Inverse problems

Unique determination of unknown boundaries in an elastic plate by one measurement

Détermination unique des frontières inconnues dans une plaque élastique par une mesure

Antonino Morassi ${ }^{\text {a,* }}$, Edi Rosset ${ }^{\text {b }}$
${ }^{\text {a }}$ Dipartimento di Georisorse e Territorio, Università degli Studi di Udine, via Cotonificio 114, 33100 Udine, Italy
${ }^{\text {b }}$ Dipartimento di Matematica e Informatica, Università degli Studi di Trieste, via Valerio 12/1, 34127 Trieste, Italy

A R T I C L E I N F O

Article history:

Available online 16 August 2010

Keywords:

Inverse problems
Elastic plates
Unknown boundaries

Mots-clés :

Problèmes inverses
Plaques élastiques
Frontières inconnues

Abstract

In this article we study two inverse problems for a thin elastic plate subjected to a given couple field applied at its boundary. One problem consists in determining an unknown portion of the exterior boundary of the plate subjected to homogeneous Neumann conditions, while the other problem concerns with the determination of a rigid inclusion inside the plate. In both cases, under the assumption that the plate is made by isotropic material, we prove uniqueness with one measurement.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉS U M É

Dans cet article, on considère deux problèmes inverses pour une plaque mince élastique soumise à une distribution donnée de moments sur une partie de son bord. Le premier problème consiste à déterminer une portion inconnue du bord, supposée libre d'efforts. Le second problème correspond à l'identification d'une inclusion rigide dans la plaque. Pour les deux problèmes, l'identifiabilité au moyen d'une seule mesure est prouvée, sous l'hypothèse d'un comportement isotrope du matériau constitutif de la plaque.
© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In several applications of nondestructive methods in structural mechanics one deals with inverse problems for determining an unknown or inaccessible portion of the boundary of a body by measurements taken on an accessible part of its boundary. As an example of practical application, this kind of problems arises in damage assessment of mechanical specimens which are possibly defective due to the presence of interior rigid inclusions induced during the manufacturing process, see, for example, [1].

In this article we shall deal with two inverse problems with unknown boundaries for thin elastic plates. Let us first consider the case in which the unknown boundary is some portion of the exterior component of the boundary of the plate. Suppose that the middle surface of the plate is a bounded domain Ω in \mathbb{R}^{2} with a sufficiently smooth boundary $\partial \Omega$, and assume that a part of $\partial \Omega$, say I, is not known. The inverse problem consists in determining I by a nondestructive method collecting Cauchy data measurements on the accessible part of the boundary $\partial \Omega$ represented by a sub-arc Γ of $\partial \Omega$, with $\Gamma \cup I=\partial \Omega$. More precisely, we assume that the inaccessible part I of $\partial \Omega$ is free and we accept to work within

[^0]the Kirchhoff-Love theory of thin, elastic plates under infinitesimal deformations. Therefore, given a nontrivial couple field \hat{M} on Γ, the statical equilibrium of the plate is described by the following Neumann problem:
\[

$$
\begin{cases}\operatorname{div}\left(\operatorname{div}\left(\mathbb{P} \nabla^{2} w\right)\right)=0, & \text { in } \Omega \tag{1}\\ \left(\mathbb{P} \nabla^{2} w\right) n \cdot n=-\hat{M}_{n}, & \text { on } \Gamma \\ \operatorname{div}\left(\mathbb{P} \nabla^{2} w\right) \cdot n+\left(\left(\mathbb{P} \nabla^{2} w\right) n \cdot \tau\right),{ }_{s}=\left(\hat{M}_{\tau}\right),_{s}, & \text { on } \Gamma \\ \left(\mathbb{P} \nabla^{2} w\right) n \cdot n=0, & \text { on } I \\ \operatorname{div}\left(\mathbb{P} \nabla^{2} w\right) \cdot n+\left(\left(\mathbb{P} \nabla^{2} w\right) n \cdot \tau\right),_{s}=0, & \text { on } I\end{cases}
$$
\]

where $w=w\left(x_{1}, x_{2}\right), w \in H^{2}(\Omega)$, is the transversal displacement of the point (x_{1}, x_{2}) of the plate and $\hat{M}_{\tau}, \hat{M}_{n}$ denote, respectively, the twisting and bending moments applied on Γ; see, for example, [2]. We assume that the plate is made by isotropic material with fourth order tensor \mathbb{P} given by

$$
\begin{equation*}
\mathbb{P} A=B\left((1-v) A^{\text {sym }}+v(\operatorname{tr} A) I_{2}\right) \tag{6}
\end{equation*}
$$

for every 2×2 matrix A, where B is the bending stiffness of the plate and v is the Poisson's coefficient of the material, see Section 3. In the above equations, n denotes the unit outer normal to $\partial \Omega, \tau$ is the unit tangent vector and s is the arclength (we refer to Section 2 for the precise definitions).

Under suitable regularity assumptions on the coefficients of the plate tensor \mathbb{P} and on the boundary of $\partial \Omega$, we prove that the unknown boundary I is uniquely determined by applying a single, nontrivial couple field \hat{M} on Γ and measuring on Γ the corresponding transversal displacement w and its normal derivative $\frac{\partial w}{\partial n}$, see Theorem 3.1 for a precise statement.

A second problem considered in this article is that associated to the unique determination of a rigid inclusion inside the plate. Let $D, D \Subset \Omega$, be an open simply connected subset of Ω representing the inclusion. Our aim is to identify D by applying a couple field \hat{M} at the boundary $\partial \Omega$ and by measuring the induced transversal displacement and its normal derivative on an open portion Γ of $\partial \Omega$. In this case, working as before within the Kirchhoff-Love theory of thin, elastic and isotropic plates under infinitesimal deformations, the transversal displacement $w \in H^{2}(\Omega)$ satisfies the following mixed boundary value problem

$$
\begin{cases}\operatorname{div}\left(\operatorname{div}\left(\mathbb{P} \nabla^{2} w\right)\right)=0, & \text { in } \Omega \backslash \bar{D} \tag{7}\\ \left(\mathbb{P} \nabla^{2} w\right) n \cdot n=-\hat{M}_{n}, & \text { on } \partial \Omega \\ \operatorname{div}\left(\mathbb{P} \nabla^{2} w\right) \cdot n+\left(\left(\mathbb{P} \nabla^{2} w\right) n \cdot \tau\right),_{s}=\left(\hat{M}_{\tau}\right),_{s}, & \text { on } \partial \Omega \\ \left.w\right|_{\bar{D}} \equiv \text { affine function, } & \text { in } \bar{D} \\ \frac{\partial w^{e}}{\partial n}=\frac{\partial w^{i}}{\partial n}, & \text { on } \partial D\end{cases}
$$

coupled with the equilibrium conditions for the rigid inclusion D

$$
\begin{equation*}
\int_{\partial D}\left(\operatorname{div}\left(\mathbb{P} \nabla^{2} w^{e}\right) \cdot n+\left(\left(\mathbb{P} \nabla^{2} w^{e}\right) n \cdot \tau\right), s\right) g-\left(\left(\mathbb{P} \nabla^{2} w^{e}\right) n \cdot n\right) g,_{n}=0, \quad \text { for every affine function } g \tag{12}
\end{equation*}
$$

In above equations, n denotes the unit outer normal to $\Omega \backslash \bar{D}$ and we have defined $\left.w^{e} \equiv w\right|_{\Omega \backslash \bar{D}}$ and $\left.w^{i} \equiv w\right|_{\bar{D}}$.
Under suitable regularity assumptions on the coefficients of the plate tensor and on the boundary of Ω and D, in Theorem 3.2 we prove uniqueness with one boundary measurement.

