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We formulate and solve an inverse poroelastic problem to reconstruct the spatial
distribution of the filtration coefficient for soft vascularized tissue from a collection of
displacement fields obtained during its relaxation. We present two solutions for the
inverse problem, both developed using direct non-iterative approach. The first is a simple
closed form approximate solution. It depends upon the approximation that the interstitial
pressure is spatially homogeneous. The second solution relaxes this assumption. It requires
the solution of a Poisson equation to reconstruct the pressure distribution. The inversion
thus obtained is exact in the limit of negligible percolation. We present inversion results
from computational experiments to validate and compare the two approaches. The closed
form solution provides accurate results in favorable circumstances. The exact-pressure
approach accommodates inhomogeneous loading easily. Both approaches are somewhat
sensitive to noise. Our results suggest that it may be possible to image the filtration
coefficient using this approach. Future work would include further test with noisy data
and experimental validation.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous formulons et résolvons un problème inverse poroelastique afin de reconstruire
la distribution spatiale du coefficient de filtration pour un tissu mou vascularisé ; les
déplacements utilisés ici sont enregistrés pendant la relaxation du tissu. Nous présentons
deux solutions pour le problème inverse, toutes deux développées en utilisant une
approche directe non-itérative. La première solution est une expression explicite simple,
qui fait l’hypothèse que la pression interstitielle est spatiallement homogène. La deuxième
solution ne se fonde pas sur cette hypothèse et requiert la résolution d’une équation
de Poisson pour obtenir la distribution de pression. L’inversion obtenue ainsi est exacte
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dans la limite ou la percolation est négligeable. Nous présentons des reconstructions
sur des données obtenues par simulations numériques pour valider et comparer ces
deux approches. La solution explicite fournit des résultats précis dans des circonstances
favorables. La deuxième approche est pratique pour simuler un chargement non homogène
du tissu. Il apparaît que les deux approches sont quelque peu sensibles au bruit. Nos
résultats suggérent néanmoins qu’il est possible d’effectuer l’imagerie du coefficient de
filtration en utilisant cette approche. Dans le futur, nous souhaitons tester davantage ces
méthodes en présence de bruit puis les valider sur des données expérimentales.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Living tissues comprise multi-phase and multi-scale structures with complex physiology. Their mechanical response ex-
hibits various stress/strain relaxation behaviors which can be interpreted within the context of viscoelasticity [1,2] and
poroelasticity [3,4]. It is recognized that this mechanical response contains information regarding tissue condition that can
potentially help in diagnosis and treatment monitoring of pathologies. In that context, imaging technologies that help to
visualize and quantify such response may be used in novel medical diagnostic tools.

A suite of “elastography” techniques have been developed in recent years to measure and visualize tissue deformation in
vivo. Some original sources and excellent reviews may be found in [5–13]. The deformation fields measured by elastographic
techniques may be used to create images sensitive to the spatial distribution of tissue mechanical properties. For example,
using this approach, solid tumors may be visualized typically as stiffer regions within their surroundings. Much of the focus
in quasistatic elastography has been on determining elastic stiffness, though notable exceptions may be found investigating
viscous relaxation [1,2] and flow-induced strain relaxation [14–16].

Recently, we investigated a mathematical model for the poroelastic behavior of vascularized soft tissue with the aim of
interpreting transient tissue response to mechanical compression. This model was originally proposed in [17], where the
focus was perfusion and drug delivery in solid tumors. In this model, the microvessel walls are represented by permeable
membranes and the fluid exchange is governed by the Starling’s law, where the local exchange rate is proportional to the
pressure difference across the microvessel walls. The model thus includes the possibility of fluid exchange between the
interstitial compartment and the local microvasculature (capillaries and lymphatic vessels). The focus of our original study
[18] was on the effect of fluid redistribution on observed strain patterns in compressed, heterogeneous, soft tissues, and the
timescales thereof.

Two stress (strain) relaxation mechanisms associated with interstitial fluid flow are predicted by this model: percola-
tion and filtration. Percolation represents the interstitial fluid redistribution within the interstitium driven by the interstitial
pressure gradient. Filtration represents the fluid exchange between the interstitium and microvessels, driven by the pres-
sure difference across the microvessel walls. Our main motivation in studying this model was to investigate the possibility
of using techniques from elastography to image spatio-temporal patterns of elastic strain and thereby quantify interstitial
fluid flow in soft tissues. In that context, numerical simulations corresponding to quasi-static compression under a vari-
ety of physiological conditions were performed. These simulations demonstrated that filtration is the dominant relaxation
mechanism and that abnormal (hypervascularity or elevated microvessel density) vasculature, frequently associated with
malignant solid tumors, significantly impacts the spatio-temporal pattern of elastic strain. In a nutshell, regions with high
vascular density tend to relax faster.

This article presents a natural extension of the work presented in [18]. Here, we formulate and solve the related inverse
problem. More specifically, we use the mathematical model mentioned above and described in [17,18], to formulate and
solve an inverse poroelastic problem to reconstruct the spatial distribution of the filtration coefficient from a collection
of displacement fields corresponding to different stages of tissue relaxation. In that sense, it is a first step toward the
generalization of elastography; beyond the focus on elastic stiffness, we now aim to quantitatively map regions with higher
filtration coefficient, and thus high microvascular density.

