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In this article we study two inverse problems for a thin elastic plate subjected to a given
couple field applied at its boundary. One problem consists in determining an unknown
portion of the exterior boundary of the plate subjected to homogeneous Neumann
conditions, while the other problem concerns with the determination of a rigid inclusion
inside the plate. In both cases, under the assumption that the plate is made by isotropic
material, we prove uniqueness with one measurement.
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r é s u m é

Dans cet article, on considère deux problèmes inverses pour une plaque mince élastique
soumise à une distribution donnée de moments sur une partie de son bord. Le premier
problème consiste à déterminer une portion inconnue du bord, supposée libre d’efforts.
Le second problème correspond à l’identification d’une inclusion rigide dans la plaque.
Pour les deux problèmes, l’identifiabilité au moyen d’une seule mesure est prouvée, sous
l’hypothèse d’un comportement isotrope du matériau constitutif de la plaque.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In several applications of nondestructive methods in structural mechanics one deals with inverse problems for deter-
mining an unknown or inaccessible portion of the boundary of a body by measurements taken on an accessible part of
its boundary. As an example of practical application, this kind of problems arises in damage assessment of mechanical
specimens which are possibly defective due to the presence of interior rigid inclusions induced during the manufacturing
process, see, for example, [1].

In this article we shall deal with two inverse problems with unknown boundaries for thin elastic plates. Let us first
consider the case in which the unknown boundary is some portion of the exterior component of the boundary of the plate.
Suppose that the middle surface of the plate is a bounded domain Ω in R

2 with a sufficiently smooth boundary ∂Ω ,
and assume that a part of ∂Ω , say I , is not known. The inverse problem consists in determining I by a nondestructive
method collecting Cauchy data measurements on the accessible part of the boundary ∂Ω represented by a sub-arc Γ of
∂Ω , with Γ ∪ I = ∂Ω . More precisely, we assume that the inaccessible part I of ∂Ω is free and we accept to work within
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the Kirchhoff–Love theory of thin, elastic plates under infinitesimal deformations. Therefore, given a nontrivial couple field
M̂ on Γ , the statical equilibrium of the plate is described by the following Neumann problem:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

div
(
div

(
P∇2 w

)) = 0, in Ω (1)(
P∇2 w

)
n · n = −M̂n, on Γ (2)

div
(
P∇2 w

) · n + ((
P∇2 w

)
n · τ )

,s = (M̂τ ),s , on Γ (3)(
P∇2 w

)
n · n = 0, on I (4)

div
(
P∇2 w

) · n + ((
P∇2 w

)
n · τ )

,s = 0, on I (5)

where w = w(x1, x2), w ∈ H2(Ω), is the transversal displacement of the point (x1, x2) of the plate and M̂τ , M̂n denote,
respectively, the twisting and bending moments applied on Γ ; see, for example, [2]. We assume that the plate is made by
isotropic material with fourth order tensor P given by

PA = B
(
(1 − ν)Asym + ν(tr A)I2

)
(6)

for every 2 × 2 matrix A, where B is the bending stiffness of the plate and ν is the Poisson’s coefficient of the material, see
Section 3. In the above equations, n denotes the unit outer normal to ∂Ω , τ is the unit tangent vector and s is the arclength
(we refer to Section 2 for the precise definitions).

Under suitable regularity assumptions on the coefficients of the plate tensor P and on the boundary of ∂Ω , we prove
that the unknown boundary I is uniquely determined by applying a single, nontrivial couple field M̂ on Γ and measuring
on Γ the corresponding transversal displacement w and its normal derivative ∂ w

∂n , see Theorem 3.1 for a precise statement.
A second problem considered in this article is that associated to the unique determination of a rigid inclusion inside

the plate. Let D , D � Ω , be an open simply connected subset of Ω representing the inclusion. Our aim is to identify D
by applying a couple field M̂ at the boundary ∂Ω and by measuring the induced transversal displacement and its normal
derivative on an open portion Γ of ∂Ω . In this case, working as before within the Kirchhoff–Love theory of thin, elastic
and isotropic plates under infinitesimal deformations, the transversal displacement w ∈ H2(Ω) satisfies the following mixed
boundary value problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

div
(
div

(
P∇2 w

)) = 0, in Ω \ D (7)(
P∇2 w

)
n · n = −M̂n, on ∂Ω (8)

div
(
P∇2 w

) · n + ((
P∇2 w

)
n · τ )

,s = (M̂τ ),s , on ∂Ω (9)

w|D ≡ affine function, in D (10)

∂ we

∂n
= ∂ wi

∂n
, on ∂ D (11)

coupled with the equilibrium conditions for the rigid inclusion D∫
∂ D

(
div

(
P∇2 we) · n + ((

P∇2 we)n · τ )
,s

)
g − ((

P∇2 we)n · n
)

g,n = 0, for every affine function g (12)

