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Elasticity imaging is a novel domain which is currently gaining significant interest in
the medical field. Most inversion techniques are based on the homogeneity assumption,
i.e. the local spatial derivatives of the complex-shear modulus are ignored. This analysis
presents an analytic approach in order to overcome this limitation, i.e. first order spatial
derivatives of the real-part of the complex-shear modulus are taken into account. Resulting
distributions in a gauged breast lesion phantom agree very well with the theoretical
expectations. An in-vivo example of a cholangiocarcinoma demonstrates that the new
approach provides maps of the viscoelastic properties which agree much better with
expectations from anatomy.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Tissue mechanics is clearly altered due to pathological changes. Therefore, manual palpation has been used for millennia
in the diagnostic process for many diseases. Manual palpation is nowadays an integral part in the domains of, for instance,
breast cancer, prostate cancer and liver fibrosis. When discussing the notion of tissue elasticity, it is important to specify
which physical parameter exactly is measured: tissue consists of approximately 70% of water. Since water is mechanically
incompressible, the compressional modulus λ is consequently not well suited to identify any structural change of tissue.
On the other hand, water can easily be sheared. Therefore the shear modulus Gd of tissue is well suited to reveal subtle
changes in its structural integrity. This has been shown for instance for liver fibrosis, where shear modulus imaging has
demonstrated the ability to assess non-invasively the grade of fibrosis [1–3]. Initial clinical results on larger patient groups
also show great potential for breast cancer characterization [4–6], and first results also indicate that neuro-degenerative
diseases like Alzheimer or Multiple Sclerosis lead to changes in brain tissue mechanics [7–9].

Elasticity imaging relies on the fact that the propagation properties of a mechanical wave are determined by the un-
derlying mechanical tissue properties. A given mechanical wave at a certain frequency will travel faster in a stiff material
and slower in a soft material. Using motion sensitive imaging techniques like MRI or Ultrasound, it is possible to follow the
propagation of the wave non-invasively inside the patient. The “art” of elasticity imaging is hence to properly convert the
local displacement information into mechanical properties, i.e. to calculate the complex-valued and frequency dependent
shear modulus G∗(ω) = Gd(ω) + iGl(ω), with the imaginary part Gl accounting for loss effects. Most approaches use the
so-called homogeneity approximation: here it is assumed that the spatial derivatives of G∗ are negligible in the vicinity of
the spatial point where G∗ shall be calculated, i.e. it is assumed that the complex-shear modulus is locally constant [10–12].
As will be shown later, this assumption simplifies greatly the inverse problem, but certainly leads to biases at edges. The
aim of this analysis is to present a novel approach in order to take first order spatial derivatives of the real-part of G∗ into
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account. After the analytic part, results from 3D MR-elasticity imaging are presented for a gauged phantom and afterwards
in-vivo results from a liver tumour.

2. Theory

The propagation of a monochromatic mechanical wave in a linear isotropic viscoelastic material is given by

−ρω2ui︸ ︷︷ ︸
force-term

= ∂xk

(
G∗∂xk ui

)
︸ ︷︷ ︸

shear-term

+ ∂xi

([
λ + G∗]∂xk uk

)
︸ ︷︷ ︸

mixing/compressional-term

(1)

with ρ the density of the material, ω the circular frequency, ui the i’s component of the 3D displacement vector �u, λ the
compressional modulus and Einstein convention assumed for identical indices. Since we intend to apply this equation to
tissue and use vibration frequencies of the order of 100 Hz, it is important to keep several physical conditions in mind:

1. Tissue is almost incompressible. Thus, λ is of the order of GPa which leads to a speed of sound of approximately 1550
m/s in tissue almost independent of the frequency [13];

2. Shear waves are slow (1–10 m/s) which cause G∗ to be of the order of kPa, i.e. 6 orders of magnitude smaller than λ;
3. The term ∂xk uk represents the relative volume change and is consequently of very small magnitude in tissue [14];
4. Longitudinal waves are not attenuated when operating at frequencies of the order of 100 Hz [13]. Therefore λ is real-

valued. Contrarily, shear waves are attenuated in this frequency range and G∗ is complex-valued.

The small magnitude of the ∂xk uk-term often leads to the wrong assumption that it might be possible to simply ignore
the entire second term on the right-hand side of Eq. (1). This is however not correct. As can be seen in [15], when consider-
ing the limit of an incompressible material (i.e. the Poissons ratio σ approaches 0.5), the small magnitude of the ∂xk uk-term
is balanced by the large magnitude of the compressional modulus (which approaches infinity in case of incompressibility)
leading to a so-called pressure term, i.e.

p = λ∂xk uk (2)

which is non-zero even when assuming the material to be incompressible. Below, it will be shown how to calculate this
pressure term.