In what follows we first present the mathematical model for the mechanics of vascularized soft tissue. Then we for-
mulate the inverse poroelastic problem and present two solution strategies: a simple approximate approach amenable to
closed-form solution, and a more accurate approach which is exact in the limit of negligible percolation. Both solution
strategies are direct in that they require no iterations. The more accurate approach is based on an exact reconstruction of
the pressure distribution within the tissue. To do so, use a variational formulation and assume that the tissue elastic param-
eters are known a priori. For example, they may be determined using elastography and inversion techniques. After that, we
present inversion results from computational experiments to validate the computational implementations and to compare
the proposed solutions. Further, we show some initial results illustrating the impact of noise on the reconstructions. We
then discuss the results and conclude.
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2. Methods

2.1. Mathematical model

Soft tissue is widely recognized as having both fluid and solid phases that can move relative to each other. Furthermore,
fluid exists within several “compartments” of the tissue, notably, the vasculature (including both the haemal and lymphatic
vessels) and the extravascular space (i.e. the interstitium). Due to permeability of microvessel walls, fluid is often exchanged
between these compartments. In the present work, we use the poroelastic mathematical model for the mechanics of vas-
cularized soft tissue described in [17]. It is essentially a modification of biphasic model for nonvascular soft tissues such
as cartilage [3,4] that incorporates the fluid exchange between the vascular and extra-vascular compartments. The assump-
tions that go into the model are incompressible fluid and solid phases, small strains, small vascular space, Starling’s law for
(transient) fluid transport across the vessel wall, Darcy’s law for fluid flow through the interstitial compartment and Hooke’s
law for the elastic response. In the model we neglect the possible viscous behavior of the solid frame [1,2]. Moreover, we
assume that the deformation takes place slowly enough that inertia can be neglected. Under these conditions, the solid
displacement vector u and interstitial fluid pressure p are related by (see Appendix A in [18] for full derivation):

∇ · u̇ − ∇ · (κ∇p) + χ p = 0 (1)

∇ · [−p1 + λ(∇ · u)1 + 2με
] = 0 (2)

Eq. (1) represents a combination of the conservation of fluid mass in the interstitium, with the momentum equation
for the fluid phase. It is assumed that both solid and fluid phases are incompressible and have the same density. Eq. (2)
represents the balance of total linear momentum in the tissue. The symbols that appear in Eqs. (1) and (2) are defined as
follows: ∇ is the gradient operator, 1 is the identity tensor, u̇ = ∂u/∂t is the solid phase velocity, p is the interstitial fluid
pressure, κ is the interstitial permeability that determines the ease with which fluid percolates through the interstitium,
λ and μ are the elastic Lamé parameters of the drained interstitium, χ is the local average filtration coefficient, or simply
the filtration coefficient; in accord with [17], χ = χV + χL , with χV = L p S V /V and χL = L pL SL/V . Here, L p (resp. L pL )
is the hydraulic conductivity of the haemal (resp. lymphatic) capillary wall; L p represents the ease with which fluid can
flow through the capillary wall, and S V /V (resp. SL/V ) is the surface area of the haemal (resp. lymphatic) capillary wall
per unit volume of tissue. Thus χ represents the ease with which fluid can flow from the vascular compartment into the
interstitial space, and vice versa. It can be elevated either by elevated L p (particularly leaky capillaries) or by elevated
S V /V , that is, elevated microvessel density. In the special case χ = 0, we recover the linear biphasic equations describing
the deformation of avascular cartilage-like materials. It follows from the assumption that both solid and fluid phases are
incompressible that local dilatation can occur only when the corresponding volume of fluid percolates or drains from the
interstitial compartment.

In Eq. (1) we can identify two different transient phenomena, percolation and vascular drainage (filtration), both leading
to stress (strain) relaxation (see [18] for details). The relative importance of these mechanisms is determined by the value of
the nondimensional parameter α = κa2/χ , where a is a reference length. Typical values of breast tissue mechanical proper-
ties show that α � 1, hence filtration is the dominant mechanism in those cases considered [19,20,17,18]. Further, since χ
is proportional to the local microvascular density, we have shown that elevated microvessel density, frequently associated
with the presence of malignant tumors, may significantly impact the spatio-temporal patterns of elastic strain. Conversely,
the spatio-temporal patterns of elastic strain contain information related to the spatial distribution of microvasculature. This
provides a strong motivation for developing algorithms for mapping the spatial distribution of the filtration coefficient.

2.2. Inverse problem formulation and solution

2.2.1. Formulation
Here, with the aid of the poroelastic model represented in Eqs. (1) and (2), we intend to reconstruct the spatial distri-

bution of the filtration coefficient χ(x), from a collection of displacement fields obtained during tissue relaxation. In the
clinical scenario envisaged the tissue is compressed by a “push and hold” mechanical loading and is imaged during a time
interval after the compression, while relaxation takes place. The corresponding displacement fields are then calculated by
registering the images using motion tracking algorithms.

This experimental procedure then motivates the following inverse problem: Given u(x, t) satisfying (1) and (2), and elastic
material parameters λ(x) and μ(x), determine χ(x). Because α � 1, percolation has little effect on observed relaxation phe-
nomena. As a result, it can be safely neglected in (1) for the purposes of solving the inverse problem. We shall not neglect
it, however, in generating forward solutions to be used as “data” for the inverse problem.

