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Plastic deformation of granular materials is investigated from the micromechanical view-
point, in which the assembly of particles and interparticle contacts is considered as a
mechanical structure. This is done in three ways. Firstly, by investigating the degree of
redundancy of the system by comparing the number of force degrees of freedom at con-
tacts with the number of governing equilibrium equations; Secondly, by determining the
spectrum of eigenvalues of the stiffness matrix for the structure that is represented by
the particles and their contacts; Thirdly, by investigating the evolution with imposed strain
of the continuum elastic stiffness tensor of the system. It is found that, with increasing
imposed strain, the degree of redundancy rapidly evolves towards a state with small redun-
dancy, i.e. the system becomes nearly statically determinate. The spectrum of the system
shows many singular and near-singular modes at peak shear strength and at large strain.
The continuum elastic stiffness tensor becomes strongly anisotropic with increasing im-
posed strain and shows strong non-affinity of deformation. The assumption of a constant
and isotropic elastic stiffness tensor in elasto-plastic continuum constitutive relations for
granular materials is generally incorrect. Overall, the plastic continuum behaviour of gran-
ular materials originates from the plastic frictional behaviour at contacts and from damage
in the form of changes in the contact network.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

La déformation plastique des matériaux granulaires est étudiée du point de vue micro-
mécanique, dans lequel l’assemblage des particules et des contacts entre particules est
considéré comme une structure mécanique. Ceci est fait de trois façons. Tout d’abord, en
analysant le degré de redondance du système obtenu en comparant le nombre de degrés
de liberté lié aux forces de contact avec le nombre d’équations d’équilibre; Deuxièmement,
en déterminant le spectre des valeurs propres de la matrice de rigidité de la structure qui
est représentée par les particules et leurs contacts; Troisièmement, en étudiant l’évolution
pour une déformation imposée du tenseur de rigidité du milieu continu élastique équi-
valent au système analysé. Pour une déformation imposée, le degré de redondance évolue
rapidement vers un état avec une petite redondance, c’est-à-dire que le système devient
quasi isostatique. Le spectre des valeurs propres du système montre les modes singuliers
et quasi singuliers au niveau de la résistance au cisaillement maximale et en grandes dé-
formations. Le tenseur de rigidité élastique du milieu continu équivalent devient fortement
anisotrope pour une déformation imposée, et fait apparaître la nature non affine de la
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déformation. L’hypothèse d’un tenseur de rigidité élastique, qui est constant dans des rela-
tions constitutives élasto-plastiques des matériaux granulaires, est généralement incorrecte.
Globalement, le comportement macroscopique plastique est lié d’une part aux frottements
aux contacts et d’autre part à l’évolution du réseau de contacts que l’on peut assimiler à
un mécanisme d’endommagement.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The mechanical behaviour of granular materials during quasi-static deformation is important in many disciplines of
engineering, such as in civil, mechanical and process engineering, as well as in geophysics. This behaviour is described
by the continuum-mechanical constitutive relation that links stress and strain increments. Often, elasto-plastic constitutive
relations are employed that describe the yielding behaviour of granular materials.

At the micro-scale, granular materials consist of assemblies of particles that interact at contacts. In the micromechanical
approach, which is complementary to the continuum-mechanical viewpoint, relationships are investigated between the
micro-scale characteristics at the particle and interparticle level and macro-scale characteristics at the continuum level.

The objective of this study is to gain a better micromechanical understanding of continuum, macro-scale plasticity. This
plastic behaviour is investigated from the structural–mechanical viewpoint, in which the granular assembly is considered as
a mechanical structure that is determined by the particles and their interparticle contacts.

Three aspects are investigated from this structural–mechanical viewpoint: (1) the degree of redundancy of the system,
by comparing the total number of force degrees of freedom at contacts with the number of equilibrium equations; (2) the
spectrum of the structural–mechanical stiffness matrix of the discrete system; and (3) the evolution with imposed deforma-
tion of the elastic continuum stiffness tensor. These aspects are discussed consecutively, preceded by the relevant aspects
of micromechanics of granular materials and of the two-dimensional Discrete Element simulations ([1], DEM for short) that
are employed to obtain the required, detailed information at the micro-scale.