Normally, the spatial derivatives of the material properties are ignored which lead to the following simplified equation:

−ρω2ui = G∗∇2ui + ∂xi p (3)

In order to eliminate the unknown pressure component, we apply the curl operator εrsi∂xs to both sides of Eq. (3) leading
to a simple Helmholtz-type equation

−ρω2qr = G∗∇2qr, qr = εrsi∂xs ui (4)

which can be solved analytically at each point within the imaging volume because the curl of the displacement vector �u can
be calculated, for the density ρ a value corresponding to water is assumed and the vibration frequency ω is known from
the experimental conditions. This way, the complex-shear modulus G∗ can be calculated independently from any rheological
model [16]. Its frequency dependence can be obtained by repeating the monochromatic experiment at different frequencies.
In order to estimate the pressure term and prove its importance, it is now possible (once G∗ has been calculated via Eq. (4))
to return to Eq. (3) and solve for the gradient-pressure-term, i.e.

∂xi pi = −ρω2ui − G∗∇2ui (5)

and recover the spatial distribution of p(�x) via integration. This distribution is lacking the DC value for the pressure p0 but
will clearly demonstrate the fact that the distribution of p(�x) is non-zero in tissue.

Solving Eq. (4) will certainly lead to biases in areas where the spatial derivatives of G∗ are not negligible. Since Eq. (1)
contains only first order derivatives of the viscoelastic material properties, we will consider only the linear derivatives of the
real-part of G∗ , i.e. we assume that G∗ = Gd0 + αp xp + iGl0 with αp local constants describing the spatial variation of Gd .
Thus, when applying the curl operator to Eq. (1) we obtain the following equation:

−ρω2qr = (
εrsi∂xs∂xk G∗)

︸ ︷︷ ︸
�1

(∂xk ui) + (
∂xk G∗)(∂xk qr) + (

εrsi∂xs G∗)∇2ui + G∗∇2qr

+ (
εrsi∂xs∂xi

[
λ + G∗])

︸ ︷︷ ︸
∼1

(∂xk uk)︸ ︷︷ ︸
�1

+ (
∂xi

[
λ + G∗])

︸ ︷︷ ︸
∼1

(εrsi∂xs∂xk uk)︸ ︷︷ ︸
�1

+ (
εrsi∂xs

[
λ + G∗])

︸ ︷︷ ︸
(∂xi ∂xk uk)︸ ︷︷ ︸+ [

λ + G∗]
︸ ︷︷ ︸

(εrsi∂xs∂xi ∂xk uk)︸ ︷︷ ︸ (6)
∼1 �1 �1 ≡0
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Obviously, most terms vanish either

• due to the restrictions that only linear terms for the spatial variation of Gd are considered,
• due to the small magnitude of the ∂xk uk-term not being balanced by a term of large magnitude, or
• due to the fact that the curl of a grad-div-term is identical to zero.

Eq. (6) can thereby be written as:

−ρω2qr = αk(∂xk qr) + (εrsiαs)∇2ui + (Gd0 + iGl0)∇2qr (7)

which can be solved locally because qr is complex-valued. Thus, there are in total 6 equations and 5 unknowns, i.e. Gd0,
Gl0, αi . It could and would certainly desirable to also solve for the spatial derivatives of the imaginary part of G∗ . With
single frequency data this is, however, not possible using a local ansatz for the inversion.

3. Material and methods

MR-elastography was used for the acquisition of the 3D volumetric displacement data. The details of this method are
described elsewhere [10]. Briefly, MR-elastography yields, within a volume of the object, the amplitude and the phase of
the 3D displacement field generated by a steady-state monochromatic vibrational source. For the phantom experiments, a
gauged breast lesion phantom was used with an isotropic image resolution of 2 mm3 and 200 Hz of vibration frequency
[17]. In-vivo liver results were obtained from a selected patient who was diagnosed having a cholangiocarcinoma. Here,
image resolution is 4 mm3 and the vibration frequency is 50 Hz. The transducer producing the mechanical vibrations was
placed one the right side of the patient pressing against the rib cage. It was driven in longitudinal mode, i.e. the vibrating
piston pushed against the ribs.