We present two solutions for the inverse problem of determining the filtration coefficient. The first is a simple ap-
proximate solution in which we assume that the pressure is spatially homogeneous. The second is based on an exact
reconstruction of the pressure distribution, and hence is more accurate. As seen later in the text, for the latter we need to
fix the pressure value at one point in the domain and we need a priori knowledge of the spatial distribution of the elastic
parameters. In this work we assume that these parameters may be determined independently, perhaps through the solution
of a separate elastic inverse problem.



R. Leiderman et al. / C. R. Mecanique 338 (2010) 412–423 415
2.2.2. Solution 1: Approximate closed-form solution assuming uniform pressure distribution
Here we assume that the pressure is spatially homogeneous. That is, we choose p ≈ pref = Constant, and hence ∇p = 0.

Eq. (1) then shows that the local dilatation rate ∇ · u̇ is directly proportional to the filtration coefficient χ . More specifically,
we neglect Eq. (2) and rewrite Eq. (1) as:

∇ · u̇ + χ pref = 0 (3)

Hence, the solution for χ is simply:

χ(x) = −∇ · u̇

pref
(4)

Here, we have written χ(x) in order to emphasize the possible spatial dependence of the filtration coefficient.
Eq. (4) tells us that at each point, the filtration coefficient is equal to the dilatation rate divided by the driving pressure.

It assumes that percolation is absent (by assuming homogeneous pressure) and that local dilatation occurs only when the
corresponding volume of fluid drains from the interstitial compartment. We need a value for the pressure to perform the
calculation described above. This value may be estimated by measuring the pressure on a part of the surface of the tissue.

Integrating Eq. (4) with respect to time from t = t1 to t = t2 > t1 gives:

χ = −∇ · u(x, t2) − ∇ · u(x, t1)

pref �t
(5)

Here, �t = t2 − t1 is the time interval over which the relaxation is observed. To obtain (5), we recognize that χ(x) is
independent of time, and have assumed that the pressure is constant in time as well as in space. To the extent that p
changes with time, we may take pref in the denominator of (5) to be the temporal average pressure, or we may apply (5)
directly, with sufficiently small �t . Indeed, even with ∂ p/∂t �= 0, Eq. (5) recovers Eq. (4) exactly in the limit �t → 0. If ∇ · u
is known at more than two time instants, then we can evaluate more than one inversion and average them as a strategy
to reduce noise, as seen in Section 3. The local dilatation is, of course, ∇ · u = εxx + εyy + εzz , the trace of the local strain
tensor. It can be calculated from the (assumed known) tracked displacement field.

Notice that in Eq. (5) we need only the difference in local dilatation. In that sense, we do not need to track the full
compression, but only the transient motion that takes place during the time interval of interest.

This simplified solution for the filtration coefficient is analogous to strain imaging in the purely elastic inverse prob-
lem. There it is assumed that stress is uniform and uniaxial. Then the recovered tissue stiffness distribution is simply the
reciprocal of the measured strain. Here, we are assuming that the pressure is uniform, and hence the recovered filtration
coefficient is proportional to the dilatation rate.

2.2.3. Solution 2: Filtration coefficient using exact pressure reconstruction
Here we relax the assumption that the pressure is spatially uniform, and derive a procedure to obtain the filtration

coefficient. To do so, we first rewrite Eq. (2) as:

∇p = ∇ · σ elast (6)

σ elast = λ(∇ · u)1 + 2μ∇symu (7)

The symbol σ elast may be interpreted as the elastic part of the stress in the tissue. Note that by using Eq. (7) we can
calculate σ elast in terms of the given displacement field and the known spatial distribution of the Lamé parameters.

We subdivide the solution procedure into three steps: First, we calculate the pressure gradient using Eq. (6). Second, we
calculate the pressure field from the calculated pressure gradient. Here, we need to fix the pressure value at one point in the
domain. Third, we use Eq. (3) to solve for χ . We recall that in obtaining Eq. (3) we have neglected percolation, i.e., we have
assumed that κ = 0. This assumption is justified on the basis of our previous results that indicate that tissue permeability
plays a very small role in its initial relaxation.

The three steps outlined above can be performed using any suitable numerical method. We have developed a formulation
that is based on minimizing a functional in each step, and in that sense may be considered optimal. This leads to the
variational problems described below:

Step 1. Find the vector v (which is really the pressure gradient) that minimizes the functional: Π1[v] = ‖v − ∇ · σ elast‖2.

This requires that we solve the weak form:

(w, v) = −(∇sym w,σ elast
) + (w,σ elast · n)Γ , ∀w (8)

Here, (·, ·) is the usual L2 inner product for vector valued functions [21] and the subscript Γ indicates that the integral
is evaluated on the boundary; n is the outward unit normal vector on Γ . To solve Eq. (8), we use standard piecewise
linear finite elements [22]. In our implementation we have lumped the mass matrix on the LHS, so our linear system
of equations is diagonal.



416 R. Leiderman et al. / C. R. Mecanique 338 (2010) 412–423
Fig. 1. Experiment 1: Unconfined compression. The circular inclusion has 1 cm diameter and the sample has dimensions of 10 cm × 10 cm. The fluid
cannot flow across the boundaries. The tissue is fixed at the bottom, where ux = u y = 0. The lateral surfaces are traction free. At the top, we simulate the
mechanical loading from a compressor of 5 cm width. The displacement of the compressor is modelled by a ramp function such that the prescribed u y

goes from 0 to 1 cm in 0.5 s, in the region corresponding to x = 2.5 cm to x = 7.5 cm. Below the compressor we prescribe zero shear stress (σyx = 0).