In above equations, n denotes the unit outer normal to Ω \ D and we have defined we ≡ w|Ω\D and wi ≡ w|D .
Under suitable regularity assumptions on the coefficients of the plate tensor and on the boundary of Ω and D , in

Theorem 3.2 we prove uniqueness with one boundary measurement.
We now briefly comment the findings of this article. Our results show that the two inverse problems posed above can

be uniquely solved by a single boundary measurement. A similar conclusion is true for analogous inverse problems of
uniqueness (and, in some cases, of stability) for electrical conductors (see, for example, [3–6]), in the thermic setting [7–
11] and in two and three dimensional linear elasticity ([12,13] and [14,15]), where the unique determination of unknown
boundaries has been proved using a single boundary measurement. All these papers deal with equations or systems of
equations of the second order. The corresponding boundary value inverse problems for the fourth order operator describing
the statical equilibrium of a plate are less studied. In [16], for example, it was shown that, in general, a cavity in a plate is
uniquely determined by applying two linearly independent couple fields and by measuring at the boundary the corresponding
transversal displacement and its normal derivative. It is worth noticing that the inverse problem of determining an unknown
portion of the boundary ∂Ω of the plate and that of determining an unknown cavity inside the plate Ω are two variants
of the same problem. In fact, the equilibrium problem in presence of a cavity D is described by (1)–(5), with Γ = ∂Ω and
I = ∂ D . Therefore, the difference between the two cases is merely of topological character and in fact in proving Theorem
3.1 we take advantage of the fact that the regular boundaries of the plates share a common portion Γ . It remains an open
problem whether a cavity in a plate can be uniquely recovered by a single boundary measurement.

The article is organized as follows. In Section 2 we collect some notation. In Section 3 we provide the formulation of the
direct problems and we state our main results, namely Theorem 3.1 and Theorem 3.2. Section 4 contains the proofs of the
two theorems.
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2. Notation

We shall denote by Br(P ) the disk in R
2 of radius r and center P . Let {e1, e2, e3} be the canonical basis of R

3.

Definition 2.1 (Ck,α regularity). Let U be a bounded domain in R
2. Given k,α, with k ∈ N, 0 < α � 1, we say that a portion

S of ∂U is of class Ck,α if there exists ρ0 > 0 such that for any P ∈ S , there exists a rigid transformation of coordinates
under which we have P = 0 and

U ∩ Bρ0(0) = {
x = (x1, x2) ∈ Bρ0(0) | x2 > ψ(x1)

}
where ψ is a Ck,α function on (−ρ0,ρ0).

Given a bounded domain U in R
2 = span{e1, e2} such that ∂U is of class Ck,α , with k � 1, we consider as positive the

orientation of the boundary induced by the outer unit normal n in the following sense. Given a point P ∈ ∂U , let us denote
by τ = τ (P ) the unit tangent at the boundary in P obtained by applying to n a counterclockwise rotation of angle π

2 , that
is

τ = e3 × n (13)

where × denotes the vector product in R
3.

Given any connected component C of ∂U and fixed any point P0 ∈ C , let us consider an arclength parametrization
ϕ(s) = (x1(s), x2(s)), s ∈ [0, l(C)], such that ϕ(0) = P0 and ϕ′(s) = τ (ϕ(s)). Here l(C) denotes the length of C .

Throughout the article, we denote by w,α , w,s , and w,n the derivatives of a function w with respect to the xα variable,
α = 1,2, to the arclength s and to the normal direction n, respectively, and similarly for higher order derivatives.

We denote by M
2 the space of 2×2 real valued matrices and by L(X, Y ) the space of bounded linear operators between

Banach spaces X and Y .
For all 2 × 2 matrices A, B and for every L ∈ L(M2,M

2), we use the following notation:

(LA)αβ = Lαβγ δ Aγ δ (14)

A · B = Aαβ Bαβ (15)

|A| = (A · A)
1
2 (16)

Asym = 1

2

(
A + AT )

(17)

Notice that here and in the sequel, summation over repeated indexes is implied.
Finally, let us introduce the space of the affine functions on R

2

A = {
g(x1, x2) = ax1 + bx2 + c, a,b, c ∈ R

}
(18)

3. Formulation of the inverse problems and statement of the main results

Let us consider a thin plate Ω × [− h
2 , h

2 ] with middle surface represented by a simply connected bounded domain Ω in
R

2 and having uniform thickness h, h 	 diam(Ω). We assume that ∂Ω is of class C1,1.
Let the plate be made of nonhomogeneous linear elastic material with elasticity tensor C(x) ∈ L(M2,M

2) and let us
assume that body forces inside Ω × [− h

2 , h
2 ] are absent. We denote by M̂ a couple field acting on the boundary ∂Ω .