In the sign convention adopted here, compressive stresses and strains are considered as positive.

2. Micromechanics

Granular assemblies consist of particles that are generally very stiff. Therefore, the particles interact by point forces
acting at interparticle contacts.

The position vector of a particle p is denoted by X p
i . For two particles p and q in contact, the branch vector lpq

i is the
vector connecting the centres of two particles in contact, i.e. lpq

i = Xq
i − X p

i . In the two-dimensional case considered here,
the normal and tangential vectors at the contact point are given by npq

i = (cos θ pq, sin θ pq)T and t pq
i = (− sin θ pq, cos θ pq)T ,

respectively, where θ pq is the contact orientation.
The distribution of contact orientations in the contact network can be characterised by the contact distribution function

[2] or by the second-order fabric tensor Fij [3–5] that is defined by

Fij = 2

Np

∑
c∈C

nc
i nc

j (1)

Here N p is the number of particles in the assembly and the sum is over all contacts c in the set of contacts C . Coordination
number Γ , i.e. the average number of contacts per particle, is defined by

Γ = 2Nc

Np
(2)

where the factor 2 is present since each contact is ’shared’ between two particles (particle–wall contacts are ignored here).
Hence, it follows from Eqs. (1) and (2) that F11 + F22 = Γ . As shown in [6], fabric anisotropy forms an important contribution
to the shear strength of granular materials.

The contact constitutive relation, which relates force and relative displacement (increments) at the contact level, consid-
ered here is that described in detail in [1]. This contact constitutive relation involves elastic and Coulomb frictional effects.
The elastic component of the constitutive relation is described by two linear springs in the normal and tangential direction
at the contact with spring constants kn and kt , respectively. At a contact c, the elastic contact constitutive relation and the
corresponding elastic contact stiffness matrix Sc

i j are given by

d f c
i = Sc

i j d�c
j, Sc

i j = knnc
i nc

j + ktt
c
i tc

j (3)

where d f c
i is the force vector increment and d�c

i is the relative displacement vector increment at the contact point that
involves contributions from the displacements of the particle centres as well as from the particle rotations.
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For cohesionless granular materials, only compressive normal forces are possible. If the normal force were to become
tensile, the contact is considered to be broken (or disrupted). The tangential force f c

t at contact c is limited by Coulomb
friction, i.e. | f c

t | � μ f c
n where f c

n is the (compressive) normal force at the contact and μ is the interparticle friction coeffi-
cient.

The average stress tensor σ i j can be determined from the contact forces f c
i from (see, for example, [7]):

σ i j = 1

A

∑
c∈C

f c
i lcj (4)

where A is the area occupied by the assembly (including voids).

2.1. Structural–mechanical stiffness matrix

When the network of contacts is considered fixed, i.e. contact creation and contact disruption are ignored, and inter-
particle friction is neglected, then the assembly can be considered as a linear elastic mechanical structure. Its discrete
structural–mechanical stiffness matrix can be determined from the geometry of the contacts and from the elastic contact
stiffness matrices given by Eq. (3).

The equilibrium equations for force and moment for the particles in the assembly can be expressed formally as [8]:

K ·U = R(ε) (5)

where K is the stiffness matrix of the system, R(ε) is the load which depends linearly on the imposed strain increment ε,
and U is the vector of displacement and rotation fluctuations of the particles, relative to the imposed mean-field. The size
of the square matrix K is 3N p by 3N p and the length of the vectors R(ε) and U is 3N p . The method in which the (sparse,
symmetric and non-negative) matrix K and the vector R(ε) are constructed is described in detail in [8].

When the vector with displacement and rotation fluctuations U has been computed from Eq. (5) for a prescribed loading
path ε, the total contact force at all contacts can be determined from the contact constitutive relation, Eq. (3), and the stress
tensor from Eq. (4).

