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We discuss the inflating of a closed thin shell made of inextensible flexible material like
mylar. The problem is to determine the extremal form of the shell, when it is inflated
to the maximal possible volume. We introduce a variational problem which describes
the inflating of rotationally symmetric shells. The main result presents a criteria for a
rotationally symmetric shell to admit volume increasing deformations without surface
stretching. Moreover explicit solutions are found for cylindrical and biconical shells.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

On étudie le gonflage d’un ballon mince fermé produit d’un matériel non-extensible et
souple comme mylar. La question est de déterminer la forme extrémal du ballon, quand
il est gonflé jusq’au volume maximal possible. On présente un problème variationnel qui
décrit le gonflage des ballons de rotation. Le résultat essentiel est un critère pour un ballon
de rotation d’admettre déformations qui accroissent le volume sans étendre la surface. En
plus, des solutions explicites sont trouvées au cas des ballons cylindrique et biconique.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We consider a closed thin shell F made of some inextensible flexible material like the mylar (a polyester made of
the extremely thin sheets of great tensile strength). If one starts to inflate the shell with air, its surface suffers some
deformations aimed at increasing the volume inside the shell. In the deformation process, the shell surface does not stretch
because of the material properties. On the other hand it easily admits various small wrinkles, crumples and folds due to
a high flexibility of the mylar, cf. [1]. The main problem is to determine the extremal form of the shell, Fmax, when it is inflated to
the maximal possible volume. Our intuition and everyday experience as well as numerical experiments [2], suggest that for
any initial shell F this problem has a unique solution Fmax which represents a rather regular surface inheriting symmetry
properties of F . However actually this quite difficult problem is very far from to be solved.

Evidently, if F is spherical, then it cannot be inflated without surface stretching, i.e. Fmax = F , due to the well-known
isoperimetric property of the sphere. Shells that have the same property, Fmax = F , are called the sandbags [3,4].

E-mail address: gorkaviy@ilt.kharkov.ua.
1631-0721/$ – see front matter © 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.crme.2010.07.019

http://dx.doi.org/10.1016/j.crme.2010.07.019
http://www.ScienceDirect.com/
http://www.sciencedirect.com
mailto:gorkaviy@ilt.kharkov.ua
http://dx.doi.org/10.1016/j.crme.2010.07.019


V.A. Gorkavyy / C. R. Mecanique 338 (2010) 656–662 657
The only one non-trivial case, when the explicit solution was obtained with some mathematical rigorousity, has been
discussed by W. Paulsen [5], see also [6]. It deals with a shell formed by two circular disks sewed along their boundaries.
In this case it turns out that the inflated shell Fmax is not spherical, as one might expect, but represents a well-defined
closed convex surface of rotation, a Paulsen balloon, whose form is similar to a squeezed ellipsoid. To our knowledge, for
other kinds of mylar shells, different from spheres and two-covered discs, the stated problem is not solved. Notice that the
case of polyhedral shells was treated in [3,7,8]. The main result states that no one polyhedral shell is a sandbag. However,
the extremal shell Fmax is not determined even for simplest case, when F is a cube or a tea-bag.

In this Note we discuss the inflating of closed convex rotationally symmetric shells. The simplest examples of such shells
are right cylinders, cones and bicones, ellipsoids of rotation, etc. We consider a geometrical model, which leads us to some
1-D variational problem with constraints. Writing down the corresponding Euler–Lagrange equation, we analyze its solutions
and describe corresponding extremal shells. As a consequence, a criterion for the initial shell F to be a sandbag is obtained.
Roughly speaking, F is a sandbag if it is sufficiently elongated along the axis of rotation, like a long cylinder. For instance,
an ellipsoid x2/a2 + y2/a2 + z2/c2 = 1 is a sandbag, iff a � c

√
2. Moreover, in the case when F is either a right cylinder or

a right bicone, the extremal shell Fmax is described explicitly with the help of Paulsen balloon’s strips and caps.
Shells similar to mylar ones may arise in aeronautic engineering as well as in microbiology, so we hope our results will

be useful for practical applications.

