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In this Note, a thermodynamic description is proposed to include the gradient of the
temperature in the set of state variables. It is based upon an original expression of the
entropy and of the internal energy taking account of the presence of the temperature
gradient by Legendre transform with respect to the variable (T ,∇T ). The proposed
description can be justified in a homogenization process. In particular, the associated heat
equation is derived and discussed in comparison with the existing results of the literature.
It is shown that this equation removes the paradox of instantaneous propagation.
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r é s u m é

On propose dans cette Note un cadre thermodynamique incluant le gradient de la
température comme une variable d’état supplémentaire. Cette théorie est construite à
partir d’une relation originale reliant les expresssions de l’énergie interne et l’énergie libre
par transformation de Legendre étendue aux variables (T ,∇T ). La description proposée
peut être justifiée par un passage micro–macro. En particulier, l’équation thermique
résultante est discutée et comparée avec les résultats antérieurs de la littérature. On
montre que cette équation enlève le paradoxe de propagation instantanée.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The internal variable theory of Continuum Thermodynamics is based upon the axiom of the local state which is the
assumption that an element of matter is in thermodynamic equilibrium, cf. [1]. The local state is thus described by the
set of state variables which are the temperature and other physical variables (deformation, . . . ). For example, the common
theories of thermo-elasticity and thermo-plasticity are given in this framework.

However, in many applications in thermo-mechanics, the temperature fields present very high gradients and it is natural
to wonder if the temperature gradient might be introduced in the constitutive equation [2], in particular to wonder if the
temperature gradient might be introduced as a state variable. When the temperature gradient is included in the expression
of the free energy, the assumption of the equilibrium local state of Continuum Thermodynamics is clearly not respected.
Such a situation deviates from the classical framework of Continuum Thermodynamics but still makes sense when the local
state is in a steady state. It is then necessary to define a non-classical relationship between the internal energy and the
free energy. This subject has been discussed in the literature by Forest et al. [3,4] and by Nguyen and Andrieux [5]. The
ideas developed in [6–8], concerning the gradients of internal parameters are followed by Forest et al. while Nguyen and
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Andrieux proposed an extended expression of the internal energy in terms of the free energy respecting the duality by
Legendre transform with respect to the temperature and temperature gradient. The present discussion is devoted to the
last description and explores in more details its consequences. In particular, it is shown that the proposed framework can
be understood by an academic example of micro–macro modeling and gives an original possibility to solve the paradox of
instantaneous conduction.

2. Continuum thermodynamics

In classical thermodynamics and in a Lagrangian description, it is well known that the free energy w per unit volume of
a solid is related to the internal energy e and the entropy s per unit volume by

e = T s + w(T ,∇u,ψ), s = −w,T (1)

where T denotes the temperature, u is the displacement and ψ is a set of internal parameter, (T ,∇u,ψ) is a system of state
variable of the material. For any material volume V , the first and second principles when taking account of the dynamical
equation, can be written as⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Ė = Pi + Pcal

Pentr = Ṡ +
∫
V

q

T
· n da � 0

E =
∫
V

e dV , Pi =
∫
V

σ : ∇u̇ dV , Pcal = −
∫
∂V

q · n da, S =
∫
V

s dV

(2)

where E is the internal energy of V , Pi is the internal mechanical work, Pcal is the heat supply, S is the entropy of V , σ is
the unsymmetric Lagrangian stress. These equations also equivalent to the local equation of energy and the positivity of the
total dissipation:{

ė + ∇ · q = σ : ∇u̇

dtotal = di + dT � 0, di = T ṡ + ∇ · q, dT = −∇T · q

T
� 0

(3)

where di is the intrinsic dissipation, dT is the thermal dissipation and dtotal is the dissipation per unit volume. In terms of
the free energy, it has been shown that

di = σIR : ∇u̇ − w,ψ : ψ̇, σ = σI + σIR + σR , σR = w,∇u (4)

where σI is the initial stress, σR and σIR are the reversible and irreversible stresses.
The dissipation is a product of forces and fluxes which are related by complementary laws. For example, for a visco-

plastic solid admitting the dissipation potential D(∇u̇, ψ̇), the complementary laws are

σIR = D,∇u̇ , −w,ψ = D,ψ̇

In particular, if Fourier law of conduction is assumed:

q = −k∇T (5)

the local equation of energy leads in this case to the classical heat equation

T ṡ − ∇ · (k∇T ) − di = 0 (6)