We shall assume throughout that the material of the plate is isotropic, that is the plate tensor P = h3

12 C is defined by

PA = B
[
(1 − ν)Asym + ν(tr A)I2

]
(19)

for every 2 × 2 matrix A, where I2 is the 2 × 2 identity matrix and tr(A) denotes the trace of the matrix A. The bending
stiffness (per unit length) of the plate is given by the function

B(x) = h3

12

(
E(x)

1 − ν2(x)

)
(20)

where the Young’s modulus E and the Poisson’s coefficient ν can be written in terms of the Lamé moduli λ, μ of the
material as follows

E(x) = μ(x)(2μ(x) + 3λ(x))
, ν(x) = λ(x)

(21)

μ(x) + λ(x) 2(μ(x) + λ(x))
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Working in the framework of the linear elasticity for infinitesimal deformations and under the assumptions of the Kirchhoff–
Love theory, the statical equilibrium problem of the plate is described by the following Neumann problem⎧⎪⎪⎨

⎪⎪⎩
Mαβ,αβ = 0, in Ω (22)

Mαβnαnβ = M̂n, on ∂Ω (23)

Mαβ,βnα + (Mαβnβτα),s = −(M̂τ ),s , on ∂Ω (24)

Here

Mαβ = Mαβ(w) = −Pαβγ δ w,γ δ , α,β, δ,γ = 1,2 (25)

where w(x1, x2) is the transversal displacement of the point x = (x1, x2) belonging to the middle surface Ω . Moreover,
following a standard convention in plate theory, the boundary couple field M̂ is represented in local coordinates as

M̂ = M̂τ n + M̂nτ , on ∂Ω (26)

where M̂τ = M̂ · n, M̂n = M̂ · τ denote respectively the twisting moment and the bending moment applied at the boundary.
Here, · denotes the scalar product in R

2.
Conditions (23), (24) express the local equilibrium conditions on the bending moment and on the transversal forces

acting on the boundary ∂Ω , respectively. For details about the mechanical meaning of the functions Mαβ , we refer to [17].
The plate tensor P is assumed to satisfy the following assumptions:
(I) Regularity

P ∈ C1,1(
R

2, L
(
M

2,M
2)) (27)

(II) Ellipticity (strong convexity) There exist positive constants α0, γ0 such that

μ(x) � α0 > 0, 2μ(x) + 3λ(x) � γ0 > 0, for every x ∈ R
2 (28)

It follows easily that

PA · A � h3

12
ξ0|A|2, in R

2 (29)

for every 2 × 2 symmetric matrix A, where ξ0 = min{2α0, γ0}.
Our first result, concerning the determination of unknown boundaries, will be based on the following assumptions on

the domain Ω . Let Γ , I be two closed, nonempty sub-arcs of the boundary ∂Ω such that

Γ ∪ I = ∂Ω, Γ ∩ I = {Q , R} (30)

where Q , R are two distinct points of ∂Ω . Here Γ represents the accessible portion of the boundary, whereas I represents
the inaccessible, unknown portion of the boundary to be determined.

On the assigned couple field M̂ let us require the following assumptions:

M̂ ∈ L2(Γ,R
2), (M̂n, M̂τ ,s) 
≡ 0 (31)∫

Γ

M̂α = 0, α = 1,2 (32)

supp(M̂) � Γ (33)

Conditions (32) express the global equilibrium of the plate in terms of the cartesian representation M̂ = M2e1 + M1e2 of
the boundary couple field.

In this case the statical equilibrium problem of the plate takes the following form⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Mαβ,αβ = 0, in Ω (34)

Mαβnαnβ = M̂n, on Γ (35)

Mαβ,βnα + (Mαβnβτα),s = −(M̂τ ),s , on Γ (36)

Mαβnαnβ = 0, on I (37)

Mαβ,βnα + (Mαβnβτα),s = 0, on I (38)

It is well known that under the above assumptions the Neumann problem (34)–(38) is solvable and that its weak solution
w ∈ H2(Ω) is determined up to the addition of an affine function, see [17, Proposition 3.4] for details.

Let us notice that the role of the second condition in (31) is to avoid that problem (34)–(38) admits affine solutions.
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Theorem 3.1 (Unique determination of unknown boundaries with one measurement). Let Ω1 , Ω2 be two simply connected bounded
domains in R

2 such that ∂Ωi , i = 1,2, are of class C4,1 . Let ∂Ωi = Ii ∪ Γ , i = 1,2, where Ii and Γ are the inaccessible and the
accessible parts of the boundaries ∂Ωi , respectively. Let us assume that Ω1 and Ω2 lie on the same side of Γ and that conditions (30)
are satisfied by both pairs {I1,Γ } and {I2,Γ }. Let the plate tensor P be given by (19), with Lamé moduli λ and μ of class C2,1(R2),
satisfying the strong convexity condition (28). Let M̂ ∈ L2(Γ,R

2) be a boundary couple field satisfying conditions (31), (33). Let
wi ∈ H2(Ωi) be a solution to the Neumann problem (34)–(38) in Ω = Ωi , i = 1,2. If

w1 = w2,
∂ w1

∂n
= ∂ w2

∂n
, on Γ (39)

then

Ω1 = Ω2 (40)

Let us consider now the inverse problem of determining an unknown rigid inclusion inside the plate by measuring the
transversal displacement and its normal derivative at the boundary ∂Ω of the plate.

