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In a recent article, we described a seismic inversion method for determining the crustal ve-
locity and attenuation of basins in earthquake-prone regions. We formulated the problem
as a constrained nonlinear least-squares optimization problem in which the constraints are
the equations that describe the forward wave propagation. Here, we conduct a paramet-
ric study to investigate the influence of parameters such as the form of the regularization
function, receiver density, preconditioning, noise level of the data, and the multilevel con-
tinuation technique on the cost and quality of the inversion. We use the same 2D Los
Angeles example as in our earlier study.
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r é s u m é

Nous avons décrit dans un article récent une méthode d’inversion sismique, formulée
comme un problème de moindres carrés non linéaires assujetti à des contraintes corres-
pondant aux équations décrivant le problème direct de propagation d’ondes, permettant
de déterminer la célérité et l’atténuation crustales de bassins situés dans des zones à forte
seismicité. Dans cet article, une étude paramétrique est menée afin d’évaluer l’influence sur
le coût et la qualité de l’inversion de paramètres tels que la forme de la fonctionnelle de
régularisation, la densité de capteurs, le préconditionnement, le niveau de bruit entachant
les données et la méthode de raffinement progressif de l’espace des inconnues. L’exemple
utilisé (modèle 2D du bassin de Los Angeles) est le même que dans l’article précédent.
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1. Inverse anelastic wave propagation problem

The fundamental problem of seismic inversion is to recover information on physical properties of the Earth using seismic
observations. Full-waveform inversion is one of numerous modern methodologies for solving inverse problems in seismology.
Since the pioneering work of Tarantola (e.g. [1,2]) and Tarantola and Valette [3] on the full waveform nonlinear seismic
inversion using a least-squares objective function and adjoint operators, the adjoint full-waveform inversion method has
been extensively used both in the time domain (e.g. [4,5]) and in the frequency domain (e.g. [6–9]). While most of the
studies on full waveform inversion are based on elastic earth models, some authors (e.g. [10–12]) used models for which
the intrinsic attenuation is taken into consideration.

In a recent article [13], hereinafter referred to as Paper I, we presented an anelastic full-waveform seismic inversion
methodology for estimating shear wave velocity and attenuation in large basins from surface observations of ground mo-
tion. The methodology was tested through synthetic inversions for the shear wave velocity and attenuation profiles in a
cross section of the shear wave velocity model for a sedimentary soil medium within the Los Angeles basin obtained from
the Southern California Earthquake Center (SCEC) Community Velocity Model [14]. Paper I presented inversion results ob-
tained for a well-chosen set of parameters and options in the inversion method. However, the choice of parameters and
options can have a strong influence on the performance of the inversion method. In this paper, we perform a number of
experiments to study the effects of these parameters on the numerical and qualitative performance of the inversion. These
experiments include the sensitivity of the inversion to the type of regularization functional, value of the regularization pa-
rameter, receiver density, preconditioning, data noise, and the multilevel technique. We present here results of inversion
experiments performed for only one inversion field, the shear modulus, but the conclusions extend to inversion with more
than one inversion field [15].

In this section, we briefly summarize the inverse anelastic wave propagation algorithm and the solution technique. In
the next section, we present results of the parametric study.

1.1. Nonlinear least-squares formulation

We describe the methodology for inverse anelastic scalar antiplane seismic wave propagation problem in two dimen-
sions. We employ a single generalized standard linear solid (SLS) to represent the anelastic behavior of the constitutive
material [13]. For simplicity, we use plane wave absorbing boundaries applied on the truncation surface. Thus, the problem
is defined over a finite domain Ω with boundary Γ ; Γ consists of a horizontal free surface ΓFS and the truncation boundary
ΓAB on which a simple absorbing boundary condition is imposed to limit the occurrence of spurious reflections from the
outgoing waves. The system is initially at rest.

