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Through generalizing the method of a decay analysis technique determining the interior
solution developed by Gregory and Wan, two necessary conditions on the edge-data of
an axisymmetric circular cylinder for the existence of a rapidly decaying solution are
established. By accurate solutions for auxiliary regular state, and using the reciprocal
theorem and Boussinesq solution, these necessary conditions for the edge-data to induce
only a decaying elastostatic state will be translated into appropriate boundary conditions
for the circular cylinder with axisymmetric deformations. The results of the present Note
extend the known results to circular cylinder’s deformation problems, which enable us to
establish two correct boundary conditions with stress and mixed edge-data. For the stress
data, our boundary conditions coincide with those obtained in conventional forms of elastic
theories. More importantly, the appropriate boundary condition with mixed edge-data is
obtained for the first time.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Axisymmetric deformation is a fundamental deformation in engineering. As a solution, Saint-Venant’s solution of the
deformation was obtained using Saint-Venant’s assumption. Some other authors gave various axisymmetric deformation
theories different from that of Saint-Venant. Purser and Dougall gave a nonlinear solution by using series expansion. Robert
and Keer [1], Stephen and Wang [2] studied the semi-infinite circular cylinder and boundary conditions under a general
load. Birsan [3,4] studied cylindrical Cosserat elastic shells and boundary conditions.

It is generally known that the exact solution of linear elastostatic problems for slender and thin elastic bodies consists
of an interior component and a boundary layer component (in a decaying form). Near a lateral edge, the interior solution
is supplemented by boundary layer solution component which becomes insignificant away from the edge. The admissible
boundary conditions can be satisfied only by a combination of these components. However, the boundary layer solution,
even just a leading term approximation, needed to fit the edge-data is rather intractable except for cases with simple
geometries and load symmetries. This, and the fact that the solution behavior near the edges is often not needed from
a practical viewpoint, have driven people to make efforts to formulate the interior solution, by assigning an appropriate
portion of the prescribed edge-data to it, without any reference to the boundary layer solution.

By an application of the Betti–Rayleigh reciprocal theorem, Gregory and Wan developed a decay analysis technique
determining the interior solution successfully and effectively and provided the results for several plate problems, and derived
a set of correct boundary conditions for arbitrarily prescribed admissible edge-data [5–8]. From these results, they now have
explicit examples showing that the higher order accuracy offered by the governing differential equations of a higher order
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plate theory may not be attained unless commensurate boundary conditions are developed and used for these equations.
These general results also show that, to be strictly correct, Saint-Venant’s principle should be applied only to the leading
term outer solution, i.e. the classical plate theory.

Recently, relevant boundary conditions for elastic beams and piezoelectric beams have been tried [9,10]. Moreover, Gao
et al. [11] extended the model and method suggested by Gregory and Wan [6] for elastic plates to piezoelectric plates, a set
of necessary conditions on the mixed data for the existence of a rapidly decaying solution of the bending and stretching
problems were obtained. Through generalizing the method developed by Gregory and Wan [6] and by invoking the general
solution of equilibrium equations for hexagonal quasicrystals, these necessary conditions of are translated into the desired
set of boundary conditions for the interior expansion. Moreover, an analytical solution of the decaying state has been
formulated to verify the validity of these boundary conditions for plate bending in hexagonal quasicrystals [12,13].

It is the purpose of this Note to extend our previous work. We introduce two definitions for two equilibrium states, and
the necessary conditions for a decaying state will be obtained in the next section. By accurate solutions for the auxiliary
regular state, these necessary conditions for the edge-data to induce only a decaying elastostatic state will be translated
into appropriate boundary conditions for the circular cylinder with axisymmetric deformations in Section 3. Our results
extend the known results to a circular cylinder in axisymmetric deformation problems, which enable us to formulate the
correct edge conditions for circular cylinder in axisymmetric deformation theories with stress and mixed edge-data. For the
stress data, our boundary condition on edge-data for a decaying state is consistent with conventional boundary conditions
of axially loaded theories. The appropriate boundary condition with mixed edge-data is obtained for the first time.

2. Decaying state in circular cylinder in axisymmetric deformations problems

The axisymmetric deformation is fundamental deformation of engineering. A circular cylinder in a fixed cylindrical coor-
dinate system occupies the region

Ω = {
(r, θ, z)

∣∣ z ∈ D, |r| � a
}

(1)

where D is the axes of the circular cylinder which has diameter a, and z is slewing axis.
The displacement filed of axisymmetric deformation is

u = r0ur(r, z) + z0uz(r, z) (2)

where r0 and z0 are the unit vectors of radial direction and axis direction, respectively, and
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where, μ is shear modules, and ν is Poisson’s ratio.
By taking advantage of Boussinesq solution [14] for the axisymmetric deformation problem, the expressions of displace-

ments and stresses can be obtained as
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where B and B0 are harmonic functions in cylindrical coordinate system.
In order to satisfy the homogeneous boundary conditions on the circular cylinder surface, we set

σrr(a, z) = 0, σrz(a, z) = 0 (6)