2. Inflating: geometric model

Let F be a closed convex rotationally symmetric surface. Consider a short transformation Φ : F → F̃ . By definition, the
shortness means that for an arbitrary curve Γ in F its length is greater or equal to the length of the corresponding curve
Φ(Γ ) in F̃ [9]. Usually F̃ is referred to as short w.r.t. F and denoted by F̃ ≺ F . The set of surfaces obtained by short
transformations of F is denoted by W F = { F̃ ∈ R3| F̃ ≺ F }.

Our goal is to find a surface Fmax in W F enclosing the maximal volume. This general problem is rather difficult, because short
transformations may be highly irregular and even shrink F to curves or points, so transformed surfaces may have very
complicated structure. However, when we ask for the volume maximization of surfaces of rotation, it is natural to reduce
the class of transformations by making some additional assumptions, cf. [5].

Definition. A short transformation Φ : F → F̃ is said to be special short if it satisfies the following conditions:

(i) Φ is piecewise smooth of class C1;
(ii) F̃ is rotationally symmetric;

(iii) Φ maps parallels and meridians of F to parallels and meridians of F̃ respectively, moreover the lengths of meridians
are preserved, whereas the lengths of parallels are non-increasing.

Assumption (ii) is based on the observation that the extremal surface Fmax should inherit the symmetry properties of
the initial surface F , so it should remain rotationally symmetric. Assumption (iii) seems to be slightly doubtful, but this is
just what was seen for the Paulsen mylar balloons [5,6].

The class of surfaces obtained from F by special short transformations will be denoted by W 0
F . Clearly W 0

F ⊂ W F . We
believe that in order to find Fmax one can replace W F by W 0

F .

Conjecture. sup F̃∈W F
Vol( F̃ ) = sup F̃∈W 0

F
Vol( F̃ ).

This conjecture is a really challenging mathematical problem, however from the physical point of view it seems to be
rather reasonable. Benefits of the proposed replacement is that the original problem may be reduced to a much more simple
analytic problem.

3. Initial shell representation

Let F be obtained by rotating of a plane curve γ around the z-axis. The meridian γ is represented as

x = u(s), z = v(s) (1)

where s ∈ [0, L] is the arc length of γ counted from the top P (s = 0) to the bottom Q (s = L), L denotes the total length
of γ . We assume that γ is piecewise smooth of class C2, i.e. γ is C2-smooth everywhere in [0, L] except a finite number
of singular points 0 < s1 < · · · < sN < L. It means that F may contain a finite number of singular parallels. Moreover conical
singularities at the poles P and Q are also admitted.

Due to the choice of parametrization, we have (u′)2 + (v ′)2 ≡ 1. Since F is closed and convex, the function u(s) satisfies
the following conditions:
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u(0) = 0, u(L) = 0, u′(0) > 0, u′(L) < 0 (2)

u(s) > 0, s ∈ (0, L) (3)

u′ is non-increasing (4)

whereas v(s) is determined up to an additive constant by the formula v(s) = − ∫ s
0

√
1 − (u′)2 ds.

We emphasize that all the geometric properties of F can be described in terms of the function u(s), which will be
referred to as the profile of F . In particular, the volume enclosed by F is calculated as follows:

V = π

L∫
0

u2
√

1 − (
u′)2

ds (5)

4. Volume functional and variational problem

Given the profile u(s), consider its variation ũ(s, ε) = u(s) + εw(s), where w(s) is assumed to be piecewise C1-smooth,
satisfying the initial conditions w(0) = w(L) = 0 and ensuring ũ(s) > 0, s ∈ (0, L) for all ε in an interval I . Setting ṽ =
− ∫ s

0

√
1 − (ũ′)2 ds and writing a parametric representation like (1), we obtain a variation γ̃ε of the initial meridian γ .

