
C. R. Mecanique 338 (2010) 698–703
Contents lists available at ScienceDirect

Comptes Rendus Mecanique

www.sciencedirect.com

Identification of multi-modal random variables through mixtures of
polynomial chaos expansions

Identification de variables aléatoires multi-modales par mélange de décompositions sur
la chaos polynômial

Anthony Nouy

GeM - UMR CNRS 6183, École centrale Nantes, Université de Nantes, 1, rue de la Noë, 44321 Nantes, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 18 March 2010
Accepted after revision 21 September 2010

Keywords:
Statistics
Uncertainty quantification
Identification
Multi-modal density
Polynomial chaos
Finite mixture model
Spectral stochastic methods

Mots-clés :
Statistique
Quantification d’incertitudes
Identification
Densité multi-modale
Chaos Polynômial
Modèle de mélange fini
Méthodes spectrales stochastiques

A methodology is introduced for the identification of a multi-modal real-valued random
variable from a collection of samples. The random variable is seen as a finite mixture of
uni-modal random variables. A functional representation of the random variable is used,
which can be interpreted as a mixture of polynomial chaos expansions. After a suitable
separation of samples into sets of uni-modal samples, the coefficients of the expansion are
identified by using an empirical projection technique. This identification procedure allows
for a generic representation of a large class of multi-modal random variables with low-
order generalized polynomial chaos representations.
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r é s u m é

Une méthodologie est proposée pour l’identification d’une variable aléatoire multi-modale
à partir d’échantillons. La variable aléatoire est vue comme un mélange fini de variables
aléatoires uni-modales. Une représentation fonctionnelle de la variable aléatoire est utilisée.
Elle peut être interprétée comme un mélange de décompositions sur le chaos polynômial.
Après une séparation adaptée des échantillons en sous-ensembles d’échantillons uni-
modaux, les coefficients de la décomposition sont identifiés en utilisant une technique de
projection empirique. Cette procédure d’identification permet une représentation générique
d’une large classe de variables aléatoires multi-modales avec une décomposition sur chaos
polynômial généralisé de faible degré.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Uncertainty quantification and propagation in physical systems appear as a critical path for the improvement of the pre-
diction of their response. For the numerical estimation of outputs of stochastic systems driven by finite-dimensional noise,
the so-called spectral stochastic methods [1–4] have received a growing attention in the last two decades. These methods
rely on a functional representation of random outputs, considered as second-order random variables, by using truncated
expansions on suitable Hilbertian basis. Classical basis consist in polynomial functions (finite-dimensional Polynomial Chaos
[5,6,1]), piecewise polynomial functions [7–9] or more general orthogonal basis [10]. Of course, the accuracy of predictions
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depends on the quality of the input probabilistic model. Some works have been recently devoted to the identification of ran-
dom variables (or processes), from a collection of samples, using Polynomial Chaos (PC) representations. Classical inference
techniques have been used to identified the coefficients of functional expansions, such as maximum likelihood estimation
[11,12] or Bayesian inference [13,14]. Polynomial Chaos a priori allows for the representation of second-order random vari-
ables with arbitrary probability laws. However, for some classes of random variables, classical PC expansions may exhibit
very slow convergence rates, thus requiring very high-order expansions for an accurate representation. When introducing
such representations for random input parameters of a physical model, very high-order expansions are also required for
an accurate approximation of random outputs. Classical spectral stochastic methods, such as Galerkin-type methods, then
require to deal with high-dimensional approximation spaces, which leads to prohibitive computational costs. Although the
use of efficient solvers or model reduction techniques based on separated representations [15–17] may help to reduce
computational costs, a convenient alternative consists in identifying more suitable representations of random inputs.

The aim of the present article is to propose a PC-based numerical methodology for the identification of real-valued
multi-modal random variables. In Section 2, we briefly recall the basics of PC expansions of uni-variate random variables and
introduce an empirical projection technique in order to identify these expansions from samples. This projection technique is
an efficient alternative to classical inference techniques. We then illustrate the limitations of classical PC expansions when
trying to represent multi-modal random variables. In Section 3, we introduce a methodology for representing multi-modal
real-valued random variables. From a theoretical point of view, it consists in introducing a complete set of events allowing a
separation of modes. The probability density function of the random variable to be identified appears as a mixture of prob-
ability density functions of random variables (finite mixture model [18]). We then propose a natural representation of the
random variable on a generalized Polynomial Chaos, which can be interpreted as a “mixture of chaos expansions”, estimated
from samples using an efficient empirical projection. Section 4 will illustrate the efficiency of the proposed methodology.