4. Results

Figs. 1A–H show the results obtained in the breast lesion phantom. The phantom consists of an outer softer layer and
an inner stiffer layer (Fig. 1A). In addition, two circular, yet stiffer, lesions are present in the selected slice (red and green
circles). The corresponding images of Gd and Gl as obtained from the simple Eq. (4) are shown in Figs. 1B, C. The different
compartments of the phantom are well visible and the obtained values for G∗ agree with the expected values [18]. As
mentioned before, this inversion does not take any local changes of the complex-shear modulus into account but assumes
local homogeneity. When using instead Eq. (7) for the local inversion, interestingly we obtain similar maps for Gd0 and Gl0
(Figs. 1D, E) as previously for G∗ when using Eq. (4). The corresponding images of αx , αy , αz (Figs. 1F–H) clearly show
the areas of spatially changing shear modulus (see Fig. 1A). In homogeneous regions of the phantom αi ≈ 0 is registered as
expected from theory. Steep changes of up to 1 kPa/mm are visible at material boundaries with the correct signs for the
αi ’s. When for instance regarding Fig. 1F and moving from left to right (i.e. towards the positive x-direction), we register

• at entry from outer layer into the inner layer αx > 0,
• at entry into the first lesion αx > 0,
• at exit from the first lesion αx < 0,
• at entry into the second lesion αx > 0,
• at exit from the second lesion αx < 0, and
• at exit from the inner layer into the outer layer αx < 0.

Similar effects are seen for αy as well as for αz . αz is particularly interesting, because the left lesion is actually growing
towards positive z-direction (hence αz > 0) while the right lesion is shrinking towards positive z-direction (hence αz < 0)

since their positions are not symmetric with respect to the selected imaging plane.
Figs. 2A–I show the corresponding results as obtained for an in-vivo liver cancer case. The case consists of a large

cholangiocarcinoma located within the red ROI (Fig. 1A) which has an outer strongly enhancing ring-like zone and a fi-
brotic/partially necrotic center (green ROI). This inner structure of the tumour becomes apparent when analyzing at the
relative contrast agent (CA) enhancement pattern of the lesion (Fig. 2B). CA enhancement of the outer zone is about 100%
after 5 min of bolus injection (relative to the native image before CA injection) while the central zone enhances only
about 60%. Fibrotic/necrotic tissue is expected to be stiff and viscous. This, however, is not well visible when consider-
ing the images produced via utilization of Eq. (4), i.e. the equation assuming local homogeneity. The fibrotic core appears
only shallowly stiff and little viscous (Figs. 2C, D). This changes dramatically when using Eq. (7) for the calculation of the
complex-shear modulus. Now, the core of the lesion appears very stiff (Fig. 2E) and very viscous (Fig. 2F). The corresponding
images of the spatial derivatives of Gd(�x) reveal the rather complex inner architecture of the lesion with strong spatial gra-
dients present around the central zone (mind that the y-direction is flipped compared to Fig. 1). It is important to realize
that the maps of G∗ as obtained with Eq. (4) (Figs. 2C, D) yield very similar results outside the lesion when compared to
the maps obtained for G∗ using Eq. (7). This is an important check for the validity of Eq. (7).
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Fig. 1. Phantom results. A: MR-magnitude image depicting the different compartments of the phantom. B, C: Gd and Gl as calculated from Eq. (4). D, E: Gd0
and Gl0 as calculated from Eq. (7). F, G, H: spatial derivatives of the real-part of G∗ . All values are in units of kPa.

Finally, we present in Fig. 3 the magnitude distribution of the complex-valued pressure p(x⇀) for the in-vivo case as
obtained from Eq. (5). Mind that the DC is missing. The distribution reveals a spatially dependent pressure field with a
maximum close to the position of the transducer (upper left region in Fig. 3). There, peak values of about 0.16 kPa are
registered. This example clearly demonstrates that the assumption of a constant pressure distribution is not valid and that
the spatial dependence of this field can be very complex.

5. Discussion and conclusions

Elasticity imaging is a novel emerging field which attracts currently a lot of interest in the medical community. Intuitively
it is obvious that mechanical parameters carry a large potential for the identification and characterization of pathological
changes in tissue. Initial clinical studies in the domains of liver, breast and brain clearly demonstrate the enormous potential
behind this technique.