Step 2. Find the scalar p that minimizes the functional: Π2[p] = ‖∇p − v‖2. This requires that we solve the weak form:

(∇q,∇p) = −(∇q, v), ∀q (9)

This is analogous to solving Poisson’s equation with Neumann boundary conditions. To render this problem solvable,
a single constraint must be specified for p. Of course, p (and hence q) must be chosen consistent with this single
constraint. Once again, we use standard piecewise linear finite elements to solve for p.

Step 3. Find the scalar χ that minimizes the functional: Π3[χ ] = ‖∇ · u̇/p + χ‖2 (p �= 0). This requires that we solve the
weak form:

(ξ,χ) = −(ξ,∇ · u̇/p), ∀ξ (10)

Once again the LHS operator is a mass matrix that we can lump in order to obtain a diagonal linear system of equations.
In our implementation, we again use standard piecewise linear finite elements to solve for ξ . For all the cases tested so
far, the procedure of lumping the mass matrices in Steps 1 and 3 has not had a significant impact on the solution.

This inverse problem solution deserves some comments. First, it can be seen from the equations above that we formulate
the inverse problem as a direct problem. In that sense, it is possible to invert for a large number of parameters without
much computational effort. Further, we do not need to know the physical boundary conditions at the image boundaries to
solve the problem. On the other hand, as seen later, the solution is sensitive to the presence of noise in the input data.
Also, as in the previous subsection, we need to calculate the local dilatation rate, ∇ · u̇. We approximate it, as in Eq. (5),
with a small �t . Further, we use the displacement field average, (u(x, t1) + u(x, t2))/2, in Eq. (7). In that sense, we actually
calculate the average pressure field in Step 2, i.e., (p(x, t1) + p(x, t2))/2. This procedure is consistent with using a midpoint
integration rule and a small �t in Eq. (4).

2.3. Computational experiments

All the displacement fields used in the present work were computationally generated solving Eqs. (1) and (2) using the
finite element method. We emphasize that percolation in Eq. (1) was not neglected in solving the forward problem. It was,
however, neglected in solving the inverse problem.

In the computational experiments presented here, we have attempted to reproduce configurations that may be appropri-
ate for clinical breast exams, while making some modeling simplifications. For example, we have considered a rectangular
domain and a plane strain deformation state. In addition, we have assumed homogeneous properties, except for an isolated
circular inclusion, as indicated in Figs. 1 and 3. The properties of the inclusion are chosen to model a malignant tumor,
where the filtration coefficient and the stiffness are elevated. Chosen values for κ and χ are consistent with those reported
in [19,20]. Values for μ agree with the orders of magnitude reported in the literature. λ is consistent with a Poisson’s ratio
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Fig. 2. Experiment 1: Unconfined compression. (a) The original filtration coefficient spatial distribution, χ(x), in the region delimited by the dotted line
in Fig. 1. (b) Difference in displacement field in the x direction, ux(t = 1.5 s) − ux(t = 0.5 s). (c) Difference in displacement field in the y direction,
u y(t = 1.5 s) − u y(t = 0.5 s).

Fig. 3. Experiment 2: Confined compression. The circular inclusion has 1 cm diameter and the sample has dimensions of 10 cm × 10 cm. The fluid cannot
flow across the boundaries and the tissue is fixed at the bottom. The model is completely confined at the top, where u y goes from 0 to 0.03 cm in 0.5 s,
and is partially confined on the sides from y = 2.0 cm to y = 10 cm, while it is traction free from y = 0.0 cm to y = 2.0 cm. The goal is to reproduce a
situation of a partial confinement test.

of about ν = 0.47–0.49, or porosities of about 0.02–0.06; it is expected that these are conservative (i.e. underestimates).
All the parameters used in the computational experiments are summarized in Table 1 and are consistent with those used
in [18].

2.3.1. Experiment 1
Experiment 1 is schematically shown in Fig. 1 and corresponds to experiment 1 in [18]. The circular inclusion has

1 cm diameter and the sample has dimensions of 10 cm × 10 cm. The fluid cannot flow across the boundaries of the
sample, mimicking a portion of tissue completely bounded by skin. The tissue is fixed at the bottom, where ux = u y = 0.
The lateral surfaces are traction free. At the top, we simulate the mechanical loading from a compressor of 5 cm width.
The displacement of the compressor is modeled by a ramp function in time such that the prescribed u y(t) goes from 0
to 1 cm in 0.5 s, in the region corresponding to x = 2.5–7.5 cm. Below the compressor we prescribe zero shear stress
σyx = 0, which models a slip boundary condition. The spatial distribution of the filtration coefficient within the subdomain
bounded by the dotted line in Fig. 1 is shown in Fig. 2(a). The difference in displacement field at t = 1.5 s and t = 0.5 s,
u(x, t = 1.5 s) − u(x, t = 0.5 s), in this subdomain is shown in Figs. 2(b) and 2(c). This displacement data was used as input
to solve the inverse problem. We have performed the inversions only in the subdomain bounded by the dotted lines. This
is consistent with practice where the physical boundaries are typically distinct from the ultrasound image boundaries.
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Table 1
Poroelastic parameters used to generate simulated data.