The presence of any body or surface loads may be removed by a particular solution. Then the only forcing terms in the
problem are prescribed on the end z = 0 in terms of stress or displacement edge-data in the form of one of the following
four admissible combinations, one of the following sets of edge-data is prescribed:
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Case (A): σzr(r,0) = σ̄zr(r), σzz(r,0) = σ̄zz(r) (7)

Case (B): ur(r,0) = ūr(r), σzz(r,0) = σ̄zz(r) (8)

Case (C): σzr(r,0) = σ̄zr(r), ūz(r,0) = ūz(r) (9)

Case (D): ur(r,0) = ūr(r), ūz(r,0) = ūz(r) (10)

Two classes of exact states are investigated for the equations of axisymmetric circular cylinder with free faces. An elas-
tostatic state in the axisymmetric circular cylinder is said to be a decaying state:

[u,σ ] = O
(
M1e

−γ l
a

)
(11)

or a regular state:

[u,σ ] = O
(
M2aα

)
(12)

as a → 0, where u and σ are the displacement fields and stress fields, l is the minimum distance of the observation point
from the edge of the circular cylinder, M1 is the maximum modulus of the prescribed edge-data for the decaying state, M2
is the maximum modulus for the regular state, and γ and α are positive constants.

Supposing that the stress data does give rise to the decaying state in the circular cylinder, we now apply the reciprocal
theorem for a circular cylinder, which takes the form∮ ∫

S
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where S is the surface of the circular cylinder, ni is the direction cosine of the outward normal to S . With the foregoing
two definitions in mind, now we take the state with a superscript “(1)” to be the exact solution of axisymmetric problem
of circular cylinder, and the decaying state induced by the prescribed edge-data, σ̄zr , σ̄zz , ūr , ūz . For the auxiliary state,
denoted by a superscript “(2)”, we take any regular state which fulfills load-free conditions on S . Similar to the derivation
of necessary conditions for a decaying state in the plate, generalizing Gregory and Wan’s decay analysis technique to an
axisymmetric circular cylinder, we finally obtain the necessary conditions for a decaying state.

Case (A):
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These necessary conditions for Cases (A), (B) and (C) to induce only a decaying elastostatic state will be translated into
appropriate boundary conditions for axisymmetric circular cylinder in the next section.

3. Boundary conditions for the axisymmetric circular cylinder

The main difficulty in performing the preceding process lies in obtaining suitable regular states which satisfy the ap-
propriate boundary conditions. However, for the case of axisymmetric circular cylinder, the necessary regular states can be
explicitly determined as follows, at least for edge-data in Cases (A), (B) and (C).

3.1. Cases (A) and (B)

Now we look for the auxiliary regular state with the use of Boussinesq solution for axisymmetric problem. According to
the characteristics of axisymmetric problem, we assume

B = 0, B0 = −2C z (18)
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which corresponds to a rigid body translation in the z-direction and it is easy to prove that the rigid body translation
belongs to regular state. We can take it as the auxiliary regular state, so that Eqs. (14) and (15) give the condition for the
stress data

a∫
0

rσ̄zz dr = 0 (19)

3.2. Case (C)

Now we look for another auxiliary regular state with the use of Boussinesq solution for axisymmetric deformation
problem, we take the harmonic functions as

B0 = D1
(
2z2 − r2), B = D2z (20)

where D1 and D2 are unknown constants yet to be determined. By noting that
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we have the relationship among these unknown constants

D1 = −νD2 (22)

With the help of Eqs. (20) and (22), the necessary condition for a decaying state is obtained from Eq. (16) when σ̄zr and
ūz are prescribed
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4. Discussion and conclusions

These aforementioned necessary conditions for a decaying state (boundary layer solution) can then be converted into the
boundary conditions appropriate for the interior solution or its various approximate elastic theories, which do not involve
the boundary layer solution components. The difference between the exact solution and the interior one is a decaying state.
Then the above necessary conditions applied to the edge-data at z = 0 of a circular cylinder
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z=0, ūz = [

uz − uI
z

]
z=0

σ̄zr = [
σzr − σ I

zr

]
z=0, σ̄zz = [

σzz − σ I
zz

]
z=0 (24)

where uI
r , uI

z , σ I
zr , σ I

zz are interior solutions, give

a∫
0

r
[
σ I

zz

]
z=0 dr =

a∫
0

rσ̂zz dr (25)

a∫
0

r

[
uI

z + νrσ I
zr

2μ(1 + ν)

]
z=0

dr =
a∫

0

r

[
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where ûz , σ̂zr and σ̂zz are the actual prescribed edge-data. By superposition, the boundary conditions for axisymmetric
deformation of the circular cylinder are formed. Thus a portion of the edge-data is effectively allocated to the interior
solution, which is analogous to the assignment of edge-data in the form of resultant force by Saint-Venant’s principle.
Similar to those pointed out by Gregory and Wan [2], the results reveal that indiscriminate extension of Saint-Venant’s
principle is not justified in general, which may lead to an erroneous solution for the circular cylinder’s deformation even
away from the circular cylinder edge.

The results of the present Note extend the known results to circular cylinder’s deformation problems, which enable us
to establish two correct boundary conditions with stress and mixed edge-data. However, attempts to derive similar results
on boundary conditions for pure displacement edge-data case have not been successful.
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