We pose the inverse wave propagation problem as a nonlinear least-squares minimization problem. The data misfit objec-
tive function is constrained by the partial differential equation (PDE) that describes the forward anelastic wave equation and
the ordinary differential equation (ODE) that governs the motion of the anelastic mechanism together with the associated
boundary and initial conditions. Receivers at specified locations on the free surface record displacement time histories. The
objective of the inversion is to minimize the L2 norm of the difference between the observed and predicted displacements
at the receiver locations with respect to the shear modulus field. The inverse problem for anelastic scalar wave propagation
is formulated (for a single event) as:

min
u,v,μ

1

2

NR∑
j=1

T∫
0

∫
Ω

[
u∗ − u

]2
δ(x − x j)dΩ dt + βR(μ) (1)

subject to:

ρ
∂2u

∂t2
− ∇ · [μ∇(u + ηv)

] = f (t) in Ω × [0, T ] (1a)

∂v

∂t
+ αv = ∂u

∂t
in Ω × [0, T ] (1b)

μ∇(u + ηv) · n = 0 on ΓFS × [0, T ] (1c)

μ∇(u + ηv) · n = √
ρμ

∂u

∂t
on ΓAB × [0, T ] (1d)

u = ∂u

∂t
= 0, v = 0 at t = 0 (1e)

where NR is the number of receivers, δ(x) is the Dirac delta function, x j is the location of jth receiver, and u∗ is the
recorded displacement. We refer to the displacements u(x, t) and v(x, t) as the state variables and the shear modulus μ(x)
as the inversion variable. The density, ρ , viscoelastic parameters, α and η, and source function f (t) are assumed to be
known. In this formulation, we use as an auxiliary variable in the SLS a displacement v , in contrast to the strain, as is done
in general (e.g. [16,17]). When generalized to three-dimensional problems, this results in significant computational savings.
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A regularization term, βR(μ), has been added to the data misfit least-squares term in Eq. (1) to address the ill-posedness
of the inverse problem. The ill-posedness is due to the band-limited information available from the observations coupled
with the infinite dimensionality of the inversion field. Below we present the optimality conditions based on total variation
regularization (TVR); however, in the next section we discuss inversion results with the Tikhonov regularization (TR) as well
as with the TVR.

We first state the optimality conditions, as derived in Paper I. The Lagrangian functional of the optimization problem is
given by:

L (u, v,μ,λ,φ) = 1

2

NR∑
j=1

T∫
0

∫
Ω

[
u∗ − u

]2
δ(x − x j)dΩ dt + βR(μ)

+
T∫

0

∫
Ω

λ

{
ρ

∂2u

∂t2
− ∇ · [μ∇(u + ηv)

] − f

}
dΩ dt +

T∫
0

∫
ΓFS

λ
{
μ∇(u + ηv) · n

}
dΓFS dt

+
T∫

0

∫
ΓAB

λ

{
μ∇(u + ηv) · n − √

ρμ
∂u

∂t

}
dΓAB dt +

T∫
0

∫
Ω

φ

{
∂v

∂t
+ αv − ∂u

∂t

}
dΩ dt (2)

where λ(x, t) and φ(x, t) are the Lagrange multipliers (or adjoint variables) for the PDE and ODE, respectively.
The first order optimality conditions, also known as the Karush–Kuhn–Tucker (KKT) conditions, state that the first vari-

ation of the Lagrangian with respect to u, v , μ, λ, and φ, respectively, should vanish at the optimum. The variations of the
Lagrangian with respect to λ and φ respectively yield the original state problems (1a), (1b):

ρ
∂2u

∂t2
− ∇ · μ∇(u + ηv) = f in Ω × [0, T ]

μ∇(u + ηv) · n = 0 in ΓFS × [0, T ]
μ∇(u + ηv) · n = √

ρμ
∂u

∂t
in ΓAB × [0, T ]

u = ∂u

∂t
= 0 in Ω at t = 0 (3)

and

∂v

∂t
+ αv − ∂u

∂t
= 0 in Ω × [0, T ]

v = 0 in Ω at t = 0 (4)