Parameters Healthy tissue value Inclusion value

χ (Pa s)−1 1.89 × 10−8 5.67 × 10−7

κ (m2/Pa s) 6.4 × 10−15 3.1 × 10−14

λ (kPa) 539 517
μ (kPa) 11 33

Fig. 4. Experiment 2: Confined compression. (a) Difference in displacement field in the x direction, ux(t = 1.5 s) − ux(t = 0.5 s). (b) Difference in displace-
ment field in the y direction, u y(t = 1.5 s) − u y(t = 0.5 s).

2.3.2. Experiment 2
Experiment 2 is schematically shown in Fig. 3 and corresponds to experiment 2 in [18]. The size of the circular inclusion

and the background are unchanged from experiment 1, and as before, the fluid cannot flow across the boundaries and the
tissue is fixed at the bottom. Now, however, the model is completely confined at the top, where u y changes with time
from 0 to 0.03 cm in 0.5 s. Also, the body is partially confined at the lateral surfaces, i.e., ux = 0 from y = 2.0 cm to
y = 10 cm, while it is traction free from y = 0.0 cm to y = 2.0 cm. The goal here is to reproduce a situation of partial
breast confinement, with the recognition that the breast is not completely confined in the clinical setting. The difference in
displacement field at t = 1.5 s and t = 0.5 s, u(x, t = 1.5 s) − u(x, t = 0.5 s), in the region delimited by the dotted line in
Fig. 3, is shown in Fig. 4. Once again these displacement fields were used as input data for solving the inverse problem.

2.3.3. Experiment 3
Experiment 3 has the same configuration as experiment 1, but the interstitial permeability, κ , is artificially increased

a hundredfold. The same value κ = 6.4 × 1013 m2 (Pa s)−1 for the permeability is used in both the inclusion and the sur-
rounding tissue. It corresponds to experiment 3 in [18]. Through this simulation we investigate the impact of increasing the
interstitial permeability, and therefore the percolation, in the forward problem, on the results of our inversion algorithms
which neglect percolation.

3. Results

Here we show reconstructions of the spatial distribution of filtration coefficient for the computational experiments de-
scribed above.

3.1. Experiment 1

Results from both inversion algorithms are presented in Fig. 5. In Fig. 5(a) we plot the dilatation rate calculated according
to Eq. (5) from the displacement fields shown in Figs. 2(b) and 2(c). Using this, and the average value of the pressure below
the compressor, pref = 4.5 kPa, we evaluate the filtration coefficient using the uniform pressure assumption (Eq. (4)). This
solution is shown in Fig. 5(b) and the relative error is shown in Fig. 5(c). In Fig. 5(c) the dynamic range of the color
scale was restricted to −100% to 100%. In Fig. 5(d) we show the reconstructed pressure field obtained from Steps 1 and
2 of the non-uniform pressure algorithm. As mentioned in Section 2.2.3, this is actually an approximation of the pressure
field at the temporal average of the two fields. Further, as also mentioned in the same section, we need to prescribe the
pressure at one point in the domain to quantitatively reconstruct the pressure field from the pressure gradient. For all the
pressure reconstructions shown in the present work, we have prescribed the “exact” pressure value, i.e., (p1 + p2)/2, at the
lower left corner of the domain. In Fig. 5(e) we show the reconstructed filtration coefficient using the non-uniform pressure
algorithm. In Fig. 5(f) we present the relative error in this reconstruction. The dynamic range of the color scale in the figure
is between 0 and 100%.
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Fig. 5. Experiment 1: Unconfined compression. (a) Average dilatation rate (strain/s) in the first second after the compression. (b) Reconstructed filtration
coefficient obtained by solution 1. (c) Relative error in the reconstructed filtration coefficient shown in (b). The color scale was selected such that errors
equal to 100% or larger are represented by the same color (dark red) and errors equal to −100% or smaller are represented by the same color (dark blue).
(d) Reconstructed pressure distribution from Eq. (9). (e) Reconstructed filtration coefficient obtained by solution 2 and reconstructed pressure field (d).
(f) Absolute value of relative error in the reconstructed filtration coefficient shown in (e). The color scale was adjusted such that errors equal to 100% or
larger are represented by the same color (dark red) and errors equal to 0% are represented by dark blue.

Fig. 6. Experiment 1: Unconfined compression – Effect of mesh size and measurement noise in reconstructed filtration coefficient. Absolute values of relative
errors in the filtration coefficient spatial distribution reconstructed by solution 2. Scales adjusted such that errors equal to 100% or larger are represented
by the same color (dark red) and errors equal to 0% are represented by dark blue. (a) The relative error in the reconstructed filtration coefficient using
a mesh four times coarser than that used in Fig. 5. (b) The relative error in the reconstructed filtration coefficient using a noisy displacement field. The
noise-to-signal ratio, measured in terms of the ∇ · u̇, is about 4.5. (c) The relative error in the reconstructed filtration coefficient calculated by averaging
4 different filtration coefficient spatial distributions reconstructed from 5 different noisy displacement fields. In the different displacement field pairs, the
noise-to-signal ratio varied from about 4.5 to about 8.

