

r

∂T

∂r

]
(12)

In the case of turbulent flow, the model k–ε with the wall functions of Lam and Bremhorst is used in predicting the heat
transfer [16].

2.4. Boundary conditions and initial conditions for the whole system

No simplifying condition is imposed on the velocity or the temperature on the base level (annular space inlet). These
boundary conditions are general and close to the practical. Uniform velocity and temperature are imposed at the inlet of
the interior tube. Evidently, the regime is supposed established at the exit of the annular space because of the importance
of the length of buried exchangers. Thus, the boundary conditions will be for the velocity field

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u
(
r = R−

i

) = u
(
r = r−

ex

) = u
(
r = r+

ex

) = 0 (13a)

w
(
r = R−

i

) = w
(
r = r−

ex

) = w
(
r = r+

ex

) = 0 (13b)

u(z = L) = 0 for r < rex (13c)

w(z = L) = W ′
0 for r < rex (13d)

∂u

∂z
(z = L) = ∂v

∂z
(z = L) = ∂ w

∂z
(z = L) = 0 for rex < r < Ri (13e)

for the temperature field:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T f (r, z,0) = T0 (14a)

T f (r, L, t) = Te for r < rex (14b)(
∂T f

∂r

)
r=r−

ex

=
(

∂T f

∂r

)
r=r+

ex

= 0 (14c)

(
∂T f

∂r

)
z=L

= 0 for rex < r < Ri (14d)

T f (Ri, z, t) = T w = 2

t∫
0

∫ ∫
(Se)

aso

[
k f

ks
G(t − τ ) �∇T f (τ ) − T f (τ ) �∇G(t − τ )

]
�n dS dτ (14e)

2.5. Calculus of the heat transfer coefficient

The mean temperature Tm(z, t) is written as

Tm(z, t) = 2

W0(R2
i − r2

ex)

Ri∫
rex

T f (r, z, t)W (r, z)r dr (15)

Eq. (10) enables to express the coefficient h(z, t) as follows

h(z, t) = (k f
∂T f (r,z,t)

∂r )r=Ri

(T w − Tm)
(16)
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3. Numerical model

In this Note, the discretisation scheme is an extension of that adopted by Desmons [2]. The stability of this scheme was
studied by the same author. The equations governing the flow are resolved using the finite volume method (FVM) by adopt-
ing the technique of the staggered grid. The finite volume element computations are three-dimensional but thanks to the
axial symmetry of the flow, a longitudinal plane of cells is used. The coupling pressure-velocity rests on the algorithm Semi-
Implicit Method for Pressure Linked Revised (SIMPLER) [17], which consists in correcting the calculated velocities starting
from the equations of momentum, so that these check the equation of continuity. The differential equations governing the
flow are integrated over a quadrilateral computational cell �r × �z and on the time interval [t, t + δ]. The computational
grid is non-uniform and it is of (30 × 120). The grid is generated sufficiently fine near the inner and outer walls to take
account of the significant variations of velocity and temperature in the boundary layer zone. An implicit diagram for the
temporal discretisation is adopted. A first order upwind scheme is incorporated to represent the convective terms and sta-
bilise the FVM method [17]. The differential equations governing the flow are integrated over a quadratic computational
cell. The discretized governing equation can be written at every computational node as

aP ϕk+1
n,m = aW ϕk+1

n,m−1 + aEϕ
k+1
n,m+1 + aSϕ

k+1
n−1,m + aNϕk+1

n+1,m + a0 (17)

where all the coefficients are dependent on time and spatial steps. The indices m,n and k denote the coordinates r, z and t
respectively. Thus, a nonlinear equations system is obtained where the ϕn,m ’s at the time step k + 1 are the only unknowns.

For the energy equation on the exchanger surface, the used method is the finite element method at the boundary (BEM)
[2]. The BEM formulation is based on the fundamental solution (Eqs. (3) and (9)) of the differential equation (Eq. (1)). The
BEM only requires a surface mesh. The boundary discretisation scheme consists in cutting out the exchanger wall surface
in (N) finite annular elements of height � (Fig. 1). The base represents the (N + 1)th element, so the boundary (Se) (wall
and base) is subdivided into (N + 1) boundary elements. A sufficiently small time-step size δ is applied. δ is chosen as a
submultiple of the time t (t = nδ). A convolution BEM time marching scheme is developed, so it gives the solution at the
time t . If the terms in t are separated from those in t + δ, the discretised equation of energy is rearranged as follow

(
I + M1)�T (t + δ) − L1 �ψ(t + δ) = �P (t, δ) + L0 �ψ(t) − M0 �T (t) (18)

For sufficiently weak steps of time, the thermal influence of each ring does not exceed the adjoining rings. Consequently, G
and G ′ are tridiagonal matrices. Thus, the elements Gii+1, Gi,i−1, G ′

ii+1 and G ′
ii−1 are taken into account in our calculation

of L0, L1, M0, M1 and
−→
P (t, δ).