Taking variations of the Lagrangian with respect to the state variables u and v leads to adjoint problems in terms of λ

and φ as follows:

ρ
∂2λ

∂t2
− ∇ · μ∇λ + ∂φ

∂t
=

NR∑
j=1

(
u∗ − u

)
δ(x − x j) in Ω × [0, T ]

μ∇λ · n = 0 in ΓFS × [0, T ]
μ∇λ · n = −√

ρμ
∂λ

∂t
in ΓAB × [0, T ]

λ = ∂λ

∂t
= 0 in Ω at t = T (5)

and

∂φ

∂t
− αφ = −η∇ · μ∇λ in Ω × [0, T ]

φ = 0 in Ω at t = T (6)

The final KKT condition derived by taking the variation of the Lagrangian with respect to the shear modulus μ yields the
material equation as follows:
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−β∇ ·
[ ∇μ

|(∇μ · ∇μ + ε)1/2|
]

+
T∫

0

∇λ · ∇(
u + η(μ)v

)
dt −

T∫
0

Dμη(μ)v∇ · (μ∇λ)dt +
T∫

0

φDμα(μ)v dt

= 0 in Ω

∇μ · n = 0 on ΓFS

∇μ

|(∇μ · ∇μ + ε)1/2| · n = 1

2

T∫
0

√
ρ

μ
λ

∂u

∂t
dt on ΓAB (7)

where the operators Dμα(μ) and Dμη(μ) are the first order derivatives of the functions α(μ) and η(μ) with respect to μ,

respectively. We note that in these operators, α and η are related to the reciprocal of the quality factor, Q −1, following
Paper I, through the following relationships:

η
(

Q −1) = 3.447 Q −1 − 0.041

α
(

Q −1) = 3.529 Q −1 + 2.543

Here Q is defined in terms of shear wave velocity, V S , as follows:

Q = a arctan

(
V S

V Sref

)

Following Paper I, we use V Sref = 1000 m/sec, and a = 25.5 and invert for the shear modulus, μ.

1.2. Solution of the inverse problem

As presented in Paper I, to solve the optimality system (3)–(7), we use a reduced space approach in combination with
a line search method. The search direction is computed with an inexact Gauss–Newton (GN) method. Before we describe
the GN approximation, we write the Newton update for the full set of optimality conditions (3)–(7) (and therefore the full
space of optimization variables):⎡

⎢⎢⎢⎢⎢⎢⎢⎣

δ2
uuL δ2

uvL δ2
uμL δ2

uλL δ2
uφL

δ2
vuL δ2

v vL δ2
vμL δ2

vλL δ2
vφL

δ2
μuL δ2

μvL δ2
μμL δ2

μλL δ2
μφL

δ2
λuL δ2

λvL δ2
λμL δ2

λλL δ2
λφL

δ2
φuL δ2

φvL δ2
φμL δ2

φλL δ2
φφL

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ū

v̄

μ̄

λ̄

φ̄

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

= −

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

δuL

δvL

δμL

δλL

δφL

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(8)

where the overbar indicates the Newton direction, the right-hand side is the negative of the residual of the KKT conditions.
The operators in the above KKT system are defined by their actions on Newton directions as presented in detail in [15].

In a full space approach [18–20], one solves the system (8) simultaneously for ū, v̄ , μ̄, λ̄, and φ̄. This approach requires
storage of the state, adjoint, and inversion variables in space and time. For large scale problems, storing the time histories
of the state and adjoint variables is not feasible. On the other hand, the reduced space method [21,22], in which the
optimization problem is projected onto the inversion parameter space, does not require storage of the time-dependent
variables. In addition, the regularized reduced Hessian (the Schur complement of δ2