In Fig. 6 we investigate the robustness of the non-uniform pressure inversion algorithm. Fig. 6(a) represents the relative
error in the filtration coefficient reconstructed from a coarse sampling of the displacement field. That is, we solved the for-
ward problem on a fine mesh, sampled the displacements on a mesh that was four time coarser in each direction, and then
performed the inversion on this coarse mesh. Fig. 6(b) shows the relative error in the filtration coefficient reconstructed
from noisy displacement data. The noisy displacement field was obtained synthetically by adding white noise to the dis-
placement fields shown in Figs. 2(b) and 2(c). The global noise-to-signal ratio, measured in terms of the ∇ · u̇, is about 4.5.
We recall that we approximate ∇ · u̇ in practice by the numerator of Eq. (5). A noise-to-signal ratio of 4.5 indicates a rather
large noise, but we emphasize here that it is a global value, i.e., an average value. In that sense, there are regions where the
local noise-to-signal ratio is larger, and regions where the noise-to-signal ratio is smaller. In particular, it is smaller in the
inclusion. See the discussion for more details. Fig. 6(c) represents the relative error in the filtration coefficient calculated
by averaging four different reconstructions obtained from the five noisy displacement fields measured at t = 0.5, 1.5, 2.5,
3.5 and 6.5 s. The noisy displacement fields were obtained synthetically by adding white noise to the perfect displacement
data and the noise-to-signal ratio varied from about 4.5 to 8. This result shows that the impact of noise can be reduced
by averaging reconstructions when a temporal sequence of displacement fields is available. The dynamic range of the color
scale is restricted to 0–100%.
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Fig. 7. Experiment 2: Confined compression. (a) Average dilatation rate (strain/s) in the first second after the compression. (b) Reconstructed filtration
coefficient obtained by solution 1. (c) Relative error in the reconstructed filtration coefficient shown in (b). The color scale was selected such that errors
equal to 100% or larger are represented by the same color (dark red) and errors equal to −100% or smaller are represented by the same color (dark blue).
(d) Reconstructed pressure distribution from Eq. (9). (e) Reconstructed filtration coefficient obtained by solution 2 and reconstructed pressure field (d).
(f) Absolute value of relative error in the reconstructed filtration coefficient shown in (e). The color scale was adjusted such that errors equal to 100% or
larger are represented by the same color (dark red) and errors equal to 0% are represented by dark blue.

3.2. Experiment 2

Results from both inversion algorithms are presented in Fig. 7. In Fig. 7(a) we plot the dilatation rate calculated ac-
cording to Eq. (5) from the displacement fields shown in Fig. 4. Using this and the average value of the pressure below
the compressor, pref = 2.68 kPa, we evaluate the filtration coefficient using the uniform pressure assumption, solution 1,
(Eq. (4)). This solution is shown in Fig. 7(b) and the relative error is shown in Fig. 7(c). In Fig. 7(c) the dynamic range of
the color scale was restricted to −100% to 100%. In Fig. 7(d) we show the reconstructed pressure field obtained from Steps
1 and 2 of the non-uniform pressure algorithm, solution 2. As mentioned in Section 2.2.3, this is actually an approximation
of the temporal average of the two pressure fields. In Fig. 7(e) we show the reconstructed filtration coefficient using the
non-uniform pressure algorithm. In Fig. 7(e) we present the relative error in this reconstruction. The dynamic range of the
color scale in the figure is between 0 and 100%.

3.3. Experiment 3

Results from both inversion algorithms are presented in Fig. 8. In Fig. 8(a) we plot the dilatation rate calculated according
to Eq. (5). Using this, and the average value of the pressure below the compressor, pref = 4.5 kPa, we evaluate the filtration
coefficient using the uniform pressure assumption, solution 1, (Eq. (4)). This solution is shown in Fig. 8(b) and the relative
error is shown in Fig. 8(c). In Fig. 8(c) the dynamic range of the color scale was restricted to −100% to 100%. In Fig. 8(d) we
show the reconstructed pressure field obtained from Steps 1 and 2 of the non-uniform pressure algorithm, solution 2. As
just mentioned, this is actually an approximation of the temporal average of the two pressure fields. In Fig. 8(e) we show
the reconstructed filtration coefficient using the non-uniform pressure algorithm. In Fig. 8(e) we present the relative error
in this reconstruction. The dynamic range of the color scale in the figure is between 0 and 100%.

4. Discussion

In Fig. 5(a) we notice that the inclusion shrinks faster than the background. This is because it relaxes faster, as discussed
in [18], due to the higher value of the microvascular filtration coefficient. More specifically, we see that the inclusion
reduced its volume by about 0.15% during the first second after the compression while the surrounding tissue’s original
volume practically remained the same.

A comparison between Fig. 5(b) and the pressure plots shown in Fig. 6 of [18] indicates that the pressure field was
well reconstructed, validating the implementation. In Fig. 5(b), we can see the stress concentrations at the transducer edges
radiating in the upper left and right corners of the figure. At the center, we can distinguish the inclusion and four lobes
resulting from the stress concentration at the inclusion. Roughly speaking, we can identify two distinct regions: a higher
pressure region that is composed by the upper part of the plot and two lobes above and below the inclusion, respectively,



R. Leiderman et al. / C. R. Mecanique 338 (2010) 412–423 421
Fig. 8. Experiment 3: Unconfined compression. (a) Average dilatation rate (strain/s) in the first second after the compression. (b) Reconstructed filtration
coefficient obtained by solution 1. (c) Relative error in the reconstructed filtration coefficient shown in (b). The color scale was selected such that errors
equal to 100% or larger are represented by the same color (dark red) and errors equal to −100% or smaller are represented by the same color (dark blue).
(d) Reconstructed pressure distribution from Eq. (9). (e) Reconstructed filtration coefficient obtained by solution 2 and reconstructed pressure field (d).
(f) Absolute value of relative error in the reconstructed filtration coefficient shown in (e). The color scale was adjusted such that errors equal to 100% or
larger are represented by the same color (dark red) and errors equal to 0% are represented by dark blue.