Consequently, rotating γ̃ε , we obtain a variation F̃ε of the initial surface F .
For any ε, the surface F̃ε is closed, piecewise smooth, rotationally symmetric. The corresponding transformation F → F̃ε

maps meridians and parallels of F to meridians and parallels of F̃ε . The meridians in F and in F̃ε have the same lengths
equal to L. As for parallels, a parallel with radius u(s) in F is mapped to a parallel with radius ũ(s;ε) in F̃ε .

The volume enclosed by F̃ε is equal to V = π
∫ L

0 ũ2
√

1 − (ũ′)2 ds, it depends obviously on ε. The following statement
may be proved by a direct calculation:

Proposition 4.1. The following first variation formula holds:

1

π

dV

dε

∣∣∣∣
ε=0

=
L∫

0

u

(1 − (u′)2)3/2

(
uu′′ + 2

(
1 − (

u′)2))
w ds − u2u′√

1 − (u′)2
w

∣∣∣∣
L

0

+
∑

i

u2(si)

(
lim

s→si+0

u′√
1 − (u′)2

− lim
s→si−0

u′√
1 − (u′)2

)
w(si) (6)

The last term in (6) means the sum over the singular points si of u(s). The integrand in (6) is geometrically invariant
and may be expressed in terms of the principal curvatures of F , whereas other summands may be described via the angle
between the vector tangent to meridian and the positive direction of the x-axis. Notice that the expression in parentheses
in the last sum is negative, since u′ is non-increasing.

Formula (6) holds for an arbitrary variation of u(s). On the other hand, we search to maximize the volume of F with
respect to short transformations in W 0

F , so not any variation is admissible. Namely, it is easy to see that the transformation
F → F̃ε is short, so F̃ε belongs to W 0

F , if and only if u(s) � ũ(s;ε), i.e. if εw(s) � 0. Without loss of generality one can
suppose that ε � 0 and w(s) � 0, such variations will be referred to as admissible.

Let us analyze (6). Due to (2), the second term in (6) vanishes if w(s) ≡ 0 in neighborhoods of end points in [0, L], so
it does not affect the volume. The third term either vanishes, if w(s) ≡ 0 in neighborhoods of singular points s j , or it is
positive, if w(s) < 0 in a neighborhood of a singular point s j . Hence, if w(s) is chosen to be negative in a sufficiently small
neighborhood of s j and vanishes elsewhere, then dV

dε (0) > 0. Thus, the presence of singular points allows us to increase the
volume. Finally the sign of the first term in (6) depends on the sign of u′′ + 2(1 − (u′)2). The further analysis leads to the
following result:

Proposition 4.2. If u(s) has at least one singular point in (0, L) or if uu′′ + 2(1 − (u′)2) < 0 somewhere in [0, L], then there is an
admissible variation ũ(s, ε) with dV

dε |ε=0 > 0.

Corollary. If a closed convex surface of rotation F contains at least one singular parallel or its profile function u(s) satisfies uu′′ +
2(1 − (u′)2) < 0 somewhere in [0, L], then F admits volume increasing special short transformations.

Let us discuss the extremal profile umax(s), which maximizes the volume functional. Clearly, we have:

umax(s) = 0, umax(L) = 0 (7)

0 � umax(s) � u(s), s ∈ [0, L] (8)
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Next, if there exists a subinterval (a,b) ⊂ (0, L) such that umax(s) < u(s) everywhere in (a,b) and umax(a) = u(a), umax(b) =
u(b), then due to (6) the function umax has to satisfy in (a,b) the equation

uu′′ + 2
(
1 − (

u′)2) = 0 (9)

Finally, umax(s) has to be C1-smooth, i.e. without singular points in (0, L), as discussed above.
Eq. (9) may be solved in terms of Jacobi’s elliptic functions [10], its solution is given by

ξ(s) = 1

C1
sn(C1s + C2, i)

Analyzing the properties of ξ(s), one can prove the following technical result:

Lemma. If there exists a solution v(s) of (9), which satisfies v(s) < u(s) everywhere in (a,b) and v(a) = u(a), v(b) = u(b), then
u′′ + 2(1 − (u′)2) < 0 somewhere in [a,b] or u(s) has a singular point in [a,b].