We now briefly comment the findings of this article. Our results show that the two inverse problems posed above can be uniquely solved by a single boundary measurement. A similar conclusion is true for analogous inverse problems of uniqueness (and, in some cases, of stability) for electrical conductors (see, for example, [3-6]), in the thermic setting [7$11]$ and in two and three dimensional linear elasticity ($[12,13]$ and $[14,15]$), where the unique determination of unknown boundaries has been proved using a single boundary measurement. All these papers deal with equations or systems of equations of the second order. The corresponding boundary value inverse problems for the fourth order operator describing the statical equilibrium of a plate are less studied. In [16], for example, it was shown that, in general, a cavity in a plate is uniquely determined by applying two linearly independent couple fields and by measuring at the boundary the corresponding transversal displacement and its normal derivative. It is worth noticing that the inverse problem of determining an unknown portion of the boundary $\partial \Omega$ of the plate and that of determining an unknown cavity inside the plate Ω are two variants of the same problem. In fact, the equilibrium problem in presence of a cavity D is described by (1)-(5), with $\Gamma=\partial \Omega$ and $I=\partial D$. Therefore, the difference between the two cases is merely of topological character and in fact in proving Theorem 3.1 we take advantage of the fact that the regular boundaries of the plates share a common portion Γ. It remains an open problem whether a cavity in a plate can be uniquely recovered by a single boundary measurement.

The article is organized as follows. In Section 2 we collect some notation. In Section 3 we provide the formulation of the direct problems and we state our main results, namely Theorem 3.1 and Theorem 3.2. Section 4 contains the proofs of the two theorems.

2. Notation

We shall denote by $B_{r}(P)$ the disk in \mathbb{R}^{2} of radius r and center P. Let $\left\{e_{1}, e_{2}, e_{3}\right\}$ be the canonical basis of \mathbb{R}^{3}.
Definition 2.1 ($C^{k, \alpha}$ regularity). Let \mathcal{U} be a bounded domain in \mathbb{R}^{2}. Given k, α, with $k \in \mathbb{N}, 0<\alpha \leqslant 1$, we say that a portion S of $\partial \mathcal{U}$ is of class $C^{k, \alpha}$ if there exists $\rho_{0}>0$ such that for any $P \in S$, there exists a rigid transformation of coordinates under which we have $P=0$ and

$$
\mathcal{U} \cap B_{\rho_{0}}(0)=\left\{x=\left(x_{1}, x_{2}\right) \in B_{\rho_{0}}(0) \mid x_{2}>\psi\left(x_{1}\right)\right\}
$$

where ψ is a $C^{k, \alpha}$ function on $\left(-\rho_{0}, \rho_{0}\right)$.
Given a bounded domain \mathcal{U} in $\mathbb{R}^{2}=\operatorname{span}\left\{e_{1}, e_{2}\right\}$ such that $\partial \mathcal{U}$ is of class $C^{k, \alpha}$, with $k \geqslant 1$, we consider as positive the orientation of the boundary induced by the outer unit normal n in the following sense. Given a point $P \in \partial \mathcal{U}$, let us denote by $\tau=\tau(P)$ the unit tangent at the boundary in P obtained by applying to n a counterclockwise rotation of angle $\frac{\pi}{2}$, that is

$$
\begin{equation*}
\tau=e_{3} \times n \tag{13}
\end{equation*}
$$

where \times denotes the vector product in \mathbb{R}^{3}.
Given any connected component \mathcal{C} of $\partial \mathcal{U}$ and fixed any point $P_{0} \in \mathcal{C}$, let us consider an arclength parametrization $\varphi(s)=\left(x_{1}(s), x_{2}(s)\right), s \in[0, l(\mathcal{C})]$, such that $\varphi(0)=P_{0}$ and $\varphi^{\prime}(s)=\tau(\varphi(s))$. Here $l(\mathcal{C})$ denotes the length of \mathcal{C}.

Throughout the article, we denote by $w,_{\alpha}, w, s$, and $w,{ }_{n}$ the derivatives of a function w with respect to the x_{α} variable, $\alpha=1,2$, to the arclength s and to the normal direction n, respectively, and similarly for higher order derivatives.

We denote by \mathbb{M}^{2} the space of 2×2 real valued matrices and by $\mathcal{L}(X, Y)$ the space of bounded linear operators between Banach spaces X and Y.

For all 2×2 matrices A, B and for every $\mathbb{L} \in \mathcal{L}\left(\mathbb{M}^{2}, \mathbb{M}^{2}\right)$, we use the following notation:

$$
\begin{align*}
& (\mathbb{L} A)_{\alpha \beta}=L_{\alpha \beta \gamma \delta} A_{\gamma \delta} \tag{14}\\
& A \cdot B=A_{\alpha \beta} B_{\alpha \beta} \tag{15}\\
& |A|=(A \cdot A)^{\frac{1}{2}} \tag{16}\\
& A^{s y m}=\frac{1}{2}\left(A+A^{T}\right) \tag{17}
\end{align*}
$$

Notice that here and in the sequel, summation over repeated indexes is implied.
Finally, let us introduce the space of the affine functions on \mathbb{R}^{2}

$$
\begin{equation*}
\mathcal{A}=\left\{g\left(x_{1}, x_{2}\right)=a x_{1}+b x_{2}+c, a, b, c \in \mathbb{R}\right\} \tag{18}
\end{equation*}
$$

3. Formulation of the inverse problems and statement of the main results

Let us consider a thin plate $\Omega \times\left[-\frac{h}{2}, \frac{h}{2}\right]$ with middle surface represented by a simply connected bounded domain Ω in \mathbb{R}^{2} and having uniform thickness $h, h \ll \operatorname{diam}(\Omega)$. We assume that $\partial \Omega$ is of class $C^{1,1}$.

Let the plate be made of nonhomogeneous linear elastic material with elasticity tensor $\mathbb{C}(x) \in \mathcal{L}\left(\mathbb{M}^{2}, \mathbb{M}^{2}\right)$ and let us assume that body forces inside $\Omega \times\left[-\frac{h}{2}, \frac{h}{2}\right]$ are absent. We denote by \hat{M} a couple field acting on the boundary $\partial \Omega$.

We shall assume throughout that the material of the plate is isotropic, that is the plate tensor $\mathbb{P}=\frac{h^{3}}{12} \mathbb{C}$ is defined by

$$
\begin{equation*}
\mathbb{P} A=B\left[(1-v) A^{\text {sym }}+v(\operatorname{tr} A) I_{2}\right] \tag{19}
\end{equation*}
$$

for every 2×2 matrix A, where I_{2} is the 2×2 identity matrix and $\operatorname{tr}(A)$ denotes the trace of the matrix A. The bending stiffness (per unit length) of the plate is given by the function

$$
\begin{equation*}
B(x)=\frac{h^{3}}{12}\left(\frac{E(x)}{1-v^{2}(x)}\right) \tag{20}
\end{equation*}
$$

where the Young's modulus E and the Poisson's coefficient ν can be written in terms of the Lamé moduli λ, μ of the material as follows

$$
\begin{equation*}
E(x)=\frac{\mu(x)(2 \mu(x)+3 \lambda(x))}{\mu(x)+\lambda(x)}, \quad v(x)=\frac{\lambda(x)}{2(\mu(x)+\lambda(x))} \tag{21}
\end{equation*}
$$

Working in the framework of the linear elasticity for infinitesimal deformations and under the assumptions of the KirchhoffLove theory, the statical equilibrium problem of the plate is described by the following Neumann problem

$$
\begin{cases}M_{\alpha \beta, \alpha \beta}=0, & \text { in } \Omega \tag{22}\\ M_{\alpha \beta} n_{\alpha} n_{\beta}=\hat{M}_{n}, & \text { on } \partial \Omega \\ M_{\alpha \beta, \beta} n_{\alpha}+\left(M_{\alpha \beta} n_{\beta} \tau_{\alpha}\right),_{s}=-\left(\hat{M}_{\tau}\right),_{s}, & \text { on } \partial \Omega\end{cases}
$$

Here

$$
\begin{equation*}
M_{\alpha \beta}=M_{\alpha \beta}(w)=-P_{\alpha \beta \gamma \delta} w, \gamma \delta, \quad \alpha, \beta, \delta, \gamma=1,2 \tag{25}
\end{equation*}
$$

where $w\left(x_{1}, x_{2}\right)$ is the transversal displacement of the point $x=\left(x_{1}, x_{2}\right)$ belonging to the middle surface Ω. Moreover, following a standard convention in plate theory, the boundary couple field \hat{M} is represented in local coordinates as

$$
\begin{equation*}
\hat{M}=\hat{M}_{\tau} n+\hat{M}_{n} \tau, \quad \text { on } \partial \Omega \tag{26}
\end{equation*}
$$

where $\hat{M}_{\tau}=\hat{M} \cdot n, \hat{M}_{n}=\hat{M} \cdot \tau$ denote respectively the twisting moment and the bending moment applied at the boundary. Here, • denotes the scalar product in \mathbb{R}^{2}.