and a lower pressure region composed by the lateral and lower parts of the plot and the inclusion. Here, we recall that
we have used pref = 4.5 kPa in Eq. (4). Therefore, the relative error in the approximate solution reconstruction is smaller in
the higher pressure region, where the pressure is about p ≈ pref = 4.5 kPa, and larger in the lower pressure region, where
the pressure is about p ≈ 2.5 kPa, as seen in Fig. 5(c). It is clear that at each point the relative error is proportional to the
difference between the actual pressure value and the chosen value of pref = 4.5 kPa. In that sense, if we use a high pressure
value in Eq. (4), as in the case here, we tend to underestimate the filtration coefficient. The effect is particularly pronounced
in regions of high filtration coefficient. On the other hand, if we use a low value for pref in Eq. (4), we tend to overestimate
the filtration coefficient.

Fig. 5(c) shows a thin ring around the inclusion where the relative error is high. In fact, it is much higher than 100%,
which cannot be seen due to the color scale. This is because at this thin region, where the pressure gradient is very high,
the percolation is significant. Hence, neglecting the percolation as we did in the reconstruction leads to a high error in that
region. We note that the region of large error is confined to a thin boundary layer around the inclusion, where the pressure
gradient is very high. In Fig. 5(e) we see that the second inverse solution algorithm performs well in practically the whole
domain, thus validating the implementation. The relative error is up to about 5%, except for a thin ring around the inclusion.
Again, the reason is that within this thin region, a very large pressure gradient makes percolation significant, and neglecting
it leads to a locally poor reconstruction.

The impact of using a coarse mesh to perform the inversion is also highlighted in the thin region around the inclu-
sion, where the pressure gradient is high, as seen in Fig. 6(a). Now, the thin ring where the filtration coefficient is poorly
reconstructed is slightly thicker than in Fig. 5(d) and there are two small lobes at the inclusion sides where the relative
error is also large. Of course, as in the forward problem, the inversion mesh should be fine enough to capture the medium
heterogeneities. Here, we recall that due to the inverse problem having been formulated as a direct problem, we can work
with a fine mesh and yet perform the inversion in a small amount of time using a regular pc.

In Fig. 6(b) we see that introducing noise strongly impacts the reconstruction in the background, where the relative error
is O(100%) or more in practically the whole region. In the inclusion, on the other hand, the relative error is about 25%. The
reason for the discrepancy is that in the background, the ‘measured’ dilatation corresponding to the tissue relaxation is very
small and has magnitude comparable to (or lower than) the effect of the noise. Therefore, the local NSR is large. In that
sense, it is more difficult to accurately reconstruct the filtration coefficient where it is lower and, therefore, the relaxation
and the accompanying shrinkage takes much longer to occur. We note, however, that in the present context lower filtration
coefficients are associated with healthy tissue where quantification may not be so crucial. On the other hand, as seen in the
inclusion, it is easier to accurately reconstruct the filtration coefficient where it has elevated values. This may be potentially
valuable for imaging highly vascular solid tumors.

Fig. 6(c) shows that averaging reconstructions can significantly reduce the noise impact. In particular, in the inclusion,
we see that the relative error that was about 25% in a single reconstruction is now about 15%. The relative error is still
large in the background for the same reason discussed above. Besides averaging, attributing a default value for the filtration



422 R. Leiderman et al. / C. R. Mecanique 338 (2010) 412–423
coefficient where the measured dilatation is very small, rather than calculating it, may be a useful rule of thumb. The noise
impact was similar in experiments 2 and 3, whose results are not shown here.

Analogous to the unconfined case, Fig. 7(a) shows the inclusion relaxing faster than the background, reducing its volume
by about 0.11% during the first second after the compression, while the surrounding tissue’s volume remains practically
unchanged. Again, this is due to the higher value of the microvascular filtration coefficient in the inclusion. We still can
identify two distinct regions in Fig. 7(d): a higher pressure region corresponding to the background and a lower pressure
region corresponding to the inclusion. Distinct from the unconfined case, however, we see in Fig. 7(d) that now the pressure
field is practically uniform not only in the inclusion but also in the background, indicating an absence of stress concen-
trations. This is due to the confining boundary conditions. Further, we recall that we have used pref = 2.68 kPa in Eq. (4),
which is nearly equal to the pressure value in the background and about 25% higher than the pressure value in the inclusion.
Therefore, the relative error in the reconstruction is practically uniformly 0% in the background and practically uniformly
25% in the inclusion, as seen in Fig. 7(c). Again, it is clear that at each point, the relative error is proportional to the differ-
ence between the actual pressure value and pref ; if we use a high value for pref in Eq. (4), we tend to underestimate the
filtration coefficient, and if we use a low value for pref , we tend to overestimate the filtration coefficient.

As in the unconfined case, we again see in Fig. 7(c) a very thin ring around the inclusion where the relative error
is very high due to percolation, as discussed above. A comparison between Figs. 5(c) and 7(c) illustrates the notion that
the approximate solution algorithm performs better when the tissue heterogeneity is small (ideally 0) and the tissue is
confined, thus creating a (nearly) uniform pressure field. As before, we see in Figs. 7(e) and 7(f) that the exact solution
inversion algorithm performs well in the whole domain, validating the implementation. The relative error is up to about 5%,
except in the boundary layer around the inclusion as discussed earlier.