Consequently, if u(s) is smooth and satisfies uu′′ + 2(1 − (u′)2) � 0 everywhere in [0, L], then umax has to coincide with
u(s) everywhere in [0, L]. Thus we obtain the following criterion for F to be a sandbag.

Proposition 4.3. If u(s) satisfies uu′′ + 2(1 − (u′)2) � 0 and does not contain any singular point in (0, L), then any admissible
variation of u(s) decreases the volume, so umax ≡ u.

Corollary. If a closed convex surface of rotation F does not contain singular parallels and if its profile function u(s) satisfies uu′′ +
2(1−(u′)2) � 0 everywhere in [0, L], then F is a sandbag in W 0

F , i.e. it does not admit volume increasing special short transformations.

Below we discuss some examples in order to illustrate Propositions 4.2 and 4.3.

5. Explicit solutions

5.1. Sphere

Let F be a sphere of radius R . Then u = R sin
s

R
, s ∈ [0,π R]. It is easy to calculate, that uu′′ + 2(1 − (u′)2) = sin2 s

R � 0.

Hence F is a sandbag by Proposition 4.3.

5.2. Cylinders

Let F be a circular cylinder with base radius R and height 2H . Then

u =
{ s, s ∈ [0, R]

R, s ∈ [R, R + 2H]
−s + 2H + 2R, s ∈ [R + 2H,2R + 2H]

(10)

Since u(s) has two singular points s1 = R , s2 = R +2H , the volume enclosed by F may be increased by small short variations
due to Proposition 4.2.

The form of the maximal profile umax depends on the difference between the ratio H/R and the first lemniscate constant
L1 = ∫ 1

0
1√

1−t4
dt ≈ 1.311. If the cylinder is “low” so that H/R � L1 − 1, then umax is given by the formula

umax = R + H

L1
sn

(
L1

R + H
s, i

)
, s ∈ [0,2R + 2H] (11)

The profile umax corresponds to the Paulsen mylar balloon, whose meridian has the same length as the meridian of the
initial cylinder. Fig. 1 shows a) the profiles u and umax , b) the corresponding meridians. Fig. 2 demonstrates the cylinder F
and the extremal surface Fmax , which is a Paulsen mylar balloon.

If the cylinder is high so that H/R > L1 − 1, then umax is given by the following formula (see Fig. 3a):

umax =

⎧⎪⎨
⎪⎩

R sn
( s

R , i
)
, s ∈ [0, RL1]

R, s ∈ [RL1, R(2 − L1) + 2H]
R sn

( s−2H
R + 2(L1 − 1), i

)
, s ∈ [R(2 − L1) + 2H,2R + 2H]

(12)

The profile umax corresponds to a C1-smooth surface Fmax composed of three parts: two parts are halves of a Paulsen mylar
balloon, and the third one is cylindrical (see Figs. 3b and 4).



660 V.A. Gorkavyy / C. R. Mecanique 338 (2010) 656–662
(a) (b)

Fig. 1. (a) “Low” cylinder: the profiles u and umax . (b) “Low” cylinder: the meridians γ and γmax .

Fig. 2. “Low” cylinder: non-inflated (left) and fully inflated (right).

(a) (b)

Fig. 3. (a) “High” cylinder: the profiles u and umax . (b) “High” cylinder: the meridians γ and γmax .

5.3. Bicones

Let F be a circular bicone with base radius R and height 2H . Then

u =

⎧⎪⎨
⎪⎩

R√
R2+H2

s, s ∈ [0,
√

R2 + H2]
− R√

R2+H2
s + 2R, s ∈ [√R2 + H2,2

√
R2 + H2] (13)

Since u(s) has a singular point s1 = √
R2 + H2, the volume enclosed by F may be increased by small short variations due

to Proposition 4.2. The maximal profile umax is given by the following formula (see Fig. 5a):
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Fig. 4. “High” cylinder: non-inflated (left) and fully inflated (right).