Conditions (23), (24) express the local equilibrium conditions on the bending moment and on the transversal forces acting on the boundary $\partial \Omega$, respectively. For details about the mechanical meaning of the functions $M_{\alpha \beta}$, we refer to [17].

The plate tensor \mathbb{P} is assumed to satisfy the following assumptions:
(I) Regularity

$$
\begin{equation*}
\mathbb{P} \in C^{1,1}\left(\mathbb{R}^{2}, \mathcal{L}\left(\mathbb{M}^{2}, \mathbb{M}^{2}\right)\right) \tag{27}
\end{equation*}
$$

(II) Ellipticity (strong convexity) There exist positive constants α_{0}, γ_{0} such that

$$
\begin{equation*}
\mu(x) \geqslant \alpha_{0}>0, \quad 2 \mu(x)+3 \lambda(x) \geqslant \gamma_{0}>0, \quad \text { for every } x \in \mathbb{R}^{2} \tag{28}
\end{equation*}
$$

It follows easily that

$$
\begin{equation*}
\mathbb{P} A \cdot A \geqslant \frac{h^{3}}{12} \xi_{0}|A|^{2}, \quad \text { in } \mathbb{R}^{2} \tag{29}
\end{equation*}
$$

for every 2×2 symmetric matrix A, where $\xi_{0}=\min \left\{2 \alpha_{0}, \gamma_{0}\right\}$.
Our first result, concerning the determination of unknown boundaries, will be based on the following assumptions on the domain Ω. Let Γ, I be two closed, nonempty sub-arcs of the boundary $\partial \Omega$ such that

$$
\begin{equation*}
\Gamma \cup I=\partial \Omega, \quad \Gamma \cap I=\{Q, R\} \tag{30}
\end{equation*}
$$

where Q, R are two distinct points of $\partial \Omega$. Here Γ represents the accessible portion of the boundary, whereas I represents the inaccessible, unknown portion of the boundary to be determined.

On the assigned couple field \hat{M} let us require the following assumptions:

$$
\begin{align*}
& \hat{M} \in L^{2}\left(\Gamma, \mathbb{R}^{2}\right), \quad\left(\hat{M}_{n}, \hat{M}_{\tau, s}\right) \not \equiv 0 \tag{31}\\
& \int_{\Gamma} \hat{M}_{\alpha}=0, \quad \alpha=1,2 \tag{32}\\
& \operatorname{supp}(\hat{M}) \Subset \Gamma \tag{33}
\end{align*}
$$

Conditions (32) express the global equilibrium of the plate in terms of the cartesian representation $\hat{M}=M_{2} e_{1}+M_{1} e_{2}$ of the boundary couple field.

In this case the statical equilibrium problem of the plate takes the following form

$$
\begin{cases}M_{\alpha \beta, \alpha \beta}=0, & \text { in } \Omega \tag{34}\\ M_{\alpha \beta} n_{\alpha} n_{\beta}=\hat{M}_{n}, & \text { on } \Gamma \\ M_{\alpha \beta, \beta} n_{\alpha}+\left(M_{\alpha \beta} n_{\beta} \tau_{\alpha}\right),_{s}=-\left(\hat{M}_{\tau}\right),_{s}, & \text { on } \Gamma \\ M_{\alpha \beta} n_{\alpha} n_{\beta}=0, & \text { on } I \\ M_{\alpha \beta, \beta} n_{\alpha}+\left(M_{\alpha \beta} n_{\beta} \tau_{\alpha}\right),_{s}=0, & \text { on } I\end{cases}
$$

It is well known that under the above assumptions the Neumann problem (34)-(38) is solvable and that its weak solution $w \in H^{2}(\Omega)$ is determined up to the addition of an affine function, see [17, Proposition 3.4] for details.

Let us notice that the role of the second condition in (31) is to avoid that problem (34)-(38) admits affine solutions.

Theorem 3.1 (Unique determination of unknown boundaries with one measurement). Let Ω_{1}, Ω_{2} be two simply connected bounded domains in \mathbb{R}^{2} such that $\partial \Omega_{i}, i=1,2$, are of class $C^{4,1}$. Let $\partial \Omega_{i}=I_{i} \cup \Gamma, i=1,2$, where I_{i} and Γ are the inaccessible and the accessible parts of the boundaries $\partial \Omega_{i}$, respectively. Let us assume that Ω_{1} and Ω_{2} lie on the same side of Γ and that conditions (30) are satisfied by both pairs $\left\{I_{1}, \Gamma\right\}$ and $\left\{I_{2}, \Gamma\right\}$. Let the plate tensor \mathbb{P} be given by (19), with Lamé moduli λ and μ of class $C^{2,1}\left(\mathbb{R}^{2}\right)$, satisfying the strong convexity condition (28). Let $\hat{M} \in L^{2}\left(\Gamma, \mathbb{R}^{2}\right)$ be a boundary couple field satisfying conditions (31), (33). Let $w_{i} \in H^{2}\left(\Omega_{i}\right)$ be a solution to the Neumann problem (34)-(38) in $\Omega=\Omega_{i}, i=1$, 2. If

$$
\begin{equation*}
w_{1}=w_{2}, \quad \frac{\partial w_{1}}{\partial n}=\frac{\partial w_{2}}{\partial n}, \quad \text { on } \Gamma \tag{39}
\end{equation*}
$$

then

$$
\begin{equation*}
\Omega_{1}=\Omega_{2} \tag{40}
\end{equation*}
$$

Let us consider now the inverse problem of determining an unknown rigid inclusion inside the plate by measuring the transversal displacement and its normal derivative at the boundary $\partial \Omega$ of the plate.

Let $D, D \Subset \Omega$, be an open simply connected subset of Ω of class $C^{1,1}$, representing a rigid inclusion inside Ω. On the assigned couple field \hat{M} let us require the following assumptions:

$$
\begin{align*}
& \hat{M} \in H^{-\frac{1}{2}}\left(\partial \Omega, \mathbb{R}^{2}\right), \quad\left(\hat{M}_{n}, \hat{M}_{\tau, s}\right) \not \equiv 0 \tag{41}\\
& \int_{\partial \Omega} \hat{M}_{\alpha}=0, \quad \alpha=1,2 \tag{42}
\end{align*}
$$

$$
\begin{equation*}
\operatorname{supp}(\hat{M}) \Subset \Gamma \tag{43}
\end{equation*}
$$

where Γ is a nonempty open portion of $\partial \Omega$.
In this case, the statical equilibrium problem of the plate takes the following form

$$
\begin{cases}M_{\alpha \beta, \alpha \beta}=0, & \text { in } \Omega \backslash \bar{D} \tag{44}\\ M_{\alpha \beta} n_{\alpha} n_{\beta}=\hat{M}_{n}, & \text { on } \partial \Omega \\ M_{\alpha \beta, \beta} n_{\alpha}+\left(M_{\alpha \beta} n_{\beta} \tau_{\alpha}\right), s=-\left(\hat{M}_{\tau}\right),_{s}, & \text { on } \partial \Omega \\ \left.w\right|_{\bar{D}} \in \mathcal{A}, & \\ \frac{\partial w^{e}}{\partial n}=\frac{\partial w^{i}}{\partial n}, & \text { on } \partial D\end{cases}
$$

coupled with the equilibrium conditions for the rigid inclusion D

$$
\begin{equation*}
\int_{\partial D}\left(\left(M_{\alpha \beta, \beta} n_{\alpha}+\left(M_{\alpha \beta} n_{\beta} \tau_{\alpha}\right),{ }_{s}\right) g-M_{\alpha \beta} n_{\alpha} n_{\beta} g,_{n}\right)=0, \quad \text { for every } g \in \mathcal{A} \tag{49}
\end{equation*}
$$