3. DEM simulations

Two-dimensional DEM simulations of biaxial deformation, in which the (principal) strain ε11 is imposed and the lateral
(principal) stress σ22 is kept constant, have been performed. Two initial assemblies are considered, a ‘dense’ and a ‘loose’
assembly. Both assemblies consists of 50 000 polydisperse disks from the same lognormal particle-size distribution, for
which the ratio of standard deviation over mean equals 0.25.

The two initial assemblies are isotropic, as characterised by the isotropy of the contact distribution function [2]. The
packing fractions η, i.e. the area occupied by the particles divided by the total area occupied by the assembly, of the initial
assemblies are η = 0.844 and η = 0.814 for the dense and the loose assembly, respectively. The corresponding coordination
numbers are Γ = 4.06 and Γ = 3.65.

The isotropic confining stress in the initial state is denoted by σ0. The parameters in the contact constitutive relation
are selected such that kt/kn = 0.5 and σ0/kn = 10−4. This latter quantity is non-dimensional in the two-dimensional case
considered here. Its value is small, so the deformation at the contacts (or ‘overlap’ of the disks) is also small. Two values of
the interparticle friction coefficient μ are considered, μ = 0.3 and μ = 0.5. Since two initial assemblies and two values for
the friction coefficient are considered, the total number of DEM simulations equals four.

Periodic boundary conditions have been employed to minimize boundary effects and to suppress the formation of (global)
shear bands in order to also investigate the behaviour at larger strains. No persistent, large-scale shear band was observed,
although small-scale ‘micro-bands’ [9] are present.

The macroscopic response, in terms of shear strength (σ11 − σ22)/(σ11 + σ22) and volumetric strain ε11 + ε22 is shown
in Fig. 1 (left) for the case of the dense initial assembly with friction coefficient μ = 0.3. Note that with the adopted sign
convention for strain, a positive value for −(ε11 + ε22) corresponds to dilation. This response is typical for a dense initial
assembly, showing some initial compression that is followed by dilation. The shear strength reaches its peak at a strain
ε11 ∼= 1.7%, beyond which some softening occurs. Note that at an imposed strain ε11 = 10% the material still dilates, so a
steady-state has not (yet) been attained.

The evolution with imposed strain ε11 of the fabric tensor Fij is shown in Fig. 1 (right). It is clear that the number of
contacts in the direction of applied strain shows a limited increase (the increase is about 10–20%), while that in the lateral
direction rapidly decreases due to the macroscopic dilatancy that leads to the disruption of many contacts that are oriented
in the direction of the minor principal stress σ22. The component F11 of the fabric tensor is roughly independent of value of
the friction coefficient μ, contrary to F22. The loose initial assembly has a smaller anisotropy of the fabric tensor, expressed
by (F11 − F22)/(F11 + F22). A low coordination number or a low friction coefficient reduces the capability of the material
to sustain large geometrical anisotropy. These results are similar to those reported in [6,10,11].
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Fig. 1. Left: Evolution with imposed strain ε11 of the shear strength (solid line) and volumetric strain (dashed line); case of dense initial assembly with
μ = 0.3. Right: Evolution with imposed strain ε11 of the fabric tensor Fi j ; F12 = F21 = 0.

4. Redundancy

The redundancy of the structure, represented by the assembly of particles and interparticle contacts, is investigated by
comparing the total number of force degrees of freedom at contacts with the number of governing equilibrium equations
for the particles, as was already suggested in [12].

The number of particles, excluding ‘rattlers’ (i.e. particles with zero contacts), is N p . Such rattlers are excluded in the
analysis, since they do not contribute to the force network, and hence to the stress. Note that a particle that is a rattler at a
certain strain, can later during the deformation of the assembly come into contact with particles, and then it will no longer
be considered as a rattler.

In the two-dimensional case considered here the number of force equilibrium equations is 2N p and the number of
moment equilibrium equations is N p . Hence, the total number of equilibrium equations equals 3N p .