μμL in the full Hessian in (8)) is better-
conditioned than the full Hessian. Consequently, in this work we prefer to use the reduced space approach. At each Newton
iteration, given a shear modulus estimate μ, we first solve for u and v from systems (3) and (4). With u and v known, we
solve for λ and φ from Eqs. (5) and (6). Having satisfied the first and second KKT conditions, we now iteratively update the
third KKT condition shown as Eq. (7). First, we calculate the reduced gradient gμ = δμL . Then, in order to determine the
Newton update μ̄, we initially solve for ū and v̄ from the last two rows of Eq. (8), then from the first two rows, we solve
for λ̄ and φ̄. Now, we can solve for μ̄ from the middle row to update μ. This block elimination is equivalent in symbolic
form to:

Wμμ̄ = −gμ

where Wμ is the reduced Hessian [15]. To guarantee a descent search direction, the reduced Hessian must be positive-
definite. This may not be the case for the reduced Newton Hessian, unless the solution estimate is close to the minimum.
On the other hand, the Gauss–Newton (GN) Hessian is at least positive-semidefinite everywhere [23]. The GN method uses
only first order information from the Hessian operator. For our problem, the GN approximation is equivalent to ignoring
terms which depend on λ and φ in the KKT system. We note that as μ approaches its optimum value, the residual u∗ − u
approaches zero for noise-free data. Consequently, the GN Hessian approaches the Newton Hessian and the GN method
asymptotically exhibits superlinear convergence.
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Fig. 1. (a) Target shear wave velocity profile, (b) target damping model.

Table 1
Source and model parameters.

Domain size (km×km) 35 × 20
Grid dimensions (km×km) 0.54 × 0.31
Time step t (sec) 0.06
Simulation time tD (sec) 30
Minimum velocity (m/ sec) 715
Maximum velocity (m/ sec) 3470
Number of receivers 65
Regularization parameter, β 0.001

Due to storage and computational limitations, we cannot solve the reduced GN system with a direct method. In this work
we solve the reduced GN system for the search direction with the conjugate gradient (CG) method, which does not require
the Hessian operator but only the application of the Hessian operator to vectors. The convergence of the CG algorithm is
related to the square root of the condition number of the reduced Hessian. In cases where the eigenvalue spectrum of the
Hessian is clustered, it is possible to obtain a faster convergence. In addition, while solving the linear system we terminate
CG early resulting in an inexact Newton method [15].

2. Sensitivity of the anelastic waveform inversion algorithm to several parameters

In this section, we perform experiments to study the effects of various parameters on the inversion quality and the
algorithmic performance of the inversion technique. We use the same target profile as in Paper I, which is a cross section of
the shear wave velocity distribution for a sedimentary soil medium in the LA basin obtained from the Southern California
Earthquake Center (SCEC) Community Velocity Model [14]. Fig. 1 shows the target shear wave velocity distribution with the
fault location marked and the attenuation profile.

As in Paper I, in our numerical experiments we use waveforms synthesized from the target profile on the free surface as
pseudo-observed data. To model the source, we apply a uniform SH kinematic dislocation, with a triangular slip rate. The
model parameters, such as the overall dimensions, time step, number of receivers, and regularization parameter, are listed
in Table 1. Unless otherwise stated, we use these values in the parametric experiments.

We use a standard Galerkin type finite element scheme for space discretization and a central differences scheme for
temporal discretization of the KKT system. The shear modulus μ is approximated as a piecewise bilinear function on each
regular grid within the multilevel inversion algorithm, as are the state fields u and v on the 64 × 64 grid. We note that the
wave propagation simulations are performed on a 64 × 64 grid.

We focus on the performance of the inverse wave propagation method and study the effects of various parameter and
algorithmic choices including the type of regularization functional, value of the regularization parameter, receiver density,
preconditioning, data noise, and multilevel continuation. We use the term “inversion accuracy” to describe the success of
the algorithm in reconstructing the target wave velocity. We use the term “algorithmic performance” to signify such issues
as the rate of convergence and algorithmic scalability.