2. Polynomial chaos decomposition of a second-order random variable

2.1. Polynomial chaos representation

Let X denote a real-valued random variable defined on an abstract probability space (Θ, BΘ, P ). Let F X denote its
cumulative density function (CDF) and p X its probability density function (PDF). We introduce a random variable ξ defined
on (Θ, BΘ, P ), with known support Ξ ⊂ R and probability law Pξ , thus defining a new probability space (Ξ, BΞ , Pξ ).
The random variable g(ξ) := F −1

X ◦ Fξ (ξ) have the same probability law as X . We then make the hypothesis that g is
a Pξ -square integrable function from Ξ to R, i.e. g ∈ L2(Ξ,dPξ ). Introducing an Hilbertian basis {hi}i∈N of L2(Ξ,dPξ ),
the random variable X then admits the following representation: X = ∑

i∈N
Xihi(ξ), with coefficients Xi being defined by

Xi = 〈g,hi〉L2(Ξ,dPξ ) := E(g(ξ)hi(ξ)), where E denotes the mathematical expectation. An approximate representation of X

can be obtained by truncating the decomposition: X ≈ ∑p
i=0 Xihi(ξ). A classical choice for the hi consists in polynomial

functions orthonormal with respect to scalar product 〈·,·〉L2(Ξ,dPξ ) , thus leading to the so-called uni-dimensional Polynomial
Chaos (PC) expansion of degree p of X [1,19,10].

2.2. Identification of the decomposition

Classical inference techniques have been applied for the identification of coefficients Xi from a collection of indepen-
dent samples {X (k)}Q

k=1 of X : maximum likelihood estimation [11], Bayesian inference [13]. Here, in order to estimate the
coefficients, we use a simple and efficient numerical technique, named “empirical projection”. It is based on the estimation
of mapping g from samples and the introduction of a quadrature scheme to compute its projection on the PC basis. We
denote by F̃ X the empirical CDF of X , estimated from samples: F̃ X (x) = 1

Q

∑Q
k=1 I(X (k) � x), where I(A) is the indicator

function of event A. We then introduce the following approximation g(ξ) ≈ F̃ −1
X ◦ Fξ (ξ), where F̃ −1

X : [0,1] → R is uniquely

defined as F̃ −1
X (y) = min{x ∈ {X (k)}Q

k=1; F̃ X (x) � y}. Then, the coefficients of the chaos expansion can be approximated using
a numerical integration:

Xi =
∫
Ξ

F −1
X

(
Fξ (y)

)
hi(y)dPξ (y) ≈

N∑
k=1

ωk F̃ −1
X

(
Fξ (yk)

)
hi(yk) (1)

where the {ωk, yk}N
k=1 are integration weights and points. In practice, an accurate Gauss-quadrature associated with measure

Pξ can be used.

2.3. Limitations of classical polynomial chaos representations

Classical polynomial chaos decompositions allow for an accurate representation of a wide class of probability laws. The
accuracy can be simply improved by choosing a suitable germ ξ (Gaussian, Uniform, etc.), associated with classical orthog-
onal polynomial basis (Hermite, Legendre, etc.). However, these classical polynomial decompositions may not be adapted
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Fig. 1. PC expansion of a bi-modal random variable: convergence with the expansion’s degree p.

for some classes of random variables, particularly for multi-modal random variables. Fig. 1 illustrates the convergence of a
Hermite polynomial chaos expansion1 of a bi-modal random variable X(θ), defined by

X(θ) =
{

a(θ) − δ if b(θ) < 1/3

a(θ) + δ if b(θ) > 1/3

where a and b are independent standard Gaussian random variables and where δ is a parameter controlling the separation
of modes. We observe that when increasing δ, the convergence of a classical PC expansion drastically deteriorates, thus
needing for a high polynomial degree for an accurate representation of the PDF.

3. Identification of a multi-modal random variable

3.1. Mixture of probability laws

Let us denote by m the number of modes of the random variable X (which can be defined as the number of local
maxima of p X ). We introduce a complete set2 of m events {Θi}m

i=1 of BΘ and we define associated real-valued random
variables Yi with probability law defined for all B ∈ BR by

P Yi (B) = P (X ∈ B|Θi) = P
(

X−1(B)|Θi
) = P

(
X−1(B) ∩ Θi

)
/P (Θi)

We admit that the events Θi are such that the Yi are uni-modal random variables. The probability law of X can then be
defined by: ∀B ∈ BR ,

P X (B) =
m∑

i=1

P
(

X−1(B) ∩ Θi
) =

m∑
i=1

P Yi (B)P (Θi)

Its probability density function then appears as a mixture [18] (i.e. convex combination) of probability density functions of
uni-modal random variables:

p X (x) =
m∑

i=1

pYi (x)P (Θi) (2)

The identification of X is then replaced by the identification of random variables Yi , which are expected to admit accurate
low-order chaos representations. The questions are now: how to define the partition {Θi}m

i=1, what kind of chaos represen-
tation can be used for X and how to identify this representation from samples?