For example, in a rigid body without internal parameter, the particular expression w(T ) = −aT (Ln(T /τ ) − 1), a and k are
positive constants, leads to the equation of heat conduction

aṪ − k�T = 0 (7)

This is the familiar framework of thermo-mechanics which are well presented in classical textbooks, cf. [9,10]. It is however
well known that equation of diffusion (6) leads to an instantaneous diffusion of the information while the physics requires
intuitively a finite velocity. This old question has been the subject of many discussions in the past in order to remove the
paradox. For example, Cattaneo proposed a modification of Fourier law under the form

q + ηq̇ = −k∇T , η > 0

taking account of a memory effect [11]. In this case, Eq. (7) is replaced by

aṪ + ηaT̈ − k�T = 0 (8)

Cattaneo equation (8) has been extended in several ways to describe the heat conduction with finite speed in media with
memory [12–14].
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3. Gradient thermodynamics

This section concerns with the introduction of ∇T as an additional state variable and pursues the description given
in [5]. It is assumed here that the set of variables (T ,∇T ,∇u,ψ) describes the local state and the expression of the free
energy per unit reference volume is a given function w(T ,∇T ,∇u,ψ). Under the basic relation (1) of Thermostatics and of
Continuum Thermodynamics, it has been shown by Coleman and Noll argument that the free energy cannot depend on ∇T .
It is then clear that this basic relation must be modified in order to include the temperature gradient.

3.1. Keeping the duality

In this approach, the basic point concerns with a new relationship between the internal energy and the free energy per
unit reference volume. As in Classical Thermodynamics, this relationship is based again on Legendre transform with a slight
modification. The duality is kept under the form [5]{

e
(
s, s′,∇u,ψ

) = sT + s′ · ∇T + w(T ,∇T ,∇u,ψ)

s = −w,T , s′ = −w,∇T , T = e,s , ∇T = e,s′
(9)

Thus, a new physical quantity, the entropy vector s′ , is introduced. The introduction of the temperature gradient is followed
by the introduction of the entropy vector s′ in order to keep the concept of temperature–entropy duality in a global sense,
e and −w are related by Legendre transform, (s, s′) and (T ,∇T ) are dual variables, [5]. The internal energy is a convex
and increasing function with respect to s as in Classical Thermodynamics. The convexity of the internal energy with respect
to the independent variable ∇T is also assumed. It follows by this duality that w is a concave function with respect to T
and ∇T .

This local relationship of energy and entropy leads also to a global definition of the entropy and the energy for a finite
volume V as it has been shown in [5]:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

W(T,u,Ψ ) =
∫
V

w(T ,∇T ,∇u,ψ)dV

S[δT] = −W,T · δT

E(S,u,Ψ ) = S[T] + W(T,u,Ψ )

(10)

Thus, the global entropy appears again as the derivative of the free energy functional with respect to the temperature field.

3.2. The two principles

In this description, the energy balance remains unchanged while an additional entropy source is assumed. The two
thermodynamic principles are written as

⎧⎪⎨
⎪⎩

Ė = Pi + Pcal

P entr
V =

∫
V

(
ṡ + ∇T

T
· ṡ′

)
dV +

∫
∂V

q

T
· n da � 0 (11)

Thus, an additional term in the entropy production, the entropy source ∇T
T · ṡ′ , is proposed. This differs in spirit from the

possibility of extra-entropy fluxes which has been introduced by many authors in the study of gradient models for solids
with micro-structures, cf. [15,8,16]. Such entropy source seems to be natural from the non-equilibrium of the local state.
The following equations result after some calculation⎧⎨

⎩
T ṡ + ∇T · ṡ′ + ∇q − di = 0 (local equation of energy)

dtotal = di + dT � 0, di = σIR : ∇u̇ − w,ψ ·ψ̇, dT = −∇T

T
· q

(12)

3.3. The heat equation

The local equation of energy leads to the following heat equation when the Fourier law of conduction is assumed:

−∇ · (k∇T ) + T ṡ + ∇T · ṡ′ − di = 0 (13)

with classical mixed boundary conditions (prescribed temperature or given heat flux).
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4. The paradox of instantaneous conduction

Let us consider a simple example of conduction in a rigid solid with the following expression of the free energy:

w(T ,∇T ) = −aT
(
Ln(T /τ ) − 1

) − b

2
∇T · ∇T ⇒ e

(
s, s′) = aτes/a + 1

2b
s′ · s′

where a > 0 and b > 0 are two constants, τ is a given temperature. The derived thermal equation is

−k�T + aṪ + b∇T · ∇ Ṫ = 0 (14)

The interest of this heat equation is especially clear regarding to the classical paradox of instantaneous conduction of the
classical thermal equation (6). The proposed equation (14) differs clearly from Cattaneo equation (8).