The density of the material is taken as known, since its variability is typically much less pronounced than that of the
other system parameters. Thus, even though our inversions are in terms of the shear modulus, μ, we express our results in
terms of the shear wave velocity, V S , which can be readily related to the shear modulus once the density is assumed to be
known.
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2.1. Effect of regularization type on inversion accuracy

To examine the effect of the form of the regularization on the inversion accuracy, we perform inversions with Tikhonov
and total variation regularizations keeping the remaining model parameters fixed. The regularization term in both Tikhonov
and total variation regularization penalizes high wavenumber material property components. These two methods differ in
the type of penalty function they employ, as briefly discussed below.

2.1.1. Tikhonov regularization (TR)
The form of Tikhonov regularization we use is H1, i.e. a quadratic penalty on the gradient of the material property

function:

RTR(μ) = 1

2

∫
Ω

∇μ · ∇μdΩ (9)

This form of regularization penalizes high wavenumber components of the medium in all directions. For a smooth target
medium, Tikhonov H1 regularization serves to filter out rough components of the medium that are unobservable. Besides,
an appropriate choice of β is crucial for the satisfactory performance of the regularization.

The TR functional above becomes unbounded at points of discontinuities in the medium, and thus smoothes material in-
terfaces unnecessarily. Total variation regularization, which we discuss next, performs better than TR in media with interface
discontinuities, which is important for a layered medium.

2.1.2. Total variation regularization (TVR)
This is the regularization method used in Paper I. In its continuous form, the TVR functional is as follows:

RTVR(μ) = 1

2

∫
Ω

√∇μ · ∇μdΩ (10)

The above expression is not differentiable when ∇μ = 0. Our optimization method is a Newton method, which requires
twice-differentiable objective functions; thus we make use of a variant of TVR:

RTVR(μ) = 1

2

∫
Ω

√∇μ · ∇μ + ε dΩ (11)

The ε term makes the above functional differentiable everywhere.
Unlike TR, TVR is finite at discontinuities, and thus performs better at recovering interface discontinuities in a target

medium [24,25]. Despite the expected improvement, the performance still depends on the value of the regularization pa-
rameter. In the next section, we discuss the regularization parameter selection and show inversion results with different
parameters.

We show the inverted shear wave velocity profiles for consecutive stages of the multilevel algorithm with two different
regularization techniques in Figs. 2 and 3. In the multilevel inversion procedure, where we perform the inversion on suc-
cessively refined grids, as seen from the figures, the material model is initially taken to be homogeneous, i.e., we assume
nothing is known about the target. Thus, the optimization grid starts with a single finite element of constant value, and
becomes uniformly finer at each stage of the multilevel process until it matches the 64 × 64 wave propagation grid. As
observed from the figures, the TR smoothes out the inverted profile at the material interfaces. TVR is more successful at
localizing interfaces. Therefore, we use TVR in our subsequent examples as the regularization functional.

2.2. Effect of regularization parameter on inversion accuracy and algorithmic performance

The application of regularization necessitates the choice of an appropriate regularization parameter to eliminate oscilla-
tory components of the medium that are unobservable from the band-limited response. If the parameter is too large, the
recovered medium is over smoothed. On the other hand, if it is too small, the recovered medium is polluted with highly
oscillatory components. Most of the existing work on regularization methods and regularization parameter selection has
focused on linear problems. In this work we simply use a trial-and-error approach to tune the regularization parameter.
This trial-and-error process is possible only for synthetic problems where the target material property profile is known be-
forehand. On the other hand, for problems with real data, the selection of the regularization parameter must be automated
via alternative techniques. When the noise level of the observations is known, the discrepancy principle may be used to
estimate the regularization parameter that yields an observational misfit of the order of the noise. When the noise level is
not known, several methods are available, such as Generalized Cross Validation and the L-curve method [25,26]. In general,
choosing the optimal regularization parameter requires solution of a sequence of inverse problems. See [25] for a discussion
on regularization parameter selection methods.

As a part of this parametric study, we investigate the effects of the regularization parameter on algorithmic perfor-
mance and inversion accuracy. We solve the example problem using TVR with three different regularization parameters.
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Fig. 2. Inverted shear velocity profiles for the consecutive stages of the multilevel inversion algorithm with Tikhonov regularization (β = 0.5 × 10−3) (V S in
m/ sec).