In (48), n denotes the unit outer normal to $\Omega \backslash \bar{D}$ and we have defined $\left.w^{e} \equiv w\right|_{\Omega \backslash \bar{D}}$ and $\left.w^{i} \equiv w\right|_{\bar{D}}$. Notice that in (49) $M_{\alpha \beta}=M_{\alpha \beta}\left(w^{e}\right)$. More precisely, denoting

$$
\begin{equation*}
H_{D}^{2}(\Omega)=\left\{w \in H^{2}(\Omega) \mid \exists h \in \mathcal{A} \text { s.t. }\left.w\right|_{\bar{D}}=h\right\} \tag{50}
\end{equation*}
$$

a weak solution to problem (44)-(49) is a function $w \in H_{D}^{2}(\Omega)$ satisfying

$$
\begin{equation*}
\int_{\Omega} M_{\alpha \beta}(w) v, \alpha \beta=\int_{\partial \Omega} \hat{M}_{\tau, s} v+\hat{M}_{n} v,_{n}, \quad \text { for every } v \in H_{D}^{2}(\Omega) \tag{51}
\end{equation*}
$$

By standard variational arguments, it can be proven that problem (44)-(49) admits a weak solution which is determined up to the addition of an affine function.

Theorem 3.2 (Unique determination of a rigid inclusion with one measurement). Let Ω be a simply connected domain in \mathbb{R}^{2} such that $\partial \Omega$ is of class $C^{1,1}$ and let $D_{i}, i=1,2$, be two simply connected domains compactly contained in Ω, such that ∂D_{i} is of class $C^{3,1}, i=1,2$. Moreover, let Γ be a nonempty open portion of $\partial \Omega$, of class $C^{3,1}$. Let the plate tensor \mathbb{P} be given by (19), with Lamé moduli λ and μ of class $C^{1,1}(\bar{\Omega})$, and satisfying the strong convexity condition (28). Let $\hat{M} \in H^{-\frac{1}{2}}\left(\partial \Omega, \mathbb{R}^{2}\right)$ be a boundary couple field satisfying (41)-(43). Let $w_{i}, i=1,2$, be solutions to the mixed problem (44)-(49), with $D=D_{i}$.

Fig. 1. The connected component F of $\Omega_{2} \backslash \bar{G}$.
If

$$
\begin{equation*}
w_{1}=w_{2}, \quad \frac{\partial w_{1}}{\partial n}=\frac{\partial w_{2}}{\partial n}, \quad \text { on } \Gamma \tag{52}
\end{equation*}
$$

then

$$
\begin{equation*}
D_{1}=D_{2} \tag{53}
\end{equation*}
$$

Remark 1. Let us notice that the weak unique continuation of the solutions to the plate equation holds under $C^{1,1}$ - regularity of the Lamé moduli λ, μ (see [16, Proposition 2 and Remark 1]). The stronger regularity assumptions made in Theorem 3.1 have been introduced to give a classical meaning to the Neumann boundary conditions, as required by the arguments of the proof.

4. Proof of Theorems 3.1 and 3.2

4.1. Proof of Theorem 3.1

Let us choose $P_{0} \in \Gamma \backslash\{Q, R\}$ and let $\varphi_{i}(s)$ be the arclength parametrization of $\partial \Omega_{i}$ such that $\varphi_{i}(0)=P_{0}, \varphi_{i}^{\prime}(s)=$ $\tau\left(\varphi_{i}(s)\right)$, for $i=1,2$. We may assume that $Q=\varphi_{i}\left(s_{i}^{\prime}\right), R=\varphi_{i}\left(s_{i}^{\prime \prime}\right)$, with $s_{i}^{\prime}<s_{i}^{\prime \prime}$.

By the regularity assumptions on the boundaries $\partial \Omega_{i}$ and on the Lamé moduli λ, μ, and since $\operatorname{supp}(\hat{M}) \Subset \Gamma$, there exists a neighborhood \mathcal{U}_{i} of I_{i} in $\bar{\Omega}_{i}$ such that $w_{i} \in H^{5}\left(\mathcal{U}_{i}\right)$, for $i=1,2$, see for details [16, Proposition 1]. By Sobolev embedding theorems (see for instance [18]), it follows that

$$
\begin{equation*}
w_{i} \in C^{3}\left(\mathcal{U}_{i}\right) \quad \text { for } i=1,2 \tag{54}
\end{equation*}
$$

and therefore the homogeneous boundary conditions (34)-(38) are satisfied in the classical sense on $I_{i}, i=1,2$.
Let G be the connected component of $\Omega_{1} \cap \Omega_{2}$ such that $\Gamma \subset \partial G$.
Let us prove, for instance, that $\Omega_{2} \subset \Omega_{1}$. We have that

$$
\begin{equation*}
\Omega_{2} \backslash \bar{\Omega}_{1} \subset \Omega_{2} \backslash \bar{G} \tag{55}
\end{equation*}
$$

so that, if we prove that $\Omega_{2} \backslash \bar{G}=\emptyset$ then $\Omega_{2} \subset \bar{\Omega}_{1}$ and, by the regularity of Ω_{1}, it follows that $\Omega_{2} \subset \Omega_{1}$.
Let us assume, by contradiction, that there exists a nonempty connected component F of $\Omega_{2} \backslash \bar{G}$, see Fig. 1 .
By the definition of G and F, it follows that

$$
\begin{equation*}
\left(\partial \Omega_{1} \cap \partial F\right) \backslash \partial G \subset \partial \Omega_{2} \cap \partial F \tag{56}
\end{equation*}
$$

so that

$$
\begin{align*}
& \partial \Omega_{1} \cap \partial F=\left(\partial \Omega_{1} \cap \partial F \cap \partial G\right) \cup\left(\left(\partial \Omega_{1} \cap \partial F\right) \backslash \partial G\right) \subset\left(\partial \Omega_{1} \cap \partial F \cap \partial G\right) \cup\left(\partial \Omega_{2} \cap \partial F\right) \tag{57}\\
& \partial F=\left(\partial \Omega_{2} \cap \partial F\right) \cup\left(\partial \Omega_{1} \cap \partial F\right) \subset\left(\partial \Omega_{2} \cap \partial F\right) \cup\left(\partial \Omega_{1} \cap \partial F \cap \partial G\right) \tag{58}
\end{align*}
$$

Let us define

$$
\begin{align*}
& \Sigma_{2}=\partial F \cap \partial \Omega_{2} \tag{59}\\
& \Sigma_{1}=\partial F \backslash \Sigma_{2} \subset \partial \Omega_{1} \cap \partial G \tag{60}
\end{align*}
$$

We have

$$
\begin{align*}
& \partial F=\Sigma_{1} \cup \Sigma_{2} \tag{61}\\
& \Sigma_{1} \cap \Sigma_{2}=\emptyset \tag{62}\\
& \partial F \cap(\Gamma \backslash\{Q, R\})=\emptyset \tag{63}
\end{align*}
$$

By (63) and since Σ_{2} is closed in $\partial \Omega_{2}$, any (nonempty) connected component of Σ_{2} is either a single point or a closed subarc of $\partial \Omega_{2}$ having distinct endpoints.

By (63) and since Σ_{1} is open in $\partial \Omega_{1}$, any (nonempty) connected component of Σ_{1} is an open subarc of $\partial \Omega_{1}$ having distinct endpoints P_{1}, P_{2} belonging to Σ_{2}.

Claim. Σ_{1} consists of a single open arc γ with distinct endpoints $P_{1}, P_{2} \in \Sigma_{2}$ and Σ_{2} consists of a single closed arc τ with the same endpoints P_{1} and P_{2}.

Proof of the Claim. First, let us notice that $\Sigma_{1} \neq \emptyset$. In fact, otherwise, $\partial F=\Sigma_{2} \subset \partial \Omega_{2}$, so that $\partial F=\partial \Omega_{2}$ contradicting (63). Let γ be a connected component of Σ_{1}, with distinct endpoints $P_{1}, P_{2} \in \Sigma_{2}$, and let τ be the closed sub-arc of $\partial \Omega_{2}$, having endpoints P_{1} and P_{2}, which does not intersect $\Gamma \backslash\{Q, R\}$. By (62), $\gamma \cap \tau \subset \Sigma_{1} \cap \partial \Omega_{2}=\Sigma_{1} \cap \partial F \cap \partial \Omega_{2}=\Sigma_{1} \cap \Sigma_{2}=\emptyset$, so that $\gamma \cup \tau$ is the boundary of a bounded domain which we denote by H. If we prove that $F=H$ then the Claim follows.