For example, the small perturbation θ(x, t) = T (x, t) − To(x) of a stationary temperature To(x) = τ + gx/L, in a rigid rod
[0, L] is considered. The temperature variation θ(x, t) is governed by the associated linearized equation:

F [θ] = Aθ,t +Bθ,tx −θ,xx = 0 with A = a

k
> 0 and B = bg

kL
(15)

This equation is associated with finite velocity of propagation. Indeed, elementary solutions of the form θ = exp(rx + ωt),
where r = i/� and ω are complex numbers, are searched for. The condition F [θ] = 0 leads to the solution

θ(x, t) = ei(x−ct)/�e−γ t with c = − B

A2�2 + B2
, γ = A

A2�2 + B2

It is concluded that an elementary solution of wave length 2π� propagates at celerity c with damping coefficient γ . The
wave propagates with finite velocity c in the opposite direction of the thermal gradient T as expected.

5. A micro–macro modeling

The expressions (9) of the entropy s and of the internal energy e in terms of the free energy w can be illustrated in the
modeling of the macroscopic conduction in a rigid composite composed of periodic cells V of dimension �.

If T ∗ denotes the local temperature at a point in V of local coordinates y, it is assumed that the classical framework of
thermodynamics is satisfied in the cell, i.e. s∗ = −w,T ∗ and e∗ = T ∗s∗ + w∗ where w∗(T ∗) is the free energy density, s∗ is
the entropy and e∗ is the internal energy of the material. The local law of conduction is q∗ = −k∗∇y T ∗ .

Under the macroscopic data (T ,∇T ), it is assumed that the temperature field T ∗(y) is in a steady state:

∇y · q∗ = 0, q∗ = k∗∇y T ∗ ∀y ∈ V

such that〈
T ∗〉 = 1

V

∫
V

T ∗(y)dV = T ,
〈∇y T ∗〉 = ∇T

with periodic boundary conditions for ∇y T ∗ and q∗ . Thus, it can be written as

T ∗(y) = T + ∇T · φ(y) (16)

where the vector φ(y), of components φi(y), i = 1,3 satisfies⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∇y · (k∗∇yφi
) = 0 ∀y ∈ V

〈φi〉 = 0,

〈
∂φi

∂ y j

〉
= δi j

+ appropriated boundary conditions

(17)

With the decomposition φ(y) = y + ϕ(y), the boundary conditions are

ϕ periodic,
(
k∗∇yϕ

) · n anti-periodic on ∂V (18)

It is well known in the homogenization analysis of periodic media that the system of Eqs. (17) defines a unique solu-
tion φ(y).

Since energy and entropy are additive, the macro free energy, entropy and internal energy per unit volume are:

w(T ,∇T ) = 〈
w∗〉, s = 〈

s∗〉, e = 〈
e∗〉

From the expression (16), it is clear that

s = 〈
s∗〉 = 〈−w∗,T ∗

〉 = −w,T
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In the same spirit:⎧⎪⎨
⎪⎩

w,∇T · δ(∇T ) = 〈
w∗,T ∗ φ · δ(∇T )

〉
= 〈−s∗φ

〉 · δ(∇T ) = −s′ · δ(∇T )

thus s′ = −w,∇T with s′ = 〈s∗φ〉
The expression (9) of the internal energy follows:{

e = 〈
T ∗s∗ + w∗〉 = 〈

s∗(T + ∇T · φ) + w∗〉
= T s + 〈

s∗ · φ〉 · ∇T + w = T s + s′ · ∇T + w

Let q be by definition q = 〈q∗〉. Thus, q and ∇T are related by the homogenized law of conduction

q = 〈−k∗∇y T ∗〉 = −〈
k∗∇yφ

〉 · ∇T = −k∇T with k = 〈
k∗∇yφ

〉
and the following expression holds in the same spirit as Hill–Mandel relationship:

q · ∇T = 〈
q∗ · ∇T ∗〉

By definition, the macroscopic heat supply per unit time and per unit volume ∇ ·q is the heat produced per unit macroscopic
volume and unit time