Let D , D � Ω , be an open simply connected subset of Ω of class C1,1, representing a rigid inclusion inside Ω . On the
assigned couple field M̂ let us require the following assumptions:

M̂ ∈ H− 1
2
(
∂Ω,R

2), (M̂n, M̂τ ,s) 
≡ 0 (41)∫
∂Ω

M̂α = 0, α = 1,2 (42)

supp(M̂) � Γ (43)

where Γ is a nonempty open portion of ∂Ω .
In this case, the statical equilibrium problem of the plate takes the following form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mαβ,αβ = 0, in Ω \ D (44)

Mαβnαnβ = M̂n, on ∂Ω (45)

Mαβ,βnα + (Mαβnβτα),s = −(M̂τ ),s , on ∂Ω (46)

w|D ∈ A, (47)

∂ we

∂n
= ∂ wi

∂n
, on ∂ D (48)

coupled with the equilibrium conditions for the rigid inclusion D∫
∂ D

((
Mαβ,βnα + (Mαβnβτα),s

)
g − Mαβnαnβ g,n

) = 0, for every g ∈ A (49)

In (48), n denotes the unit outer normal to Ω \ D and we have defined we ≡ w|Ω\D and wi ≡ w|D . Notice that in (49)
Mαβ = Mαβ(we). More precisely, denoting

H2
D(Ω) = {

w ∈ H2(Ω)
∣∣ ∃h ∈ A s.t. w|D = h

}
(50)

a weak solution to problem (44)–(49) is a function w ∈ H2
D(Ω) satisfying∫

Ω

Mαβ(w)v,αβ =
∫

∂Ω

M̂τ ,s v + M̂n v,n , for every v ∈ H2
D(Ω) (51)

By standard variational arguments, it can be proven that problem (44)–(49) admits a weak solution which is determined up
to the addition of an affine function.

Theorem 3.2 (Unique determination of a rigid inclusion with one measurement). Let Ω be a simply connected domain in R
2 such

that ∂Ω is of class C1,1 and let Di , i = 1,2, be two simply connected domains compactly contained in Ω , such that ∂ Di is of class
C3,1 , i = 1,2. Moreover, let Γ be a nonempty open portion of ∂Ω , of class C3,1 . Let the plate tensor P be given by (19), with Lamé

moduli λ and μ of class C1,1(Ω), and satisfying the strong convexity condition (28). Let M̂ ∈ H− 1
2 (∂Ω,R

2) be a boundary couple
field satisfying (41)–(43). Let wi , i = 1,2, be solutions to the mixed problem (44)–(49), with D = Di .
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Fig. 1. The connected component F of Ω2 \ G .

If

w1 = w2,
∂ w1

∂n
= ∂ w2

∂n
, on Γ (52)

then

D1 = D2 (53)

Remark 1. Let us notice that the weak unique continuation of the solutions to the plate equation holds under C1,1— reg-
ularity of the Lamé moduli λ, μ (see [16, Proposition 2 and Remark 1]). The stronger regularity assumptions made in
Theorem 3.1 have been introduced to give a classical meaning to the Neumann boundary conditions, as required by the
arguments of the proof.

4. Proof of Theorems 3.1 and 3.2

4.1. Proof of Theorem 3.1

Let us choose P0 ∈ Γ \ {Q , R} and let ϕi(s) be the arclength parametrization of ∂Ωi such that ϕi(0) = P0, ϕ′
i (s) =

τ (ϕi(s)), for i = 1,2. We may assume that Q = ϕi(s′
i), R = ϕi(s′′

i ), with s′
i < s′′

i .

By the regularity assumptions on the boundaries ∂Ωi and on the Lamé moduli λ, μ, and since supp(M̂) � Γ , there exists
a neighborhood Ui of Ii in Ω i such that wi ∈ H5(Ui), for i = 1,2, see for details [16, Proposition 1]. By Sobolev embedding
theorems (see for instance [18]), it follows that

wi ∈ C3(Ui) for i = 1,2 (54)

and therefore the homogeneous boundary conditions (34)–(38) are satisfied in the classical sense on I i , i = 1,2.
Let G be the connected component of Ω1 ∩ Ω2 such that Γ ⊂ ∂G .
Let us prove, for instance, that Ω2 ⊂ Ω1. We have that

Ω2 \ Ω1 ⊂ Ω2 \ G (55)

so that, if we prove that Ω2 \ G = ∅ then Ω2 ⊂ Ω1 and, by the regularity of Ω1, it follows that Ω2 ⊂ Ω1.
Let us assume, by contradiction, that there exists a nonempty connected component F of Ω2 \ G , see Fig. 1.
By the definition of G and F , it follows that