3.2. Definition of Θi by separation of samples

We introduce an artificial separation of samples {X (k)}Q
k=1 into m sets of uni-modal samples, which allows for the con-

struction of the desired partition of Θ . We suppose that the empirical PDF allows estimating a set of points {xi}m−1
i=1 that

separate samples into m sets of uni-modal samples, defined as follows:

Xi = {
X (k),k ∈ {1, . . . , Q }; X (k) ∈ [xi−1, xi)

}
, i ∈ {1, . . . ,m} (3)

1 Expansions are identified with the empirical projection technique, using a highly accurate (and converged) Gauss-Hermite quadrature.
2 ⋃m

i=1 Θi = Θ ,Θi ∩ Θ j = ∅ for i �= j.
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where by convention x0 = −∞ and xm = +∞. Then, Θi is defined as the abstract event associated with samples in Xi
(i.e. Xi ⊂ X(Θi)). The probability of event Θi is then defined by P (Θi) = Card(Xi)/Q . In order to define the set of events
{Θi}m

i=1, we introduce a partition of [0,1), defined by intervals Bi = [zi−1, zi), i = 1, . . . ,m, where 0 = z0 < z1 < · · · <

zm = 1. Then, introducing a uniform random variable ξ1 ∈ U (0,1), we define Θi = ξ−1
1 (Bi), for i = 1, . . . ,m. It completely

characterizes the partition of [0,1) := Ξ1, with zi = ∑i
j=1 P (Θ j), i = 1, . . . ,m.

3.3. Mixture of polynomial chaos expansions

Let us now denote ξ2 another random variable, independent on ξ1. Letting ξ = (ξ1, ξ2), we define a 2-dimensional prob-
ability space (�, B�, Pξ ), with � = Ξ1 × Ξ2 and Pξ = Pξ1 ⊗ Pξ2 . Random variable X is then seen as a function of ξ ,
defined by X(ξ) = ∑m

i=1 I Bi (ξ1)Yi(ξ2), where I Bi denotes the indicator function of Bi . We next introduce a chaos represen-
tation of each random variable Yi = ∑

j∈N
Xi, jh j(ξ2), where the h j are classical orthonormal polynomials in L2(Ξ2,dPξ2 ).

A generalized chaos representation of X is then sought as:

X(ξ) =
m∑

i=1

I Bi (ξ1)

( ∑
j∈N

Xi, jh j(ξ2)

)
=

m∑
i=1

∑
j∈N

Xi, j I Bi (ξ1)h j(ξ2) (4)

which can be interpreted as a mixture of polynomial chaos expansions. Functions {I Bi h j} form an orthogonal set of functions
in L2(�,dPξ ) = L2(Ξ1,dPξ1 ) ⊗ L2(Ξ2,dPξ2 ), composed by piecewise polynomial functions (polynomial with respect to ξ2

and piecewise constant with respect to ξ1). The L2-norm of a basis function is E((I Bi (ξ1)h j(ξ2))
2)1/2 = P (Θi)

1/2. Coefficients
{Xi, j} of the decomposition of X are defined as the orthogonal projections of X on these basis functions:

Xi, j = P (Θi)
−1

∫
Ξ1×Ξ2

X(y1, y2)I Bi (y1)h j(y2)pξ2(y2)dy1 dy2 =
∫
Ξ2

Yi(y2)h j(y2)pξ2(y2)dy2 (5)

3.4. Identification of the decomposition from samples

Classical inference techniques [20,21] could be used in order to identify from samples the set of m(p + 1) coefficients3 of
the mixture of chaos expansions (4). However, the number of parameters is such that these classical techniques lead to high
computational costs. With a maximum likelihood estimation, the identification requires the resolution of a hard optimization
problem (high dimension, objective function with many local maxima, possibly non-smooth function) for which classical
algorithms may lack robustness. Here, we propose to apply the empirical projection technique introduced in Section 2.2.
The random variable Yi is written in terms of ξ2 in the following way: Yi(ξ2) = F −1