Consequently

Ti(t + δ) =
j=i+1∑
j=i−1

(
L0

i jψ j(t) − M0
i j T j(t) + L1

i jψ j(t + δ) − M1
i j T j(t + δ)

) + Pi(t, δ) (19)

with

ψi(t) = − 1

ks

(
k f

∂Ti(t)

∂r

)
r=R−

i

(20)

Pi(t, δ) =
N∑

j=0

t∫
0

Gij(t + δ − τ )ψ j(τ )dτ −
N∑

j=0

t∫
0

G ′
ii(t + δ − τ )Ti(τ )dτ (21)

L0
i j =

δ∫
0

[
1 − τ ′

δ

]
Gij

(
δ − τ ′)dτ (22a)

L1
i j =

δ∫
0

τ ′

δ
Gij

(
δ − τ ′)dτ (22b)

M0
i j =

δ∫
0

[
1 − τ ′

δ

]
G ′

i j

(
δ − τ ′) dτ (23a)

M1
i j =

δ∫
0

τ ′

δ
G ′

i j

(
δ − τ ′) dτ (23b)

ψi(t) = −k fi,M−1 (
Ti,M(t) − Ti,M−1(t)

)
(24)
ks�rM
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The fluid conductivity k f is supposed independent of time, so Eq. (19) takes then the following form

Ai,i−1Ti−1,M(t + δ) + (1 + Ai,i)Ti,M(t + δ) + Ai,i+1Ti+1,M(t + δ)

+ Bi,i−1Ti−1,M−1(t + δ) + Bi,i T i,M−1(t + δ) + Bi,i+1Ti+1,M−1(t + δ)

= Ci,i−1Ti−1,M(t) + Ci,i T i,M(t) + Ci,i+1Ti+1,M(t)

+ Di,i−1Ti−1,M−1(t) + Di,i T i,M−1(t) + Di,i+1Ti+1,M−1(t) + Pi(t, δ) (25)

A, B , C and D are obviously triangular matrices. Their coefficients are
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ai, j = M1
i, j − Bi, j (26a)

Bi, j = −L1
i, j

k f j,M−1

ks�rM
(26b)

Ci, j = −M0
i, j − Di, j (26c)

Di, j = L0
i, j

k f j,M−1

ks�rM
(26d)

Eq. (25) can then be written in the following form

Ai,i−1Ti−1,M(t + δ) + (1 + Ai,i)Ti,M(t + δ) + Ai,i+1Ti+1,M(t + δ)

+ Bi,i−1Ti−1,M−1(t + δ) + Bi,i T i,M−1(t + δ) + Bi,i+1Ti+1,M−1(t + δ) = Ri (27)

where

Ri = Ci,i−1Ti−1,M(t) + Ci,i T i,M(t) + Ci,i+1Ti+1,M(t) + Di,i−1Ti−1,M−1(t) + Di,i T i,M−1(t)

+ Di,i+1Ti+1,M−1(t) + Pi(t, δ) (28)

The points on the lines i − 1 and i + 1 are evaluated at the moment t , so Eq. (27) is rewritten as

(1 + Ai,i)Ti,M(t + δ) = Ri − Bi,i T i,M−1(t + δ) − Ai,i−1Ti−1,M(t + δ) − Ai,i+1Ti+1,M(t + δ)

− Bi,i−1Ti−1,M−1(t + δ) − Bi,i+1Ti+1,M−1(t + δ) (29)

This equation (29) is of type

aP Ti,M(t + δ) = aW Ti,M−1(t + δ) + Dn,m (30)

with ⎧⎪⎨
⎪⎩

aP = (1 + Ai,i) (31a)

aW = −Bi,i (31b)

Dn,m = Ri − Ai,i−1Ti−1,M(t + δ) − Ai,i+1Ti+1,M(t + δ) − Bi,i−1Ti−1,M−1(t + δ) − Bi,i+1Ti+1,M−1(t + δ) (31c)

To solve this nonlinear system, the Gauss–Seidel iterative method is adopted. The coupling between different regions is
ensured at the boundaries using a temperature forward/flux back (TFFB) conjugate method [18,19]. This is permitted thanks
to conservation of heat flux and temperature at the interface of the two different regions as formulated in Eqs. (7) and (8).
The Navier–Stokes and energy equations for the internal fluid flow and the energy equation within the soil are interactively
solved through a time-marching algorithm. The surface temperature obtained from the solution of fluid equations is used
as the boundary condition of the boundary element method for the calculation of heat flux through the soil surface (wall).
This heat flux is in turn used as a boundary condition for the fluid equations in the next time step. Transfer of nodal values
from FVM and BEM (and back) independent surface meshes is performed with a compactly supported radial-basis-function
interpolation [20,21].

On the contrary, of the in-house code formulated above, Fluent [22] uses a finite-volume procedure alone to solve the
equations of fluid flow. Conduction heat transfer within soil is also calculated in conjugate heat transfer problems. The
system is modelled in Fluent with a 3D-axisymmetric grid. A non-uniform grid is used to provide fine mesh resolution in
regions where high gradients are expected. The complexity of the system geometry requires deployment of hybrid grid.
Therefore, the entire computation domain is splitted into for cylindrical parts (Fig. 2). Each cylinder is a stacking of layers.
The annular region is resolved by parallelepipedic structured elements. The central tube and the exterior region are resolved
with prismatic unstructured meshes (Fig. 2). The model has 274 988 cells and 970 602 nodes, a number that is high enough
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Fig. 2. Two views of the computational mesh.

to provide a grid-insensitive solution. The solutions are considered to converge when the normalised residual values are
10−6 for the temperature and 10−4 for the other variables.