The domain G does not intersect $\partial H=\gamma \cup \tau \subset \partial \Omega_{1} \cup \partial \Omega_{2}$ and therefore either $G \subset H$ or $G \subset \Omega_{2} \backslash \bar{H}$. Let us see that the latter case occurs.

By contradiction, let us assume that $G \subset H$. In this case we have that $\Gamma \subset \bar{G} \subset \bar{H}$. On the other hand, $(\Gamma \backslash\{Q, R\}) \cap \gamma \subset$ $(\Gamma \backslash\{Q, R\}) \cap \partial F=\emptyset$. Similarly, by the choice of $\tau,(\Gamma \backslash\{Q, R\}) \cap \tau=\emptyset$. It follows that $\Gamma \backslash\{Q, R\} \subset H$.

The open sub-arc of $\partial \Omega_{2} \sigma=\partial \Omega_{2} \backslash \tau$ is a connected set which does not intersect $\partial H=\gamma \cup \tau$, since $\gamma \cap \partial \Omega_{2}=\emptyset$. Therefore, since $\sigma \supset \Gamma \backslash\{Q, R\}$, we have that $\sigma \subset H$.

It follows that $\bar{\Omega}_{2} \subset H \cup \tau$. Hence, given any point $P \in \gamma$, we have that $\mathrm{d}\left(P, \bar{\Omega}_{2}\right)>0$, contradicting $\gamma \subset \partial G \subset \bar{\Omega}_{2}$. We have thus proved that $G \subset \Omega_{2} \backslash \bar{H}$.

Therefore, given $S \in \gamma$, since $\gamma \subset \partial G \cap \partial \Omega_{1}$, by the definition of G and by the regularity of $\partial \Omega_{1}$, it follows that there exists $\rho>0$ such that $B_{\rho}(S) \backslash H \subset \bar{G}$. On the other hand, since $\gamma \subset \partial F, F \cap B_{\rho}(S) \neq \emptyset$ so that, being $F \cap \bar{G}=\emptyset$ by definition of $F, B \rho(S) \cap F \cap H \neq \emptyset$. Now, $F \cap \partial H=F \cap(\tau \cup \gamma) \subset F \cap \partial F=\emptyset$ and, by the connectedness of F, we have that $F \subset H$.

If Σ_{1} had another connected component, say γ^{\prime}, then γ^{\prime} would be an open arc contained in H. Given $T \in \gamma^{\prime} \subset H$, there would exist a neighborhood V of T contained in H and therefore, since $T \in \partial G, H \cap G \supset V \cap G \neq \emptyset$, contradicting $G \cap H=\emptyset$.

Hence $\Sigma_{1}=\gamma$ and therefore $\Sigma_{2}=\tau$ and $F=H$. The proof of the Claim is complete.
Let v be the outer unit normal to F, defined on $\gamma \cup \tau \backslash\left\{P_{1}, P_{2}\right\}$, and let us denote by n^{i} and τ^{i} the normal and tangent vectors to $\partial \Omega_{i}, i=1,2$. Since $F \subset \Omega_{2}$, we have that $v=n^{2}$ on $\tau \backslash\left\{P_{1}, P_{2}\right\}$. Since $\gamma \subset \partial G \cap \partial \Omega_{1}$, and recalling that $\bar{F} \cap G=\emptyset$, for every $P \in \gamma$, there exists a neighborhood U of P such that $(U \backslash \bar{F}) \cap G \neq \emptyset$ and, since $G \subset \Omega_{1}$ and by the regularity of $\Omega_{1},(U \backslash \bar{F}) \subset \Omega_{1}$. It follows that $\nu=-n^{1}$ on γ.

To fix ideas, let us assume that P_{2} follows P_{1} along γ according to the positive orientation of $\partial \Omega_{1}$; since $\nu=-n^{1}$ on γ and $\nu=n^{2}$ on $\tau \backslash\left\{P_{1}, P_{2}\right\}$, also P_{2} follows P_{1} along τ according to the positive orientation of $\partial \Omega_{2}$. Let $s_{1}, s_{2} \in \mathbb{R}, s_{1}<s_{2}$ such that $P_{1}=\varphi_{1}\left(s_{1}\right), P_{2}=\varphi_{1}\left(s_{2}\right)$.

The function $w=w_{1}-w_{2}$ satisfies the following Cauchy problem:

$$
\begin{cases}M_{\alpha \beta, \alpha \beta}(w)=0, & \text { in } G \tag{64}\\ w=0, & \text { on } \Gamma \\ \frac{\partial w}{\partial n}=0, & \text { on } \Gamma \\ M_{\alpha \beta}(w) n_{\alpha} n_{\beta}=0, & \text { on } \Gamma \\ M_{\alpha \beta, \beta}(w) n_{\alpha}+\left(M_{\alpha \beta}(w) n_{\alpha} \tau_{\beta}\right),_{s}=0, & \text { on } \Gamma\end{cases}
$$

From the uniqueness of the solution to the Cauchy problem (64)-(68) (see, for instance, [16, Proposition 3]) and from the weak unique continuation property (see, for instance, [16, Proposition 2 and Remark 1]), we have that $w \equiv 0$ in G, that is

$$
\begin{equation*}
w_{1} \equiv w_{2}, \quad \text { in } G \tag{69}
\end{equation*}
$$

By (54), w_{i} coincide with all their derivatives up to the third order in \bar{G}. Let us first apply integration by parts to the equation $M_{\alpha \beta, \alpha \beta}\left(w_{2}\right)=0$ in F. By using (69) and (38) we obtain

$$
\begin{align*}
0 & =\int_{F} M_{\alpha \beta, \alpha \beta}\left(w_{2}\right)=\int_{\partial F} M_{\alpha \beta, \beta}\left(w_{2}\right) v_{\alpha} \\
& =-\int_{\gamma} M_{\alpha \beta, \beta}\left(w_{1}\right) n_{\alpha}^{1}+\int_{\tau} M_{\alpha \beta, \beta}\left(w_{2}\right) n_{\alpha}^{2}=\int_{\gamma}\left(M_{\alpha \beta}\left(w_{1}\right) n_{\beta}^{1} \tau_{\alpha}^{1}\right), s-\int_{\tau}\left(M_{\alpha \beta}\left(w_{2}\right) n_{\beta}^{2} \tau_{\alpha}^{2}\right), s \\
& =\left(M_{\alpha \beta}\left(w_{1}\right) n_{\beta}^{1} \tau_{\alpha}^{1}\right)\left(P_{2}\right)-\left(M_{\alpha \beta}\left(w_{1}\right) n_{\beta}^{1} \tau_{\alpha}^{1}\right)\left(P_{1}\right)+\left(M_{\alpha \beta}\left(w_{2}\right) n_{\beta}^{2} \tau_{\alpha}^{2}\right)\left(P_{1}\right)-\left(M_{\alpha \beta}\left(w_{2}\right) n_{\beta}^{2} \tau_{\alpha}^{2}\right)\left(P_{2}\right) \tag{70}
\end{align*}
$$

so that

$$
\begin{equation*}
\left(M\left(w_{2}\right) n^{1} \cdot \tau^{1}\right)\left(P_{2}\right)-\left(M\left(w_{2}\right) n^{2} \cdot \tau^{2}\right)\left(P_{2}\right)=\left(M\left(w_{2}\right) n^{1} \cdot \tau^{1}\right)\left(P_{1}\right)-\left(M\left(w_{2}\right) n^{2} \cdot \tau^{2}\right)\left(P_{1}\right):=K \tag{71}
\end{equation*}
$$

where M is the 2×2 matrix of entries $M_{\alpha \beta}$ given by (25).
Now, let us apply integration by parts to the equation $M_{\alpha \beta, \alpha \beta}\left(w_{2}\right) w_{2}=0$ in F, obtaining

$$
\begin{align*}
0 & =\int_{F} M_{\alpha \beta, \alpha \beta}\left(w_{2}\right) w_{2}=\int_{F} M_{\alpha \beta}\left(w_{2}\right) w_{2}, \alpha \beta+\int_{\partial F} M_{\alpha \beta, \beta}\left(w_{2}\right) v_{\alpha} w_{2}-\int_{\partial F} M_{\alpha \beta}\left(w_{2}\right) v_{\beta} w_{2, \alpha} \\
& :=\int_{F} M_{\alpha \beta}\left(w_{2}\right) w_{2}, \alpha \beta+I_{1}-I_{2} \tag{72}
\end{align*}
$$