In order to measure viscoelastic properties of tissue, it is necessary to send a mechanical wave into the object and
measure the propagation properties of the wave. Utilization of Eq. (1) allows then to reconstruct images of the complex-
valued shear modulus G∗ . As always, there are different approaches in order to do so: the direct approach by simply solving
locally Eq. (1) [10] or the indirect approach via for instance FEM methods [19]. In this analysis we followed the direct
approach in order to high-light the important physical constraints. The fundamental difficulty faced within tissue is the
large difference in magnitude between the shear modulus and the compressional modulus which has its origin in the fact
that tissue is almost incompressible. Hence, the ∂xk uk-term (relative volume change) in Eq. (1) is of very small magnitude
and cannot be calculated from the data obtained via MR-elastography due to SNR and image resolution limitations. Thus,
solving this equation by using the measured displacement data is simply not possible. Forward FEM simulations also face
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Fig. 2. In-vivo results. A: MR-magnitude image of the abdomen showing the liver with the lesion (red ROI). B: relative enhancement pattern of contrast
agent after 5 min of bolus injection in percent. C, D: Gd and Gl as calculated from Eq. (4). E, F: Gd0 and Gl0 as calculated from Eq. (7). G, H, I: spatial
derivatives of the real-part of G∗ . All values are in units of kPa.

Fig. 3. Magnitude distribution of the complex-valued pressure distribution for the in-vivo case as calculated from Eq. (5) in units of kPa. The location of the
mechanical transducer is indicated by the blue rectangle in the upper left corner. The black double-arrow shows the direction of vibration.
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severe issues of stability once using correct values for the speed of the compressional wave (1550 m/s compared to 1–
10 m/s for the shear wave). As clearly shown in Fig. 3, the pressure term arising from the combination of the compressional
modulus λ and the ∂xk uk-term is not negligible and contributes by up to 10% to the shear modulus (mind that the DC is
not known here, so the true contribution can only become larger). In order to overcome this dilemma, utilization of the
curl operator has been proposed [16]. This introduces another spatial derivative which requires data of sufficiently high SNR
fortunately provided by MR-elastography. Other methods have also been proposed like for instance low-pass filters [20].
Here, we want to follow a physically motivated approach in order to clearly identify the consequences of trying to suppress
contributions from the compressional wave. Different approaches can now be followed when applying the curl operator
to Eq. (1): neglecting the spatial derivatives of the material distribution (leading to Eq. (4)) or taking them into account
(leading to Eq. (7)). Most of the terms in Eq. (6) can be neglected due to the small magnitude of the ∂xk uk-term and the
fact that spatial derivatives of λ are of small magnitude compared to the large magnitude of λ itself. Also the assumption
of considering only first order spatial derivatives simplifies considerably the number of unknown parameters.

The results obtained in the breast phantom (Fig. 1) show two things:

1. utilization of Eq. (4) yields high-quality maps of the complex-shear modulus with values in agreement with data ob-
tained from rheometers [18], and

2. utilization of Eq. (7) does not significantly improve the results. Maps of the spatial derivatives of Gd(�x) (i.e. the αi)
clearly show the presence of boundaries in elasticity contrast.

It should be noted that the phantom consists of rather simple objects which have no further internal structure. This does
not hold for the presented in-vivo case of a cholangiocarcinoma. Here, utilization of Eq. (7) clearly improves the anatomical
correspondence between the expected internal structures as seen on gadolinium contrast enhanced MR-images and obtained
maps for the complex-shear modulus (Fig. 2). Here, the maps for αi reveal a very complex internal structure of the lesion.
It should be noted that Eq. (7) does not add any additional spatial derivatives to the data and that both equations are over-
determined, i.e. in case of Eq. (4) we have two unknowns and 6 equations while in case of Eq. (7) we have 5 unknowns
with still 6 equations. Both equations use 3rd order spatial derivatives of the displacement vector �u(x) which is certainly
challenging. Other integral approaches might certainly yield more stable results [19] but face the problem of boundary
conditions which are most difficult to assess for data like those presented in Fig. 2. It would certainly be desirable to also
take spatial derivatives of Gl into account, but this would introduce three more unknowns. One possibility to solve this
problem would be the utilization of 2 datasets with slightly different frequencies or source configurations. Thereby, 12
equations were available which would allow solving for the 8 unknown parameters.

Another important finding of this analysis is that the pressure-term (Eq. (5)) can firstly be calculated from MR-
elastography data and that the spatial distribution of this pressure is neither negligible nor spatially constant. Hence solving
Eq. (1) by just ignoring the entire mixing-term will lead to biased data [11]. Having now calculated the pressure-term,
it would certainly be interesting to study the spatial distribution of λ by simply dividing the integrated Eq. (5) by the
∂xk uk-term. Unfortunately, this is currently not possible because of the significant errors present when calculating ∂xk uk .
Future work will be dedicated to ways of solving this issue in order to gain insight into the variation of the compressional
properties of tumours.
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