In experiment 3, we can observe that raising the interstitial permeability by a factor of 100 had a relatively small effect
on the spatio-temporal patterns of dilatation in the bulk of the domain. The impact of this change is confined to the
boundary layer in the inclusion’s periphery, as seen in Fig. 8(a). This boundary layer thickness is now of approximately the
same order of magnitude as the radius of the inclusion. Hence we observe that though the pressure field is similar to that
in experiment 1 (Fig. 5(b)), it now appears slightly heterogeneous inside the inclusion, as seen in Fig. 8(b).

As seen in experiment 1, relative error shown in Figs. 8(c) and 8(f) are similar to the plots shown in Figs. 5(c) and 5(f),
respectively. We conclude that the relative error in the inclusion and background is again related to the (in)accuracy of the
choice of pref for each region. A key difference between the results here and those in experiment 1, however, is that the
region around the inclusion where the relative error is very high is now much thicker, as shown in Figs. 8(c) and 8(f). This
indicates that the region where the percolation is important is now much larger, consistent with the hundred-fold increase
in the filtration coefficient.

In the exact-pressure solution, solution 2, we assume that we know the elastic Lamé parameters spatial distribution, λ

and μ, in order to reconstruct the pressure gradient field from the measured displacement field. We have run simulations
(not shown here) to evaluate the impact of uncertainties in these parameters on the reconstruction. We have worked with
uncertainties up to 20% and have seen that the impact in the reconstruction has been of the same order. In addition, we
need to prescribe the pressure value at one point in the domain to quantitatively reconstruct the pressure field from the
pressure gradient. For all reconstructions presented here, we have prescribed the exact pressure value at the mesh’s left
lower corner. The effect of prescribing a pressure value that is in error by some amount, and hence is shifted up (down), is
that the reconstructed pressure field is shifted up (down) by the same amount. At each point, the relative error will then
be scaled by a factor corresponding to the reconstructed pressure value divided by the exact pressure value.

In the results presented here, we had the exact pressure calibration available to us. In practice, the best we might hope
for is a reconstructed pressure calibration from known traction boundary conditions. For example, the pressure calibration
could be determined from a measurement of the total applied force used to compress the sample. In that case, we could
augment the information available to us with the condition

∫
Γ

n ·σn = −F , where F is the total applied normal compressive
force, n is outward normal to the sample. Alternatively, as usefully pointed out by an anonymous reviewer, one might make
use of redundant data from a time series of compressions. In this way, one could solve for the pressure calibration that
maximizes similarity between reconstructions. This approach may necessitate iteration, but deserves further consideration.

It is interesting to consider the ultrasound measurability of the transient strains predicted by the chosen computational
experiments. We see in Figs. 5(a), 7(a) and 8(a) a volume change in the inclusion of about 0.15% during the first second
after the compression. For the chosen configuration, it corresponds to displacements on the order of 10 microns, as seen in
Figs. 2(b), 2(c), 4(a) and 4(b). Such a relaxation is measurable, but near the limit of ultrasound imaging systems resolution.
However, as seen in [18], after about 5 seconds the volume change in the inclusion is about 0.40%. That volume change
would certainly be measurable by ultrasound.

Finally, we can say that the results suggest that it may be possible to image the filtration coefficient by using techniques
from elastography in conjunction with the methods presented here. The approximate solution gives reasonable results with
a very low computational cost while the exact solution gives precise results with still very moderate computational efforts.
Both solutions performed poorly in thin regions where percolation was significant, i.e., where pressure gradient was very
high. The small extent of these regions ought not significantly compromise the reconstructions. It is clear that neither
the approximate solution nor the exact solution presented here is suitable for cases where percolation is as important as
filtration. The proposed methods have yet to be experimentally validated and the robustness of the implementations has
yet to be improved, especially regarding reconstructions from noisy data and tissue heterogeneity. Further, we notice that
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we need to measure the displacement field in the two directions (three directions in the 3D case) to perform the inversion,
which currently is not always feasible. Displacements measured by regular ultrasound systems, for example, possess a high
resolution direction (ultrasound propagation direction) and a low resolution direction (normal to ultrasound propagation). In
cases where measuring or calculating the displacement field in all directions is not feasible, an iterative approach may give
better results. This approach would be less sensitive to the presence of noise in the input data, but incurs a significantly
higher computational cost.

5. Conclusions

We formulated and solved an inverse poroelastic problem to reconstruct the spatial distribution of the filtration coeffi-
cient from a temporal sequence of measured displacement fields. We presented and compared two solutions for the inverse
problem. The first is a simple closed-form solution based on the approximation that the interstitial fluid pressure is spatially
uniform. It is analogous to the purely elastic inverse problem solution in which stress is assumed to be spatially uniform
and uniaxial. The second approach reconstructs the exact pressure distribution, and then obtains the filtration coefficient
assuming negligible percolation.

Inversion results from computational experiments have suggested that it may be possible to image the filtration coeffi-
cient, and therefore distinguish between higher vascular regions and lower vascular regions, by using techniques from elas-
tography in conjunction with the methods presented here. Further, for perfect data, they have shown that the approximate
solution gives reasonable results, and strikingly good results for certain loading conditions. For clean data, the exact-pressure
solution gives accurate results under all loading conditions considered. The implementations have yet to be challenged with
experimental data; for success with experimental data, improved performance with noisy data is likely to be needed.
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