Recalling (34)-(38) and by using the following relations, which hold for any function $u \in C^{1}\left(\Omega_{i}\right)$,

$$
\begin{equation*}
u,_{\alpha}=n_{\alpha}^{i} u,_{n}+\tau_{\alpha}^{i} u,_{s}, \quad \text { on } \partial \Omega_{i}, \alpha=1,2 \tag{73}
\end{equation*}
$$

we can compute

$$
\begin{align*}
& I_{1}=-\int_{\gamma} M_{\alpha \beta, \beta}\left(w_{1}\right) n_{\alpha}^{1} w_{1}+\int_{\tau} M_{\alpha \beta, \beta}\left(w_{2}\right) n_{\alpha}^{2} w_{2}=\int_{\gamma}\left(M_{\alpha \beta}\left(w_{1}\right) n_{\beta}^{1} \tau_{\alpha}^{1}\right), s_{s} w_{1}-\int_{\tau}\left(M_{\alpha \beta}\left(w_{2}\right) n_{\beta}^{2} \tau_{\alpha}^{2}\right), s_{s} w_{2} \tag{74}\\
& I_{2}=-\int_{\gamma} M_{\alpha \beta}\left(w_{1}\right) n_{\beta}^{1} w_{1, \alpha}+\int_{\tau} M_{\alpha \beta}\left(w_{2}\right) n_{\beta}^{2} w_{2, \alpha} \\
&=- \int_{\gamma}\left(M_{\alpha \beta}\left(w_{1}\right) n_{\beta}^{1} n_{\alpha}^{1}\right) w_{1, n}-\int_{\gamma}\left(M_{\alpha \beta}\left(w_{1}\right) n_{\beta}^{1} \tau_{\alpha}^{1}\right) w_{1, s}+\int_{\tau}\left(M_{\alpha \beta}\left(w_{2}\right) n_{\beta}^{2} n_{\alpha}^{2}\right) w_{2, n}+\int_{\tau}\left(M_{\alpha \beta}\left(w_{2}\right) n_{\beta}^{2} \tau_{\alpha}^{2}\right) w_{2, s} \\
&=- \int_{\gamma}\left(M_{\alpha \beta}\left(w_{1}\right) n_{\beta}^{1} \tau_{\alpha}^{1}\right) w_{1, s}+\int_{\tau}\left(M_{\alpha \beta}\left(w_{2}\right) n_{\beta}^{2} \tau_{\alpha}^{2}\right) w_{2, s} \tag{75}\\
& I_{1}-I_{2}=\int_{\gamma}\left(M_{\alpha \beta}\left(w_{1}\right) n_{\beta}^{1} \tau_{\alpha}^{1} w_{1}\right), s_{s}-\int_{\tau}\left(M_{\alpha \beta}\left(w_{2}\right) n_{\beta}^{2} \tau_{\alpha}^{2} w_{2}\right), s \\
&=\left(M\left(w_{1}\right) n^{1} \cdot \tau^{1}\right)\left(P_{2}\right) w_{1}\left(P_{2}\right)-\left(M\left(w_{1}\right) n^{1} \cdot \tau^{1}\right)\left(P_{1}\right) w_{1}\left(P_{1}\right) \\
& \quad+\left(M\left(w_{2}\right) n^{2} \cdot \tau^{2}\right)\left(P_{1}\right) w_{2}\left(P_{1}\right)-\left(M\left(w_{2}\right) n^{2} \cdot \tau^{2}\right)\left(P_{2}\right) w_{2}\left(P_{2}\right) \tag{76}
\end{align*}
$$

By (71), (72) and (76) and recalling that the solutions w_{i} coincide with all their derivatives up to the third order at P_{1} and P_{2}, we have

$$
\begin{equation*}
\int_{F} M_{\alpha \beta}\left(w_{2}\right) w_{2}, \alpha \beta=I_{2}-I_{1}=K\left(w_{1}\left(P_{1}\right)-w_{1}\left(P_{2}\right)\right) \tag{77}
\end{equation*}
$$

If $K=0$, then

$$
\begin{equation*}
0=I_{1}-I_{2}=-\int_{F} M_{\alpha \beta}\left(w_{2}\right) w_{2, \alpha \beta} \geqslant \frac{h^{3}}{12} \xi_{0} \int_{F}\left|\nabla^{2} w_{2}\right|^{2} \tag{78}
\end{equation*}
$$

and, F being a nonempty open set, w_{2} coincides with an affine function h in F. By the weak unique continuation property, $w_{2} \equiv h$ in Ω_{2}, contradicting the choice of the nontrivial Neumann data \hat{M} on Γ, see (31). Therefore, if $K=0$, we have

Fig. 2. The connected component F^{\prime} of $\Omega_{1} \backslash \bar{G}$.
a contradiction, that is $F=\emptyset$, and the thesis is proved. It is to notice that, by (71), $K=0$ certainly holds when $\partial \Omega_{1}$ and $\partial \Omega_{2}$ are tangent either at P_{1} or at P_{2}. Hence it remains to consider the case when $K \neq 0$, which implies that $\partial \Omega_{1}$ and $\partial \Omega_{2}$ are tangent neither at P_{1} nor at P_{2}. In this case, P_{2} is an isolated point of $\partial \Omega_{1} \cap \partial \Omega_{2}$ and therefore, by the regularity of $\partial \Omega_{i}, i=1,2$, there exists $\rho>0$ such that $B_{\rho}\left(P_{2}\right) \backslash\left(\partial \Omega_{1} \cup \partial \Omega_{2}\right)=D_{1} \cup D_{2} \cup D_{3} \cup D_{4}$, where $D_{1}=F \cap B_{\rho}\left(P_{2}\right)$, $D_{2}=\left(\Omega_{1} \backslash \bar{\Omega}_{2}\right) \cap B_{\rho}\left(P_{2}\right), D_{3}=\Omega_{1} \cap \Omega_{2} \cap B{ }_{\rho}\left(P_{2}\right)=G \cap B_{\rho}\left(P_{2}\right), D_{4}=B_{\rho}\left(P_{2}\right) \backslash\left(\bar{\Omega}_{1} \cup \bar{\Omega}_{2}\right)$. Starting from $\Omega_{1} \backslash \bar{\Omega}_{2} \subset \Omega_{1} \backslash \bar{G}$, and by performing the symmetric construction reversing the roles of Ω_{1} and Ω_{2}, it is clear that there exists a connected component F^{\prime} of $\Omega_{1} \backslash \bar{G}$ such that $D_{2} \subset F^{\prime}$, see Fig. 2. Similarly, $\partial F^{\prime}=\gamma^{\prime} \cup \tau^{\prime}$, where τ^{\prime} is an open sub-arc of $\partial \Omega_{2} \cap \partial G$ and γ^{\prime} is a closed sub-arc of $\partial \Omega_{1}$ having the same endpoints $P_{2}, P_{3} \in \gamma^{\prime}$, with $P_{3}=\varphi_{1}\left(s_{3}\right)$, for some $s_{3}>s_{2}$.