4. Results and discussion

To minimise the error of truncation the use of non-uniform grid is necessary but as the mesh becomes finer, more and
more steps of calculation are required, and the effect of rounding errors in the calculation would become significant. The
influence of computational grid refinement on the numerical accuracy is studied. The computational grid 30 × 120 is found
to yield the results that are independent of the number of elements used to populate the physical domain. The time step
is still limited by the requirement that the truncation error must stay small, but it is found that for 1 s � �t � 40 s the
stability is maintained and the advancing in time is reasonable. For large time a non-uniform time interval is adopted.

The temperature field in the system is determined numerically for several combinations of Reynolds numbers Re and
time t . For Re corresponding to laminar flow (100 � Re � 2500) and to turbulent flow (10 000 � Re � 30 000), the time
envisaged is up-to one hour. The flux and the wall temperature are variable and non-uniform. They evolve in the course
of time in a significant way at the beginning of the heating operation. The mode remains unsteady but it tends slowly to
a permanent regime, so the mean temperature (Tm) and the wall temperature (T w) increase with time. It can be noted
that the local heat transfer coefficient is independent of the heating duration for a weak temperature variation where ρ f
remains constant. It is constant and preserves the same value practically during the unsteady mode, what is confirmed
by the previous correlations presented in the literature [6,7,13–15]. The axial evolution of the local heat transfer coefficient
h(z,Re) is given for Ri/rex = 2, L/D H = 50, and various values of Re (Fig. 3). For all Re, the curve h(z,Re) tends asymptotically
towards the value 2.95 W m−2 K−1 (Fig. 3), which is close to the value 2.86 W m−2 K−1 (corresponding to the Nusselt
number 4.36 often quoted in most textbooks) [13,14]. The value 2.86 W m−2 K−1 corresponds to an established flow with
constant wall heat flow. Fig. 3 exhibits the code numerical predictions of the heat transfer coefficient variation along the
wall line, including the Fluent numerical results. The agreement between the two numerical results is reasonable. All the
relative errors are below 10% in laminar case. For the turbulent flow, all the previous correlations predict an almost linear
increase in the average heat transfer coefficient with an increase in the Reynolds number. These correlations propose values,
which are sometimes, differed considerably. The large discrepancies that exist among the various correlations may be due to
different levels of accuracy in experimental data, especially in regard to energy balance errors [10]. The literature provides
correlated expressions of the heat transfer coefficient for fully developed flow at the outer wall, which vary in Re0.8. These
correlations are valid in the case of a uniform temperature or a uniform flux imposed on the wall surface. Until now,
the works witch studied the heat exchange rate of buried exchangers used these correlations [1,4,8,15,23]. The error is
weak for very length exchangers, but it becomes significant in contrary case. In this work, the outer wall not subjected to
any of these conditions is treated. We find that the heat transfer coefficient varies in Re0.4 as expressed in the following
equation

h∞ = 0.092Re0.4 (32)

The proposed method shows good agreement with experimental correlation given by Petukhov [14] as above in Fig. 4.
Therefore this last one is the most available in the case of buried exchangers. A typical temperature distribution is shown
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Fig. 3. Comparison of the predicted local heat transfer coefficient with the Fluent results at different Reynolds numbers.

in Fig. 5, for the whole domain at the Reynolds number of 20 000 and the time of 200 s. In this figure, the isotherms show
the axial symmetry of the problem.

5. Conclusion

A combination between the finite volume method (FVM) and the boundary element method (BEM) is used to study the
transient heat transfer in heat exchangers. The developed algorithm is able to manipulate a variable or constant unspecified
inlet temperature in the course of time. It enables to determine certain significant thermophysical parameters such as the
heat transfer coefficient, the temperature in any point of the exchanger at any moment. This study aims at the validation of
the theoretical and numerical model in the case of a particular fluid (air: Pr ≈ 0.7) and for a length to hydraulic diameter
ratio (L/D H = 50). It will be exploited soon to generalise the results versus various parameters such as radius ratio Ri/rex ,
length to hydraulic diameter ratio L/D H , Prandtl number Pr, etc. It allows to have fast results and to foresee the thermal
behaviour of an exchanger without doing some measures on site. What permits thereafter to reconstitute the response of an
exchangers association used in the case of the air-conditioning of a greenhouse or a dwelling. The theoretical model as well
as the simulation method can be useful to identify the boundary conditions like the heat flux or the convection coefficient,
in industrial processes confronted with this kind of systems.
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Fig. 4. Comparison between heat transfer coefficients in fully developed flow versus Reynolds numbers.

Fig. 5. Contours of temperature at Re = 20 000 and t = 200 s.
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