(∂Ω1 ∩ ∂ F ) \ ∂G ⊂ ∂Ω2 ∩ ∂ F (56)

so that

∂Ω1 ∩ ∂ F = (∂Ω1 ∩ ∂ F ∩ ∂G) ∪ (
(∂Ω1 ∩ ∂ F ) \ ∂G

) ⊂ (∂Ω1 ∩ ∂ F ∩ ∂G) ∪ (∂Ω2 ∩ ∂ F ) (57)

∂ F = (∂Ω2 ∩ ∂ F ) ∪ (∂Ω1 ∩ ∂ F ) ⊂ (∂Ω2 ∩ ∂ F ) ∪ (∂Ω1 ∩ ∂ F ∩ ∂G) (58)



456 A. Morassi, E. Rosset / C. R. Mecanique 338 (2010) 450–460
Let us define

Σ2 = ∂ F ∩ ∂Ω2 (59)

Σ1 = ∂ F \ Σ2 ⊂ ∂Ω1 ∩ ∂G (60)

We have

∂ F = Σ1 ∪ Σ2 (61)

Σ1 ∩ Σ2 = ∅ (62)

∂ F ∩ (
Γ \ {Q , R}) = ∅ (63)

By (63) and since Σ2 is closed in ∂Ω2, any (nonempty) connected component of Σ2 is either a single point or a closed
subarc of ∂Ω2 having distinct endpoints.

By (63) and since Σ1 is open in ∂Ω1, any (nonempty) connected component of Σ1 is an open subarc of ∂Ω1 having
distinct endpoints P1, P2 belonging to Σ2.

Claim. Σ1 consists of a single open arc γ with distinct endpoints P1 , P2 ∈ Σ2 and Σ2 consists of a single closed arc τ with the same
endpoints P1 and P2 .

Proof of the Claim. First, let us notice that Σ1 
= ∅. In fact, otherwise, ∂ F = Σ2 ⊂ ∂Ω2, so that ∂ F = ∂Ω2 contradicting (63).
Let γ be a connected component of Σ1, with distinct endpoints P1, P2 ∈ Σ2, and let τ be the closed sub-arc of ∂Ω2,

having endpoints P1 and P2, which does not intersect Γ \{Q , R}. By (62), γ ∩τ ⊂ Σ1 ∩∂Ω2 = Σ1 ∩∂ F ∩∂Ω2 = Σ1 ∩Σ2 = ∅,
so that γ ∪ τ is the boundary of a bounded domain which we denote by H . If we prove that F = H then the Claim follows.

The domain G does not intersect ∂ H = γ ∪ τ ⊂ ∂Ω1 ∪ ∂Ω2 and therefore either G ⊂ H or G ⊂ Ω2 \ H . Let us see that
the latter case occurs.

By contradiction, let us assume that G ⊂ H . In this case we have that Γ ⊂ G ⊂ H . On the other hand, (Γ \ {Q , R}) ∩ γ ⊂
(Γ \ {Q , R}) ∩ ∂ F = ∅. Similarly, by the choice of τ , (Γ \ {Q , R}) ∩ τ = ∅. It follows that Γ \ {Q , R} ⊂ H .

The open sub-arc of ∂Ω2 σ = ∂Ω2 \ τ is a connected set which does not intersect ∂ H = γ ∪ τ , since γ ∩ ∂Ω2 = ∅.
Therefore, since σ ⊃ Γ \ {Q , R}, we have that σ ⊂ H .

It follows that Ω2 ⊂ H ∪ τ . Hence, given any point P ∈ γ , we have that d(P ,Ω2) > 0, contradicting γ ⊂ ∂G ⊂ Ω2. We
have thus proved that G ⊂ Ω2 \ H .

Therefore, given S ∈ γ , since γ ⊂ ∂G ∩ ∂Ω1, by the definition of G and by the regularity of ∂Ω1, it follows that there
exists ρ > 0 such that Bρ(S) \ H ⊂ G . On the other hand, since γ ⊂ ∂ F , F ∩ Bρ(S) 
= ∅ so that, being F ∩ G = ∅ by definition
of F , Bρ(S) ∩ F ∩ H 
= ∅. Now, F ∩ ∂ H = F ∩ (τ ∪ γ ) ⊂ F ∩ ∂ F = ∅ and, by the connectedness of F , we have that F ⊂ H .

If Σ1 had another connected component, say γ ′ , then γ ′ would be an open arc contained in H . Given T ∈ γ ′ ⊂ H , there
would exist a neighborhood V of T contained in H and therefore, since T ∈ ∂G , H ∩ G ⊃ V ∩ G 
= ∅, contradicting G ∩ H = ∅.

Hence Σ1 = γ and therefore Σ2 = τ and F = H . The proof of the Claim is complete. �
Let ν be the outer unit normal to F , defined on γ ∪ τ \ {P1, P2}, and let us denote by ni and τ i the normal and tangent

vectors to ∂Ωi , i = 1,2. Since F ⊂ Ω2, we have that ν = n2 on τ \{P1, P2}. Since γ ⊂ ∂G ∩∂Ω1, and recalling that F ∩ G = ∅,
for every P ∈ γ , there exists a neighborhood U of P such that (U \ F ) ∩ G 
= ∅ and, since G ⊂ Ω1 and by the regularity
of Ω1, (U \ F ) ⊂ Ω1. It follows that ν = −n1 on γ .