Yi
◦ Fξ2 (ξ2), where FYi = F X |Θi is the

conditional CDF of X knowing Θi . The subset of samples Xi corresponds to independent samples of Yi . Therefore, an
approximation F̃ Yi of FYi can be simply estimated by

F̃ Yi (y) = 1

Card(Xi)

∑
z∈Xi

I(z � y)

Random variable X is then approximated by truncating polynomial chaos expansions to a degree p, the coefficients being
estimated from samples in the following way: ∀i ∈ {1, . . . ,m}, ∀ j ∈ {0, . . . , p},

Xi, j ≈
N∑

k=1

ωk F̃ −1
Yi

(
Fξ2(yk)

)
h j(yk) (6)

where the {ωk, yk}N
k=1 are integration weights and points of a classical quadrature rule (e.g. Gauss-quadrature) associated

with measure Pξ2 .

4. Numerical illustration

Example 1. We generate an artificial collection of Q = 1000 samples from the bi-modal random variable defined in Sec-
tion 2.3. We consider three cases corresponding to the following three values of the mode-separation parameter: δ = 1.5,
δ = 2 and δ = 3. The corresponding empirical PDFs of samples are shown in Figs. 2(a)–(c). On the same figures, also plotted
are the PDFs associated with a mixture of Hermite polynomial chaos expansions (ξ2 is a Gaussian random variable). The
coefficients of the expansion have been obtained with the empirical projection technique (see Section 3.4), using a 15-points
Gauss-Hermite quadrature for the numerical integration. For the three cases, samples have been separated into two sets of
uni-modal samples by choosing separation values x1 = 0, 0.2 and 0 respectively. Theses values have been determined by

3 Note that samples separation values xi , i = 1, . . . ,m − 1, could also be added to the set of parameters to be identified.



702 A. Nouy / C. R. Mecanique 338 (2010) 698–703
Fig. 2. Mixture of PC expansions for a bi-modal random variable: convergence with the expansion’s degree p.

Fig. 3. Probability density functions: samples (a), Hermite PC expansion (b), mixture of Hermite PC expansions (c).

Fig. 4. Weighted probability density functions {y �→ P (Θi)pYi (y)} of random variables Yi , i = 1, . . . ,3, identified with a Hermite PC expansion of degree
p = 3.

simply locating local minima of the empirical PDFs. Whatever the separation of modes, we observe a very good agreement
between the empirical PDFs of samples and the identified mixture of polynomial chaos expansions (4), even with a low
degree of expansion (p = 2 or 3).

Example 2. We consider a collection of Q = 1000 samples corresponding to a 3-modal distribution, represented on Fig. 3(a).
On Fig. 3(b), we illustrate the bad convergence of a classical Hermite PC expansion X ≈ ∑p

i=0 Xihi(ξ) (ξ being a standard
Gaussian random variable). The coefficients are computed using the empirical projection technique (see Section 2.2) with a
high-order Gauss-Hermite quadrature (100 quadrature points). Fig. 3(c) illustrates the PDF obtained with a 3-modal mixture
of Hermite PC expansions of degree p: X(ξ1, ξ2) = ∑3

i=1
∑p

j=0 Xi, j I Bi (ξ1)h j(ξ2). The samples have been separated into
three sets of uni-modal samples by choosing separation values x1 = 4 and x2 = 9. These values have been chosen by
approximatively locating the two local minima of the empirical PDF. For the computation of expansion coefficients, we have
used the empirical projection technique introduced in Section 3.4, with a 15-points Gauss-Hermite quadrature. We observe
that a very good representation of the random variable is obtained with a mixture of PC expansions of low degree (p ≈ 3).
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Fig. 4 shows the weighted PDFs y �→ P (Θi)pYi (y) of random variables Yi . It also shows the resulting PDF of X , which
appears as the mixture of the weighted conditional PDFs.

5. Conclusion

In this Note, we have introduced an efficient numerical technique for the identification of real-valued multi-modal
random variables. A mixture of chaos representations is used, which can be interpreted as a 2-dimensional generalized
polynomial chaos expansion. The expansion basis is defined by the product of polynomial functions of a first random vari-
able and piecewise constant functions of a second random variable. The coefficients of the expansion are estimated from
samples by using an efficient empirical projection technique. Classical inference techniques such as maximum likelihood
or Bayesian inference could also be used for estimating the coefficients of the expansion, although leading to much higher
computational costs. The proposed mixture of polynomial chaos expansions and the empirical projection technique can be
extended to vector-valued random variables. The empirical projection technique however requires more and more samples
as the dimension increases.
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