By performing similar integration by parts for the equation $M_{\alpha \beta, \alpha \beta}\left(w_{1}\right)=0$ in F^{\prime}, we have

$$
\begin{equation*}
\left(M\left(w_{2}\right) n^{1} \cdot \tau^{1}\right)\left(P_{3}\right)-\left(M\left(w_{2}\right) n^{2} \cdot \tau^{2}\right)\left(P_{3}\right)=\left(M\left(w_{2}\right) n^{1} \cdot \tau^{1}\right)\left(P_{2}\right)-\left(M\left(w_{2}\right) n^{2} \cdot \tau^{2}\right)\left(P_{2}\right)=K \tag{79}
\end{equation*}
$$

Since we are assuming that $K \neq 0$, we have again that $\partial \Omega_{1}$ and $\partial \Omega_{2}$ are not tangent at P_{3} and we can repeat the above arguments, constructing an increasing sequence s_{n}, such that $P_{n}=\varphi_{1}\left(s_{n}\right) \in \partial \Omega_{1} \cap \partial \Omega_{2}$ and

$$
\begin{equation*}
\left(M\left(w_{2}\right) n^{1} \cdot \tau^{1}\right)\left(P_{n}\right)-\left(M\left(w_{2}\right) n^{2} \cdot \tau^{2}\right)\left(P_{n}\right)=K \tag{80}
\end{equation*}
$$

The sequence s_{n} is bounded above by $s_{1}^{\prime \prime}$, where we recall that $R=\varphi_{1}\left(s_{1}^{\prime \prime}\right)$, since $\left(\Omega_{2} \backslash \bar{G}\right) \cap \Gamma=\emptyset$ and $\left(\Omega_{1} \backslash \bar{G}\right) \cap \Gamma=\emptyset$. Therefore s_{n} converges to some \bar{s} and P_{n} converges to $\bar{P}=\varphi_{1}(\bar{s}) \in \partial \Omega_{1} \cap \partial \Omega_{2}$. Thus \bar{P} is a cluster point for $\partial \Omega_{1} \cap \partial \Omega_{2}$, so that $\partial \Omega_{1}$ and $\partial \Omega_{2}$ are tangent at \bar{P}, implying that

$$
\begin{equation*}
\left(M\left(w_{2}\right) n^{1} \cdot \tau^{1}\right)(\bar{P})-\left(M\left(w_{2}\right) n^{2} \cdot \tau^{2}\right)(\bar{P})=0 \tag{81}
\end{equation*}
$$

On the other hand, by the regularity of the solutions and of the boundaries, we have that

$$
\begin{align*}
K & =\lim _{n \rightarrow \infty} K=\lim _{n \rightarrow \infty}\left(M\left(w_{2}\right) n^{1} \cdot \tau^{1}\right)\left(P_{n}\right)-\left(M\left(w_{2}\right) n^{2} \cdot \tau^{2}\right)\left(P_{n}\right) \\
& =\left(M\left(w_{2}\right) n^{1} \cdot \tau^{1}\right)(\bar{P})-\left(M\left(w_{2}\right) n^{2} \cdot \tau^{2}\right)(\bar{P})=0 \tag{82}
\end{align*}
$$

obtaining a contradiction and concluding the proof of the theorem.

4.2. Proof of Theorem 3.2

Let G be the connected component of $\Omega \backslash\left(\overline{D_{1} \cup D_{2}}\right)$ such that $\Gamma \subset \partial G$. For $i=1,2$, let $h_{i} \in \mathcal{A}$ be such that $\left.w_{i}\right|_{\bar{D}_{i}}=h_{i}$, and let us set $v_{i}=w_{i}-h_{i}$. Hence $v_{i} \equiv 0$ in \bar{D}_{i} and, by (48), $\frac{\partial v_{i}^{e}}{\partial v}=0$ on ∂D_{i}. Let us notice that, since v_{i} satisfies homogeneous Dirichlet conditions on the $C^{3,1}$ boundary ∂D_{i}, by regularity results we have that $v_{i} \in H^{4}\left(\widetilde{\Omega} \backslash D_{i}\right)$, for every $\widetilde{\Omega}$, $D_{i} \Subset \widetilde{\Omega} \Subset \Omega, i=1,2$ (see, for example, [19]). By Sobolev embedding theorems (see, for instance, [18]), we have that v_{i} and ∇v_{i} are continuous up to $\partial D_{i}, i=1,2$. Therefore

$$
\begin{equation*}
v_{i} \equiv 0, \quad \nabla v_{i}^{e} \equiv 0, \quad \text { on } \partial D_{i} \tag{83}
\end{equation*}
$$

Let us set $h=h_{2}-h_{1}, h(x)=a x_{1}+b x_{2}+c$. Then we have that the function $w=v_{1}-v_{2}-h$ satisfies the following Cauchy problem

$$
\begin{cases}M_{\alpha \beta, \alpha \beta}=0, & \text { in } G \tag{84}\\ w=0, & \text { on } \Gamma \\ \frac{\partial w}{\partial n}=0, & \text { on } \Gamma \\ M_{\alpha \beta}(w) n_{\alpha} n_{\beta}=0, & \text { on } \Gamma \\ M_{\alpha \beta, \beta}(w) n_{\alpha}+\left(M_{\alpha \beta}(w) n_{\alpha} \tau_{\beta}\right),_{s}=0, & \text { on } \Gamma\end{cases}
$$

From the uniqueness of the solution to the Cauchy problem (84)-(88) (see, for instance, Proposition 3 in [16]) and from the weak unique continuation property (see, for example, Proposition 2 and Remark 1 in [16]), we have that

$$
\begin{equation*}
w \equiv 0, \quad \text { in } G \tag{89}
\end{equation*}
$$

Let us prove for instance that $D_{2} \subset D_{1}$. We have that

$$
\begin{align*}
& D_{2} \backslash \bar{D}_{1} \subset \Omega \backslash\left(\overline{D_{1} \cup G}\right) \tag{90}\\
& \partial\left(\Omega \backslash\left(\overline{D_{1} \cup G}\right)\right)=\Sigma_{1} \cup \Sigma_{2} \tag{91}
\end{align*}
$$

where $\Sigma_{2}=\partial D_{2} \cap \partial G$ and $\Sigma_{1}=\partial\left(\Omega \backslash\left(\overline{D_{1} \cup G}\right)\right) \backslash \Sigma_{2} \subset \partial D_{1}$.
We can distinguish the following two cases:
(i) $\partial D_{1} \cap \Sigma_{2} \neq \emptyset$;
(ii) $\partial D_{1} \cap \Sigma_{2}=\emptyset$.

If (i) holds, then there exists $P_{0} \in \partial D_{1} \cap \Sigma_{2}$. Then, by (83) and (89), $h\left(P_{0}\right)=0$. Moreover, given a sequence of points $P_{n} \in G$ converging to P_{0}, again by (83) and (89), we have that

$$
\begin{align*}
& 0=\nabla w\left(P_{n}\right)=\nabla v_{1}\left(P_{n}\right)-\nabla v_{2}\left(P_{n}\right)-(a, b) \tag{92}\\
& 0=\lim _{n \rightarrow \infty} \nabla w\left(P_{n}\right)=\nabla v_{1}^{e}\left(P_{0}\right)-\nabla v_{2}^{e}\left(P_{0}\right)-(a, b)=-(a, b) \tag{93}
\end{align*}
$$

that is $h \equiv c$, but $h\left(P_{0}\right)=0$, so that $h \equiv 0$, that is $v_{1} \equiv v_{2}$ in G.
Integrating by parts the equation $M_{\alpha \beta, \alpha \beta}\left(v_{1}\right) v_{1}=0$ in $\Omega \backslash\left(\overline{D_{1} \cup G}\right)$ we obtain

$$
\begin{equation*}
-\int_{\Omega \backslash\left(\overline{D_{1} \cup G}\right)} M_{\alpha \beta}\left(v_{1}\right) v_{1}, \alpha \beta=\int_{\partial\left(\Omega \backslash\left(\overline{D_{1} \cup G}\right)\right)} M_{\alpha \beta, \beta}\left(v_{1}\right) v_{\alpha} v_{1}-\int_{\partial\left(\Omega \backslash\left(\overline{D_{1} \cup G}\right)\right)} M_{\alpha \beta}\left(v_{1}\right) v_{\beta} v_{1, \alpha} \tag{94}
\end{equation*}
$$

where v denotes the outer unit normal to $\Omega \backslash\left(\overline{D_{1} \cup G}\right)$. Let us notice that $v=n^{1}$ on Σ_{1} and $v=-n^{2}$ on Σ_{2}. By (91) and (83), and using the fact that $v_{1}=v_{2}, \nabla v_{1}=\nabla v_{2}$ in Σ_{2}, we have

$$
\begin{equation*}
0=-\int_{\Omega \backslash\left(\overline{D_{1} \cup G}\right)} M_{\alpha \beta}\left(v_{1}\right) v_{1}, \alpha \beta \geqslant \frac{h^{3}}{12} \xi_{0} \int_{D_{2} \backslash \bar{D}_{1}}\left|\nabla^{2} v_{1}\right|^{2} \tag{95}
\end{equation*}
$$

where $\xi_{0}>0$ is the ellipticity constant appearing in (29). If the open set $D_{2} \backslash \bar{D}_{1}$ were nonempty then, by the weak unique continuation principle, w_{1} coincides with an affine function in $\Omega \backslash \bar{D}_{1}$, contradicting the choice of the nontrivial Neumann data \hat{M} on $\partial \Omega$. Therefore, $D_{2} \subset \bar{D}_{1}$ and, since D_{2} is open and by the regularity of ∂D_{1}, it follows that $D_{2} \subset D_{1}$.