(a) (b)

Fig. 5. (a) Bicone: the profiles u and umax . (b) Bicone: the meridians γ and γmax .

Fig. 6. Bicone: non-inflated (left) and fully inflated (right).

umax =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

R√
R2+H2

s, s ∈ [0,a]
1
C sn(C(s − √

R2 + H2) + L1, i), s ∈ [a,2
√

R2 + H2 − a]
− R√

R2+H2
s + 2R, s ∈ [2√

R2 + H2 − a,2
√

R2 + H2]
(14)

where a = a(R, H), C = C(R, H). The profile umax corresponds to a C1-smooth surface composed of three parts: two ones
are parts of the initial bicone, the third one is a strip of a Paulsen mylar balloon (see Figs. 5b and 6).

5.4. Ellipsoid of rotation

Let F be an ellipsoid given by x2/a2 + y2/a2 + z2/c2 = 1. Then u(s) = a cos(t(s)), where t(s) ∈ [−π
2 , π

2 ] is determined by

t′ = 1/
√

a2 sin2 t + c2 cos2 t . In this case

u′′ + 2
(
1 − (

u′)2) = c2 cos2 t
2 2 2 2 2

(
2a2 sin2 t + 2c2 cos2 t − a2)
(a sin t + c cos t)
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An elementary analysis demonstrates, that 2a2 sin2 t + 2c2 cos2 t − a2 � 0 if 2c2 � a2. Thus F is a sandbag, if 2c2 � a2, due
to Proposition 4.3.

On the other hand, if 2c2 < a2 then 2a2 sin2 t + 2c2 cos2 t −a2 < 0 holds in a subinterval of [0, L], so u′′ + 2(1 − (u′)2) < 0
holds too. Hence, due to Proposition 4.2, one can increase the volume of F by special short transformations. In order to
obtain umax(s), one have to replace u(s) by a solution of (9) in some subinterval of [0, L]. From the geometrical point of
view, in order to obtain the corresponding extremal surface Fmax , we have to replace some strip of F by a strip of a Paulsen
mylar balloon.

References

[1] A.V. Pogorelov, Bendings of Surfaces and Stability of Shells, Translations of Mathematical Monographs, vol. 72, American Mathematical Society (AMS),
Providence, RI, 1988.

[2] K. Brakke, Surface evolver, http://www.susqu.edu/brakke/evolver/evolver.html.
[3] D.D. Bleecker, Volume increasing isometric deformations of convex polyhedra, J. Differential Geom. 43 (1996) 505–526.
[4] D.D. Bleecker, Isometric deformations of compact hypersurfaces, Geom. Dedicata 64 (1997) 193–227.
[5] W. Paulsen, What is the shape of a mylar balloon? Amer. Math. Monthly 101 (1994) 953–958.
[6] I. Mladenov, J. Oprea, The mylar balloon revisited, Amer. Math. Monthly 110 (2003) 761–784.
[7] I. Pak, Inflating polyhedral surfaces, http://www.math.ucla.edu/~/papers/pillow4.pdf.
[8] G.A. Samarin, Volume increasing isometric deformations of polyhedra, Comput. Math. Math. Phys. 50 (1) (2010) 54–64.
[9] N.H. Kuiper, Isometric and short imbeddings, Indag. Math. 21 (1959) 11–25.

[10] W.P. Reinhardt, P.L. Walker, Jacobian elliptic functions, in: F.W.J. Olver, D.M. Lozier, R.F. Boisvert, et al. (Eds.), NIST Handbook of Mathematical Functions,
Cambridge University Press, 2010.

http://www.susqu.edu/brakke/evolver/evolver.html
http://www.math.ucla.edu/~/papers/pillow4.pdf

	On inﬂating closed mylar shells
	Introduction
	Inﬂating: geometric model
	Initial shell representation
	Volume functional and variational problem
	Explicit solutions
	Sphere
	Cylinders
	Bicones
	Ellipsoid of rotation

	References