Fig. 3. Inverted shear velocity profiles for the consecutive stages of the multilevel inversion algorithm with total variation regularization (β = 10−3) (V S in
m/ sec).
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Fig. 4. Effect of different regularization constants on the algorithmic performance (V S in m/ sec, grid size: 64 × 64).

Table 2
Number of CG and GN iterations for different regularization constants for TVR regularization.

Grid Total number of CG iterations (number of GN iterations)

β = 0.0001 β = 0.001 β = 0.01

Homogeneous 59 (59) 59 (59) 59 (59)
1 × 1 43 (29) 41 (29) 38 (24)
2 × 2 63 (36) 58 (33) 61 (36)
4 × 4 185 (48) 151 (59) 69 (15)
8 × 8 463 (39) 385 (67) 137 (61)
16 × 16 501 (56) 262 (53) 99 (13)
32 × 32 561 (87) 213 (34) 155 (13)
64 × 64 – 196 (27) 79 (7)

Fig. 4 shows the results with the following regularization parameters: β = 10−4, β = 10−3, and β = 10−2. Table 2 com-
pares the performance of the inversion algorithm in terms of the number of GN and CG iterations as functions of β .
For all of the optimization grids, we terminate the algorithm after a maximum of 100 GN iterations. We note that the
inversion algorithm within the finest grid with the smallest regularization parameter did not converge after 100 GN itera-
tions.

In Fig. 4, we observe that when β is too large (10−2), regularization over-smoothes the reconstructed profile; whereas
when β is too small (10−4), noisy artifacts appear. This observation confirms the need for a problem-specific regularization
parameter. As listed in Table 2, the number of CG iterations decreases with increasing β . This is expected due to the
decreasing condition number of the Hessian with increasing values of the regularization parameter. On the other hand, as
indicated, beyond a certain value, the accuracy decreases with increasing β . After several trials with different values of β ,
we found that the optimal value is 10−3. We also note that the selected value of the ε term in Eq. (11) is taken to be 10−3;
the value of ε does not have as significant effect on the results as the value of β .

2.3. Effect of solution technique on algorithmic performance

To test the effect of the type of optimization method on the speed of convergence, we compute the search direction
with the Gauss–Newton (GN) and the steepest descent (SD) methods and compare the number of iterations required for
convergence for the two cases. SD is the simplest of the gradient methods, in which the search direction is the negative of
the gradient; this is also the initial step of the CG algorithm. Table 3 displays the numerical performance of the inversion
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Table 3
Effect of solution technique on numerical performance (βTVR = 10−3, βTR = 0.5 × 10−3).

Total number of iterations

Steepest descent Gauss–Newton

TR 1000+ 124
TVR 1000+ 196

Fig. 5. Effect of multilevel technique on inversion accuracy (β = 0.001, grid size: 64 × 64).

algorithm in terms of the total number of iterations for the SD and GN methods for two different types of regularization. The
iteration numbers displayed for the GN method are the total number of CG iterations within the final grid of the multilevel
algorithm (grid size: 64 × 64).

We also note that GN here is not exact, i.e. we terminate early the CG solution at each GN iteration to avoid “over-
solving”, in the style of an inexact Newton-CG method [27].

Regardless of the regularization technique, SD is unable to converge within 1000 iterations whereas GN converges in
every case. The slow convergence of SD is apparent particularly for badly scaled systems in which the Hessian matrix is
ill-conditioned. Consequently, we prefer to use GN to compute the search direction. When we compare the number of
iterations for TR and TVR in conjunction with the GN method, we observe that the TVR converges more slowly than the TR.
This is mainly because the same properties of the TVR functional that help to recover the sharp edges of the target profile
lead to an anisotropic and more ill-conditioned Hessian than that of TR, resulting in a larger number of iterations. However,
since the number of iterations is of the same order for both methods; we, prefer to use the TVR with the GN method for
the rest of this work due to its higher accuracy. (A popular alternative to GN method is the Levenberg–Marquardt (LM)
method. However, based on numerical experience with similar inverse problems, we note that LM method is more suitable
for problems where the GN approximation is not sufficiently accurate and the final misfit is large, which is not the case in
the problem presented herein.)
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Fig. 6. Effect of receiver density on inversion accuracy (β = 0.001, grid size: 64 × 64).