To fix ideas, let us assume that P2 follows P1 along γ according to the positive orientation of ∂Ω1; since ν = −n1 on γ
and ν = n2 on τ \ {P1, P2}, also P2 follows P1 along τ according to the positive orientation of ∂Ω2. Let s1, s2 ∈ R, s1 < s2
such that P1 = ϕ1(s1), P2 = ϕ1(s2).

The function w = w1 − w2 satisfies the following Cauchy problem:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Mαβ,αβ(w) = 0, in G (64)

w = 0, on Γ (65)

∂ w

∂n
= 0, on Γ (66)

Mαβ(w)nαnβ = 0, on Γ (67)

Mαβ,β(w)nα + (
Mαβ(w)nατβ

)
,s = 0, on Γ (68)

From the uniqueness of the solution to the Cauchy problem (64)–(68) (see, for instance, [16, Proposition 3]) and from
the weak unique continuation property (see, for instance, [16, Proposition 2 and Remark 1]), we have that w ≡ 0 in G , that
is

w1 ≡ w2, in G (69)
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By (54), wi coincide with all their derivatives up to the third order in G . Let us first apply integration by parts to the
equation Mαβ,αβ (w2) = 0 in F . By using (69) and (38) we obtain

0 =
∫
F

Mαβ,αβ(w2) =
∫
∂ F

Mαβ,β (w2)να

= −
∫
γ

Mαβ,β(w1)n
1
α +

∫
τ

Mαβ,β(w2)n
2
α =

∫
γ

(
Mαβ(w1)n

1
βτ 1

α

)
,s −

∫
τ

(
Mαβ(w2)n

2
βτ 2

α

)
,s

= (
Mαβ(w1)n

1
βτ 1

α

)
(P2) − (

Mαβ(w1)n
1
βτ 1

α

)
(P1) + (

Mαβ(w2)n
2
βτ 2

α

)
(P1) − (

Mαβ(w2)n
2
βτ 2

α

)
(P2) (70)

so that(
M(w2)n

1 · τ 1)(P2) − (
M(w2)n

2 · τ 2)(P2) = (
M(w2)n

1 · τ 1)(P1) − (
M(w2)n

2 · τ 2)(P1) := K (71)

where M is the 2 × 2 matrix of entries Mαβ given by (25).
Now, let us apply integration by parts to the equation Mαβ,αβ (w2)w2 = 0 in F , obtaining

0 =
∫
F

Mαβ,αβ(w2)w2 =
∫
F

Mαβ(w2)w2,αβ +
∫
∂ F

Mαβ,β(w2)να w2 −
∫
∂ F

Mαβ(w2)νβ w2,α

:=
∫
F

Mαβ(w2)w2,αβ +I1 − I2 (72)

Recalling (34)–(38) and by using the following relations, which hold for any function u ∈ C1(Ωi),

u,α = ni
αu,n +τ i

αu,s , on ∂Ωi, α = 1,2 (73)

we can compute

I1 = −
∫
γ

Mαβ,β(w1)n
1
α w1 +

∫
τ

Mαβ,β(w2)n
2
α w2 =

∫
γ

(
Mαβ(w1)n

1
βτ 1

α

)
,s w1 −

∫
τ

(
Mαβ(w2)n

2
βτ 2

α

)
,s w2 (74)

I2 = −
∫
γ

Mαβ(w1)n
1
β w1,α +

∫
τ

Mαβ(w2)n
2
β w2,α

= −
∫
γ

(
Mαβ(w1)n

1
βn1

α

)
w1,n −

∫
γ

(
Mαβ(w1)n

1
βτ 1

α

)
w1,s +

∫
τ

(
Mαβ(w2)n

2
βn2

α

)
w2,n +

∫
τ

(
Mαβ(w2)n

2
βτ 2

α

)
w2,s

= −
∫
γ

(
Mαβ(w1)n

1
βτ 1

α

)
w1,s +

∫
τ

(
Mαβ(w2)n

2
βτ 2

α

)
w2,s (75)

I1 − I2 =
∫
γ

(
Mαβ(w1)n

1
βτ 1

α w1
)
,s −

∫
τ

(
Mαβ(w2)n

2
βτ 2

α w2
)
,s

= (
M(w1)n

1 · τ 1)(P2)w1(P2) − (
M(w1)n

1 · τ 1)(P1)w1(P1)

+ (
M(w2)n

2 · τ 2)(P1)w2(P1) − (
M(w2)n

2 · τ 2)(P2)w2(P2) (76)

By (71), (72) and (76) and recalling that the solutions wi coincide with all their derivatives up to the third order at P1
and P2, we have∫

F

Mαβ(w2)w2,αβ = I2 − I1 = K
(

w1(P1) − w1(P2)
)