The number of contacts (excluding unstable contacts, i.e. contacts between particles that have only one or two contacts)
is Nc . The number of contacts at which Coulomb friction is activated, i.e. where | f c

t | = μ f c
n , is denoted by Nc,fr. The number

of elastic contacts at which Coulomb friction is not activated is Nc,el. Note that

Nc = Nc,fr + Nc,el (6)

The total number of force degrees of freedom at contacts is 2Nc,el + Nc,fr, two forces for each elastic contact and one
force for each contact at which friction is fully mobilised. The fraction of frictional contacts, S , is defined by

S = Nc,fr/Nc (7)

The evolution of S has been studied in [10] in various tests for (relatively small) three-dimensional assemblies consisting
of (relatively soft) spheres. The influence of interparticle friction μ on the value of S at large strain in three-dimensional
assemblies has been studied in [11].

The redundancy factor R is defined as the ratio of the total number of force degrees of freedom at contacts over the
number of equilibrium equations

R = 2Nc,el + Nc,fr

3Np
= 2 − S

6
Γ (8)

where the latter equality follows from Eqs. (2), (6) and (7). This redundancy factor R must be larger than (or equal to)
one for an equilibrium state to be possible. A value R = 1 corresponds to a statically-determinate (or isostatic) state. The
isostaticity of assemblies of frictionless particles has been studied in [13–15], for example.

The evolution with imposed strain ε11 of the fraction of frictional contacts S is shown in Fig. 2 (left). The fraction of
frictional contacts S quickly increases from a value of (almost) zero in the initial state and then remains constant. For the
dense initial assembly a small reduction in the value of S is observed after the peak value is reached. The value of imposed
strain at which the peak in S is reached is smaller than the value of strain at which the peak shear strength is attained,
compare Fig. 1 (left) and Fig. 2 (left). The value at larger strains is the same for the dense and the loose initial assembly.
As expected, for the lower value of the friction coefficient μ = 0.3, the fraction of frictional contacts S is larger than for
μ = 0.5, since the Coulomb limit is attained more easily.

The evolution with imposed strain ε11 of the redundancy factor R is shown in Fig. 2 (right). The redundancy factor R
quickly drops to a value close to one (or R − 1 drops to a value close to zero), the value at which the number of equilibrium
equations equals the number of degrees of freedom at the contacts. In all four cases for large strains, the assembly is very
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Fig. 2. Left: Evolution with imposed strain ε11 of the fraction of frictional contacts S . Right: Evolution with imposed strain ε11 of the redundancy factor R .

Fig. 3. Probability density functions for eigenvalues λ of the discrete stiffness matrix of the assembly, for the initial state, at peak strength and at large
strain; case of a dense initial assembly and μ = 0.5. Left: full range of eigenvalues; right: zoom-in on range of small eigenvalues.

close to a statically-determinate state, consistent with yielding or plastic behaviour, at the macro-scale continuum level.
The reduction in the redundancy factor is faster for the lower value of interparticle friction coefficient μ. For the case with
the loose initial assembly and the low value of interparticle friction coefficient μ = 0.3, the redundancy factor drops very
slightly below one (to a value of R = 0.995 on average). Although this is not possible for a strictly static system, it is noted
that the deviation is small. This deviation may be due to the fact that the assembly moves dynamically through a sequence
of nearly-static equilibrium configurations [16].

5. Spectrum of stiffness matrix

Here the spectrum, i.e. the set of eigenvalues {λe}, of the discrete structural–mechanical stiffness matrix of the structure
(as outlined in Section 2.1) is investigated. The frictional state of (some of the) contacts is currently ignored.

Due to computer memory restrictions, it was not possible to compute the spectrum for the assembly of 50 000 particles.
Therefore for a small system of 2000 particles, and hence 6000 degrees of freedom, that is similar to the large system of
50 000 disks studied here, the spectrum has been determined for the dense initial state, the state at peak shear strength
and the state at large strain.