2.4. Effect of local minima and multilevel technique on inversion accuracy

Given an initial guess, an inexact Newton–CG method with appropriate line search is guaranteed to converge at best
to a local minimum. When the initial guess is not in the basin of attraction of the global minimum, the existence of
multiple local minima is an issue for seismic inversion methods. Since the diameter of the attraction basin for inverse
wave propagation problems narrows down with increasing frequency of propagating waves [28], the optimizer should be
provided with a good initial guess ito avoid getting trapped into a local minimum. In this work, a multilevel approach is
used to generate a sequence of initial guesses that remain within the basin of attraction of the global minimum by means
of a strategy similar to that employed by Bunks et al. [28].

Observations on the basin of attraction of the global minimum suggests that inversion be performed initially on a coarse
grid with low frequency sources, and the resulting optimal solution used to initialize new inversions on successively refined
grids with sources of increasingly higher frequencies. For simplicity, in this work we make use of spatial grid continuation
with a single source. We begin by solving the inverse problem on a coarse material grid and prolong the solution to the next
finer grid, continuing the refinement until the material grid matches the wave propagation grid. The converged solution on
each grid is used as an initial guess for the next scale. In our experience, this multilevel grid continuation strategy keeps
the sequence of minimizers within the basin of attraction of the global minimum, provided the seismic source contains
sufficient low-frequency energy [21,22].

To examine its effects on the inversion accuracy, we solve the inverse problem with and without the multilevel technique.
Fig. 5 compares the target shear wave velocity profile with the inverted profiles obtained from the two cases. As observed in
Fig. 5, inversion without the multilevel strategy becomes trapped in a local minimum and fails to recover the target velocity
profile. On the other hand, use of the multilevel strategy is observed to be successful in recovering the target velocity profile.

2.5. Effect of receiver density on inversion accuracy

To evaluate the influence of receiver density, we compare shear wave velocity profiles obtained from inversions per-
formed with three different numbers of receivers as shown in Fig. 6. As expected, we recover the target profile more
effectively with increasing numbers of receivers, and thus more information regarding the response. Another observation is
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Fig. 7. Effect of noisy data on inversion accuracy (β = 0.001, grid size: 64 × 64).

Table 4
Misfit variation for different noise levels.

Noise 1
2 ‖u∗ − u∗

noisy‖ Initial misfit Initial RTVR(μ) Final misfit Final RTVR(μ)

0% 0.0 498.64 0.41 0.19 53.78
5% 0.26 562.15 0.41 1.08 53.25
10% 1.04 504.67 0.41 4.02 53.24

that even with 17 receivers we have managed to recover the target profile roughly. This will be beneficial for problems with
sparse data.

2.6. Effect of noisy data on inversion accuracy

To account for the uncertainties in recorded response, we add Gaussian noise with zero mean and unit standard deviation
to the synthetic waveforms at the receivers u∗ (i.e. u∗

noisy = u∗ × (1 + n × L) where n is the noise generated and L is the
percent noise level). To study the effects of noisy data on the quality of the inversion, we solve the example problem
using three different levels of noise (0,5, and 10 percent) added to the original synthetic seismograms. Fig. 7 compares the
converged solution on the finest grid within the multilevel algorithm for different noise levels. Table 4 lists the initial and
final values of the objective function in terms of both the misfit and size of the regularization term along with the norm of
the noise for each case. The initial misfit corresponds to the misfit for the homogeneous initial guess and the final misfit
corresponds to the misfit for the final grid in the multilevel algorithm. As can be seen, there is an increase in the final misfit
with increasing noise level but this misfit remains below 1 percent. It is noteworthy that noisy data does not increase the
number of GN and CG iterations noticeably.