In case ii), it is easy to see that either $\bar{D}_{1} \cap \bar{D}_{2}=\emptyset$ or $\bar{D}_{1} \subset D_{2}$. Let us consider in detail the first situation, the second being similar. If $\bar{D}_{1} \cap \bar{D}_{2}=\emptyset$ then, integrating by parts the equation $M_{\alpha \beta, \alpha \beta}\left(v_{1}\right) v_{1}=0$ in D_{2}, we obtain

$$
\begin{equation*}
-\int_{D_{2}} M_{\alpha \beta}\left(v_{1}\right) v_{1}, \alpha \beta=-\int_{\partial D_{2}} M_{\alpha \beta, \beta}\left(v_{1}\right) n_{\alpha} v_{1}+\int_{\partial D_{2}} M_{\alpha \beta}\left(v_{1}\right) n_{\beta} v_{1, \alpha} \tag{96}
\end{equation*}
$$

By using the relations (73) for $\Omega_{i}=\Omega \backslash \bar{D}_{i}$ and by the regularity of ∂D_{2}, Eq. (96) can be rewritten as follows

$$
\begin{align*}
-\int_{D_{2}} M_{\alpha \beta}\left(v_{1}\right) v_{1}, \alpha \beta & =-\int_{\partial D_{2}}\left(M_{\alpha \beta, \beta}\left(v_{1}\right) n_{\alpha} v_{1}-M_{\alpha \beta}\left(v_{1}\right) n_{\beta} \tau_{\alpha} v_{1}, s\right)+\int_{\partial D_{2}} M_{\alpha \beta}\left(v_{1}\right) n_{\alpha} n_{\beta} v_{1, n} \\
& =-\int_{\partial D_{2}}\left(M_{\alpha \beta, \beta}\left(v_{1}\right) n_{\alpha}+\left(M_{\alpha \beta}\left(v_{1}\right) n_{\beta} \tau_{\alpha}\right), s\right) v_{1}+\int_{\partial D_{2}} M_{\alpha \beta}\left(v_{1}\right) n_{\alpha} n_{\beta} v_{1, n} \tag{97}
\end{align*}
$$

By using Eq. (49) with $g=h \in \mathcal{A}$, by (97) and recalling that $v_{2}=v_{1}-h=0, v_{2, n}=v_{1, n}-h_{, n}=0$ on ∂D_{2}, we have

$$
\begin{align*}
-\int_{D_{2}} M_{\alpha \beta}\left(v_{1}\right) v_{1}, \alpha \beta & =-\int_{\partial D_{2}}\left(M_{\alpha \beta, \beta}\left(v_{1}\right) n_{\alpha}+\left(M_{\alpha \beta}\left(v_{1}\right) n_{\beta} \tau_{\alpha}\right), s\right)\left(v_{1}-h\right)+\int_{\partial D_{2}} M_{\alpha \beta}\left(v_{1}\right) n_{\alpha} n_{\beta}\left(v_{1, n}-h, n\right) \\
& =0 \tag{98}
\end{align*}
$$

As seen for case (i), we have that v_{1} coincides with an affine function h in D_{2}. If D_{2} is nonempty then, by the weak unique continuation property, $v_{1} \equiv h$ in $\Omega \backslash \bar{D}_{1}$, contradicting the choice of the nontrivial Neumann data \hat{M} on $\partial \Omega$. Therefore $D_{2}=\emptyset$. Similarly, one can prove that $D_{1}=\emptyset$ and therefore $D_{1}=D_{2}$.

Acknowledgement

We are very grateful to Alessandro Logar for his kind help in the realization of the figures. The second author was supported by MIUR, PRIN no. 2006014115.

References

[1] M. Bonnet, A. Costantinescu, Inverse problems in elasticity, Inverse Problems 21 (2005) R1-R50.
[2] G. Fichera, Existence theorems in elasticity, in: Handbuch der Physik, vol. VI, Springer-Verlag, Berlin, Heidelberg, New York, 1972, pp. 347-389.
[3] E. Beretta, S. Vessella, Stable determination of boundaries from Cauchy data, SIAM J. Math. Anal. 30 (1998) 220-232.
[4] L. Rondi, Optimal stability estimates for the determination of defects by electrostatic measurements, Inverse Problems 15 (1999) $1193-1212$.
[5] G. Alessandrini, L. Rondi, Optimal stability for the inverse problem of multiple cavities, J. Differential Equations 176 (2001) $356-386$.
[6] G. Alessandrini, E. Beretta, E. Rosset, S. Vessella, Optimal stability for inverse elliptic boundary value problems with unknown boundaries, Ann. Scuola Norm. Sup. Pisa Cl. Sci. XXIX (4) (2000) 755-806.
[7] K. Bryan, L.F. Caudill Jr., Reconstruction of an unknown boundary portion from Cauchy data in n dimensions, Inverse Problems 21 (2005) $239-255$.
[8] V. Isakov, Some inverse problems for the diffusion equation, Inverse Problems 15 (1999) 3-10.
[9] B. Canuto, E. Rosset, S. Vessella, Quantitative estimates of unique continuation for parabolic equations and inverse initial-boundary value problems with unknown boundaries, Trans. Amer. Math. Soc. 354 (2002) 491-535.
[10] B. Canuto, E. Rosset, S. Vessella, A stability result in the localization of cavities in a thermic conducting medium, ESAIM:COCV 7 (2002) $521-565$.
[11] M. Di Cristo, L. Rondi, S. Vessella, Stability properties of an inverse parabolic problem with unknown boundaries, Ann. Mat. Pura Appl. 185 (2006) 223-255.
[12] D.D. Ang, D.D. Trong, M. Yamamoto, Unique continuation and identification of boundary of an elastic body, J. Inverse Ill-posed Probl. Ser. 3 (1996) 417-428.
[13] D.D. Ang, D.D. Trong, M. Yamamoto, Identification of cavities inside two-dimensional heterogeneous isotropic elastic bodies, J. Elasticity 56 (1999) 199-212.
[14] A. Morassi, E. Rosset, Stable determination of cavities in elastic bodies, Inverse Problems 20 (2004) 453-480.
[15] A. Morassi, E. Rosset, Uniqueness and stability in determining a rigid inclusion in an elastic body, Mem. Amer. Math. Soc. 200 (938) (2009).
[16] A. Morassi, E. Rosset, S. Vessella, Unique determination of a cavity in an elastic plate by two boundary measurements, Inverse Prob. Imaging 1 (2007) 481-506.
[17] A. Morassi, E. Rosset, S. Vessella, Size estimates for inclusions in an elastic plate by boundary measurements, Indiana Univ. Math. J. 56 (2007) $2325-$ 2384.
[18] R.A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
[19] S. Agmon, Lectures on Elliptic Boundary Value Problems, Van Nostrand, New York, 1965.

[^0]: * Corresponding author.

 E-mail addresses: antonino.morassi@uniud.it (A. Morassi), rossedi@units.it (E. Rosset).