These three spectra are shown in Fig. 3 in the form of probability density functions for the eigenvalues (or ‘densities-of-
state’). Zero and near-zero eigenvalues have been removed (according to the criterion λ/λmax < 10−10), as these correspond
to rattlers and unstable configurations. The percentages of removed eigenvalues are 4% in the initial state, 11% at peak
strength and 8% at large strain. A comparison of the spectra (based on the eigenvalues remaining after the removal of the
zero and near-zero eigenvalues) in the initial state, at peak strength and at large strain shows that larger eigenvalues are
present in the initial state (see Fig. 3, left) and that at peak strength and at large strain there is a large increase in the
number of small eigenvalues (see Fig. 3, right). The large numbers of zero and near-zero eigenvalues correspond to defor-
mation modes that are associated with small force changes. Hence, they are indicative of (localised) plastic deformation at
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Fig. 4. Evolution with imposed strain ε11 of the actual stiffness tensor Lijkl (left) and the uniform-strain stiffness tensor Lε
ijkl (right). Case of dense initial

assembly with μ = 0.3. Since the strain tensor is symmetric, the combinations L1212 + L1221 and L2112 + L2121 are important for the shear stresses σ12

and σ21, respectively.

the macro-scale continuum level. Note that for specifically constructed assemblies, non-local rolling deformation is possible
[17]. For random, heterogeneous assemblies such non-local rolling deformation is unlikely to occur.

6. Elastic continuum stiffness tensor

By the definition of elastic deformation, the same stress path is followed upon reversal of the deformation. Upon reload-
ing, the same response is obtained. However, DEM simulations of unloading and reloading from states along the biaxial
deformation curve generally do not exhibit fully reversible behaviour, due to frictional forces and due to changes that occur
in the contact network, arising from the continuous process of contact creation and disruption [18].

Therefore, elastic deformation is defined here as the deformation that occurs when the contact network is fixed and
frictional constraints are ignored. Since the contact constitutive relation is linear, the macroscopic behaviour is linear and
reversible, i.e. elastic. This elastic behaviour is completely determined by the imposed strain ε and the structural–mechanical
stiffness matrix K (see Section 2.1).

Macro-scale, continuum elastic behaviour is characterised by the fourth-order elastic stiffness tensor Lijkl . In the initial,
geometrically isotropic state, this is an isotropic tensor that is described by the bulk and shear modulus (or equivalently,
the Young’s modulus and the Poisson’s ratio).

In continuum plasticity theories, it is generally assumed that the elastic stiffness tensor Lijkl is constant, i.e. it remains
equal to the initial isotropic stiffness tensor. The results of the DEM simulations show that large changes occur in the
fabric tensor Fij : the contact geometry becomes strongly anisotropic with increasing imposed deformation ε11, see Fig. 1
(right).

Therefore, the evolution of the elastic continuum stiffness tensor is investigated here in detail. In Section 2.1 it has
been explained how the elastic stress response to an imposed strain increment can be computed from a DEM simulation
with fixed and elastic contacts. By combining the information on the elastic stress response to a strain increment for three
different loading paths (two uniaxial deformation paths in perpendicular directions and one simple shear deformation path),
the full elastic stiffness tensor Lijkl can be determined. The results for Lijkl are shown in Fig. 4 (left) for the dense initial
assembly with μ = 0.3.

This stiffness tensor possesses the usual symmetries of stiffness tensors Lijkl = L jikl = Lkli j . Components of the stiffness
tensor that are not shown in Fig. 4 (left) are either zero (for example L1112 = 0) or reducible to those shown through these
symmetry relations. The elasticity tensor is orthotropic with axes of symmetry that are defined by the principal axes of the
fabric tensor [19]. Due to the changes in the fabric tensor, as shown in Fig. 1 (right), the elastic stiffness tensor becomes
strongly anisotropic. In particular, the transverse stiffness L2222 rapidly decreases.