(77)

If K = 0, then

0 = I1 − I2 = −
∫
F

Mαβ(w2)w2,αβ � h3

12
ξ0

∫
F

∣∣∇2 w2
∣∣2

(78)

and, F being a nonempty open set, w2 coincides with an affine function h in F . By the weak unique continuation property,
w2 ≡ h in Ω2, contradicting the choice of the nontrivial Neumann data M̂ on Γ , see (31). Therefore, if K = 0, we have
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Fig. 2. The connected component F ′ of Ω1 \ G .

a contradiction, that is F = ∅, and the thesis is proved. It is to notice that, by (71), K = 0 certainly holds when ∂Ω1
and ∂Ω2 are tangent either at P1 or at P2. Hence it remains to consider the case when K 
= 0, which implies that ∂Ω1
and ∂Ω2 are tangent neither at P1 nor at P2. In this case, P2 is an isolated point of ∂Ω1 ∩ ∂Ω2 and therefore, by the
regularity of ∂Ωi , i = 1,2, there exists ρ > 0 such that Bρ(P2) \ (∂Ω1 ∪ ∂Ω2) = D1 ∪ D2 ∪ D3 ∪ D4, where D1 = F ∩ Bρ(P2),
D2 = (Ω1 \ Ω2) ∩ Bρ(P2), D3 = Ω1 ∩ Ω2 ∩ Bρ(P2) = G ∩ Bρ(P2), D4 = Bρ(P2) \ (Ω1 ∪ Ω2). Starting from Ω1 \ Ω2 ⊂ Ω1 \ G ,
and by performing the symmetric construction reversing the roles of Ω1 and Ω2, it is clear that there exists a connected
component F ′ of Ω1 \ G such that D2 ⊂ F ′ , see Fig. 2. Similarly, ∂ F ′ = γ ′ ∪ τ ′ , where τ ′ is an open sub-arc of ∂Ω2 ∩ ∂G and
γ ′ is a closed sub-arc of ∂Ω1 having the same endpoints P2, P3 ∈ γ ′ , with P3 = ϕ1(s3), for some s3 > s2.

By performing similar integration by parts for the equation Mαβ,αβ(w1) = 0 in F ′ , we have(
M(w2)n

1 · τ 1)(P3) − (
M(w2)n

2 · τ 2)(P3) = (
M(w2)n

1 · τ 1)(P2) − (
M(w2)n

2 · τ 2)(P2) = K (79)

Since we are assuming that K 
= 0, we have again that ∂Ω1 and ∂Ω2 are not tangent at P3 and we can repeat the above
arguments, constructing an increasing sequence sn , such that Pn = ϕ1(sn) ∈ ∂Ω1 ∩ ∂Ω2 and(

M(w2)n
1 · τ 1)(Pn) − (

M(w2)n
2 · τ 2)(Pn) = K (80)

The sequence sn is bounded above by s′′
1, where we recall that R = ϕ1(s′′

1), since (Ω2 \ G) ∩ Γ = ∅ and (Ω1 \ G) ∩ Γ = ∅.
Therefore sn converges to some s and Pn converges to P = ϕ1(s) ∈ ∂Ω1 ∩ ∂Ω2. Thus P is a cluster point for ∂Ω1 ∩ ∂Ω2, so
that ∂Ω1 and ∂Ω2 are tangent at P , implying that(

M(w2)n
1 · τ 1)(P ) − (

M(w2)n
2 · τ 2)(P ) = 0 (81)

On the other hand, by the regularity of the solutions and of the boundaries, we have that

K = lim
n→∞ K = lim

n→∞
(
M(w2)n

1 · τ 1)(Pn) − (
M(w2)n

2 · τ 2)(Pn)

= (
M(w2)n

1 · τ 1)(P ) − (
M(w2)n

2 · τ 2)(P ) = 0 (82)

obtaining a contradiction and concluding the proof of the theorem.

4.2. Proof of Theorem 3.2

Let G be the connected component of Ω \ (D1 ∪ D2) such that Γ ⊂ ∂G . For i = 1,2, let hi ∈ A be such that wi |Di
= hi ,

and let us set vi = wi − hi . Hence vi ≡ 0 in Di and, by (48),
∂ve

i
∂ν = 0 on ∂ Di . Let us notice that, since vi satisfies homo-

geneous Dirichlet conditions on the C3,1 boundary ∂ Di , by regularity results we have that vi ∈ H4(Ω̃ \ Di), for every Ω̃ ,
Di � Ω̃ � Ω , i = 1,2 (see, for example, [19]). By Sobolev embedding theorems (see, for instance, [18]), we have that vi
and ∇vi are continuous up to ∂ Di , i = 1,2. Therefore

vi ≡ 0, ∇ve ≡ 0, on ∂ Di (83)
i
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Let us set h = h2 − h1, h(x) = ax1 + bx2 + c. Then we have that the function w = v1 − v2 − h satisfies the following Cauchy
problem⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Mαβ,αβ = 0, in G (84)

w = 0, on Γ (85)