2.7. Effect of preconditioner on algorithmic performance

For an ill-conditioned Hessian, a preconditioner may be applied to the Hessian for faster convergence. The preconditioner
approximates the inverse of the Hessian and thus the resulting matrix has a more favorable eigenvalue spectrum, yielding
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Table 5
Effect of preconditioning on the number of CG iterations.

Grid Total number of CG iterations

No preconditioner LBFGS preconditioner

Homogeneous 59 59
1 × 1 67 41
2 × 2 386 58
4 × 4 1080 151
8 × 8 921 385
16 × 16 764 262
32 × 32 576 213
64 × 64 1563 196

a smaller condition number or clustered eigenvalues. In this work, we examine the effect of a limited memory quasi-
Newton (LBFGS) preconditioner [29] by solving the example problem with and without the use of the preconditioner.
Table 5 compares the numerical performance of the inversion algorithm for the two cases in terms of the total number of
CG iterations. In both cases, we use TVR with a regularization parameter β = 10−3.

The speed of convergence of CG is greatly accelerated with the use of a preconditioner. For the finest scale in the
multilevel algorithm, the number of CG iterations decreases by a factor of 8. We note that in addition to the decrease in
the number of CG iterations, the preconditioner provides a reduction in the computing time by a factor of 4 for the entire
solution including all of the optimization grids. Epanomeritakis et al. [30] observed a similar algorithmic scalability with the
same type of preconditioner employed in a large-scale three-dimensional elastic full-waveform seismic inversion algorithm.

3. Concluding remarks

In this article, we studied the effects of a number of parameters on the quality of inversion and algorithmic perfor-
mance of the inversion method introduced in Paper I. We applied the method to a two-dimensional example problem, and
examined the inversion results for various parameters and algorithmic choices. The highlights are as follows:

• Total variation regularization is more successful at localizing sharp material interfaces than Tikhonov regularization,
which over-smoothes the sharp edges.

• The choice of an optimum regularization parameter is important for attaining a successful inversion. When the regular-
ization parameter is too small, the solution is polluted with noisy artifacts; whereas when it is too large, the inverted
result is over-smoothed. Every inverse problem requires a problem-specific regularization parameter. In this study, our
goal was to illustrate numerically the sensitivity of the solution to the regularization parameter. To this end, we used a
trial and error technique to determine the corresponding value of this parameter that leads to the smallest differences
between the inverted shear wave velocity profile and the target one.

• By computing search directions with both SD and GN techniques, we found the performance of the GN method to be
superior to that of the SD, due to its approximation of the curvature of the objective. SD did not converge even after an
unrealistically large number of iterations.

• The use of a multilevel strategy in seismic waveform inversion is crucial. We observed that without the multilevel
technique, the optimizer becomes trapped at a local minimum, and consequently the algorithm is not successful in
recovering the target medium.

• From tests with different receiver densities, we found that, as expected, the larger the number of receivers, the more
effective the inversion is at retrieving the target wave velocity profile. On the other hand, even with sparser receiver
arrays, we still obtained reasonable estimates of the shear wave velocity profile. This observation is encouraging for
future attempts at waveform inversion using real data where a dense receiver array might not be available.

• Comparing inversions with and without noise, we observed that noise up to 10 percent does not have a significant
effect on either the quality of inversion or the algorithmic performance of the inversion method.

• The use of an LBFGS-based preconditioner improved the performance of the algorithm significantly by speeding up
the convergence of CG. It is essential to use a preconditioner for waveform inversion problems characterized by ill-
conditioned Hessians, and for problems with large numbers of inversion parameters.

In conclusion, in this study, we presented numerical evidence that a careful selection of inversion parameters and appli-
cation of appropriate remedies for the challenges encountered, yields a full waveform anelastic inversion methodology that
performs successfully for a given target shear wave velocity distribution.
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