The micromechanical prediction of the stiffness tensor Lijkl is much harder than may be expected, even in the isotropic
state (see for example [8,16,20,21]). The simplest prediction is based on the uniform-strain assumption, according to which
the relative displacement �c

i at the contact is given by �c
i = εi jlcj where lci is the branch vector at the contact. The resulting

elastic stiffness tensor Lε
ijkl is given by [22–24]:

Lε
ijkl =

1

A

∑
c∈C

Sc
iklcjl

c
l (9)

where A is the area occupied by the assembly. For isotropic assemblies it is well known that the actual deformation deviates
from that according to the uniform-strain assumption [8,20,21,25,26]. This non-affinity results in deviations between the
actual elastic moduli and those according to the uniform-strain assumption.
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The evolution of Lε
ijkl in the biaxial test, in which assemblies become (geometrically) anisotropic, is shown in Fig. 4

(right). By comparing the actual stiffness tensor and the uniform-strain stiffness tensor, the accuracy of the uniform-strain
assumption of affine motion, can be evaluated for anisotropic assemblies. The large differences between Lijkl and Lε

ijkl that
are apparent in Fig. 4 demonstrate the strong non-affine character of the motion, i.e. �c

i �= εi jlcj .
From Fig. 4 (right) it follows that Lε

1212 + Lε
1221 �= Lε

2112 + Lε
2112 in anisotropic assemblies. In simple shear (ε12 = ε21 �= 0,

ε11 = ε22 = 0) it follows from Eq. (9) that according to the uniform-strain assumption

σ12 − σ21 = kt
(
l̄2/A

)(∑
c∈C

[
sin4 θ c − cos4 θ c])ε12

where l̄2 is the average of the square of the (isotropically distributed) length of the branch vector and θ c is the orientation
of contact c. Hence, the uniform-strain assumption gives the prediction that for anisotropic assemblies σ12 �= σ21 in simple
shear. This is incorrect, since the average stress tensor is symmetric (in the absence of contact couples) due to the moment
equilibrium equations (see for example [27]). Note that the actual stiffness tensor always yields a symmetric stress tensor,
thus Lijkl satisfies L1212 + L1221 = L2112 + L2112. The curve for L2112 + L2112 is therefore not shown separately in Fig. 4 (left).

The changes in the elastic continuum stiffness tensor, that are caused by the changes in the fabric tensor, can be consid-
ered macroscopically as the result of a damage mechanism.

7. Conclusions

Continuum-mechanical plasticity of granular materials has been studied from the structural–mechanical viewpoint in
three different ways:

1. By comparing the total number of force degrees of freedom at contacts with the number of equilibrium equations,
i.e. by investigating the degree of redundancy of the system. This degree of redundancy depends on the coordination
number and the fraction of frictional contacts.

2. By investigating the spectrum of eigenvalues of the discrete stiffness matrix for the structure that is represented by the
particles and their interparticle contacts.

3. By investigating the evolution with imposed strain of the continuum elastic stiffness tensor of the system.

It is found that:

1. The degree of redundancy quickly evolves, with increasing imposed strain, towards a state with small redundancy, i.e.
the system becomes (almost) statically determinate.

2. The spectrum of eigenvalues of the discrete stiffness matrix contains many singular and near-singular modes at peak
strength and at large strain. Fewer large eigenvalues are present at peak strength and at large strain than in the initial
state.

3. The continuum elastic stiffness tensor becomes strongly anisotropic with increasing imposed strain and it shows strong
non-affinity of deformation.

All three ways of viewing the behaviour of granular materials from the structural–mechanical viewpoint show the signa-
ture of plastic behaviour at the continuum level. It is clear that employing a constant and isotropic elastic stiffness tensor
in continuum elasto-plastic constitutive relations is generally not correct.

The plastic, irreversible behaviour at the continuum, macro-scale level involves of two mechanisms at the micro-scale
level: Coulomb frictional behaviour at contacts and changes in the contact network, i.e. in fabric. The latter mechanism can
be considered as a damage mechanism.
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