∂ w

∂n
= 0, on Γ (86)

Mαβ(w)nαnβ = 0, on Γ (87)

Mαβ,β(w)nα + (
Mαβ(w)nατβ

)
,s = 0, on Γ (88)

From the uniqueness of the solution to the Cauchy problem (84)–(88) (see, for instance, Proposition 3 in [16]) and from the
weak unique continuation property (see, for example, Proposition 2 and Remark 1 in [16]), we have that

w ≡ 0, in G (89)

Let us prove for instance that D2 ⊂ D1. We have that

D2 \ D1 ⊂ Ω \ (D1 ∪ G) (90)

∂
(
Ω \ (D1 ∪ G)

) = Σ1 ∪ Σ2 (91)

where Σ2 = ∂ D2 ∩ ∂G and Σ1 = ∂(Ω \ (D1 ∪ G)) \ Σ2 ⊂ ∂ D1.
We can distinguish the following two cases:

(i) ∂ D1 ∩ Σ2 
= ∅;
(ii) ∂ D1 ∩ Σ2 = ∅.

If (i) holds, then there exists P0 ∈ ∂ D1 ∩ Σ2. Then, by (83) and (89), h(P0) = 0. Moreover, given a sequence of points
Pn ∈ G converging to P0, again by (83) and (89), we have that

0 = ∇w(Pn) = ∇v1(Pn) − ∇v2(Pn) − (a,b) (92)

0 = lim
n→∞∇w(Pn) = ∇ve

1(P0) − ∇ve
2(P0) − (a,b) = −(a,b) (93)

that is h ≡ c, but h(P0) = 0, so that h ≡ 0, that is v1 ≡ v2 in G .
Integrating by parts the equation Mαβ,αβ(v1)v1 = 0 in Ω \ (D1 ∪ G) we obtain

−
∫

Ω\(D1∪G)

Mαβ(v1)v1,αβ =
∫

∂(Ω\(D1∪G))

Mαβ,β (v1)να v1 −
∫

∂(Ω\(D1∪G))

Mαβ(v1)νβ v1,α (94)

where ν denotes the outer unit normal to Ω \ (D1 ∪ G). Let us notice that ν = n1 on Σ1 and ν = −n2 on Σ2. By (91)
and (83), and using the fact that v1 = v2, ∇v1 = ∇v2 in Σ2, we have

0 = −
∫

Ω\(D1∪G)

Mαβ(v1)v1,αβ � h3

12
ξ0

∫
D2\D1

∣∣∇2 v1
∣∣2

(95)

where ξ0 > 0 is the ellipticity constant appearing in (29). If the open set D2 \ D1 were nonempty then, by the weak unique
continuation principle, w1 coincides with an affine function in Ω \ D1, contradicting the choice of the nontrivial Neumann
data M̂ on ∂Ω . Therefore, D2 ⊂ D1 and, since D2 is open and by the regularity of ∂ D1, it follows that D2 ⊂ D1.

In case ii), it is easy to see that either D1 ∩ D2 = ∅ or D1 ⊂ D2. Let us consider in detail the first situation, the second
being similar. If D1 ∩ D2 = ∅ then, integrating by parts the equation Mαβ,αβ (v1)v1 = 0 in D2, we obtain

−
∫
D2

Mαβ(v1)v1,αβ = −
∫

∂ D2

Mαβ,β(v1)nα v1 +
∫

∂ D2

Mαβ(v1)nβ v1,α (96)

By using the relations (73) for Ωi = Ω \ Di and by the regularity of ∂ D2, Eq. (96) can be rewritten as follows

−
∫
D2

Mαβ(v1)v1,αβ = −
∫

∂ D2

(
Mαβ,β(v1)nα v1 − Mαβ(v1)nβτα v1,s

) +
∫

∂ D2

Mαβ(v1)nαnβ v1,n

= −
∫ (

Mαβ,β(v1)nα + (
Mαβ(v1)nβτα

)
,s

)
v1 +

∫
Mαβ(v1)nαnβ v1,n (97)
∂ D2 ∂ D2
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By using Eq. (49) with g = h ∈ A, by (97) and recalling that v2 = v1 − h = 0, v2,n = v1,n − h,n = 0 on ∂ D2, we have

−
∫
D2

Mαβ(v1)v1,αβ = −
∫

∂ D2

(
Mαβ,β(v1)nα + (

Mαβ(v1)nβτα

)
,s

)
(v1 − h) +

∫
∂ D2

Mαβ(v1)nαnβ(v1,n − h,n )

= 0 (98)

As seen for case (i), we have that v1 coincides with an affine function h in D2. If D2 is nonempty then, by the weak unique
continuation property, v1 ≡ h in Ω \ D1, contradicting the choice of the nontrivial Neumann data M̂ on ∂Ω . Therefore
D2 = ∅. Similarly, one can prove that D1 = ∅ and therefore D1 = D2.
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