∇ · q =
∫
∂V q∗ · n da∫

V dV
thus ∇ · q = 〈∇y · q∗〉

From the local energy balance, the macroscopic balance follows

0 = 〈
ė∗ − ∇y · q∗〉 = ė − ∇ · q

The macroscopic intrinsic dissipation per unit volume is〈
θ ṡ∗ − ∇y · q∗〉 = 〈

T ṡ∗ + ∇T · φ ṡ∗〉 − ∇ · q = T ṡ + ∇T · ṡ′ − ∇ · q

Thus, the expressions of the first and second principles (11) are fully justified from the homogenized behavior of a solid
with substructures as well as the macroscopic thermal conduction (14).

From (16) and (17), the difference of temperature T ∗ − T is of order ∇T �. Thus, if � 
 T /∇T , the contribution of
additional terms involving ∇T in the expression of the energy, the entropy and in the heat equation (14) can be neglected
and the classical results of Continuum Thermodynamics and of Homogenization, cf. for example [17], are recovered. The
proposed framework is thus interesting for solids with micro-structures when the temperature gradient is very strong, so
that � is not small compared to T /∇T .

6. Comparison with existing results

Different discussions have also been given in the literature on this subject, cf. [3,4,16]. In particular, Forest et al.’s dis-
cussion [3] followed an approach due to Frémond [6], Maugin cf. for example [8], or Gurtin [7], denoted here as the
FGM-approach, to include the gradient of the internal parameter as state variable. The entropy and the internal energy have
been defined as{

s(T ,∇T ,∇u,ψ) = −w,T +∇ · w,∇T = −δw

δT
e(T ,∇T ,∇u,ψ) = T s + w(T ,∇T ,∇u,ψ)

(19)

It is clear from this definition (19) that the internal energy e and the free energy w are no longer dual functions as
in classical thermodynamics. The energy balance is modified while the entropy production remains unchanged, as shown
in [3] ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Ė + K̇ = Pext + Pcal + P T

P T =
∫
∂V

f T · Ṫ da

Pentr =
∫
V

ṡ dV +
∫
∂V

q

T
· n da � 0

(20)

where P T denotes an extra energy supply due to the neighboring exchanges. In [3], an additional virtual equation is also
introduced in the spirit of FGM-approach under the form∫

γ · ∇δT dV =
∫

f T δT da ∀δT
V ∂V
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the force γ plays the role of a micro-force. The following expression of the additional force has been derived

f T = w,∇T ·n (21)

If the Fourier law of conduction is assumed, the proposed heat equation is

−k�T + T ṡ − di = 0 with s = −δw

δT
(22)

For the considered simple example, the heat equation is thus:

−k�T + aṪ − bT �Ṫ = 0 (23)

A complementary description starting from the expression of the internal energy in terms of the entropy and the entropy
gradient has also been given by Forest and Amestoy [4]:

e = e(s,∇s,∇u,ψ) (24)

In this case, T = e,s and the vector θ = e,∇s has been denoted by the authors as the hyper-temperature. The FGM-approach
is again followed to include the entropy gradient. For example, if

e = ξ

2
s2 + ζ

2
∇s · ∇s (25)

the following heat equation is then derived under Fourier law of conduction

T (s)ṡ − kξ�s + kζ�2s = 0 (26)

The paradox of instantaneous propagation remains with Eqs. (23) and (26) as with the classical one (6) since only the value
c = 0 can be found and the information is thus instantaneous.

7. Conclusion

To include the temperature gradient, an original expression of the internal energy and of the entropy respecting the
duality by Legendre transform has been proposed and gives a consistent extension of the classical framework of continuum
thermodynamics when the local state is in a steady state. This description can be understood from a micro–macro modeling
of the heat conduction in a non-homogeneous rigid solid.

Our discussion is given with a special emphasis on the associated heat equation. The proposed heat equation (13) is
interesting since it removes the paradox of instantaneous propagation. A refined comparison on the pertinence of the heat
equations (6), (8), (23), (26) and (13) appears to be a useful subject for practical applications.
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