
C. R. Mecanique 338 (2010) 615–626
Contents lists available at ScienceDirect

Comptes Rendus Mecanique

www.sciencedirect.com

Micromechanics of granular materials

Modelling of volume change in granular materials in relation
to their internal state

Modélisation des variations volumiques dans les matériaux granulaires prenant en
compte leur état interne

Eric Vincens ∗, Yuhanis Yunus, Bernard Cambou

Université de Lyon, LTDS, UMR CNRS 5513, École centrale de Lyon, 36, avenue Guy-de-Collongue, 69134 Écully cedex, France

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 20 October 2010

Keywords:
Granular media
DEM
Anisotropy
Characteristic state
Cycle
Hardening

Mots-clés :
Milieux granulaires
MED
Anisotropie
État caractéristique
Cycle
Écrouissage

Numerical simulations on samples composed of rigid spheres have been performed to
study the behaviour of granular materials under complex stress paths involving peculiar
triaxial monotonous stress paths and two-way cycling loading paths. These simulations
using the Discrete Element Method (DEM), pointed out the concomitant role played by the
void ratio and the anisotropy of fabric in the behaviour of these samples. Thus, the void
ratio and the anisotropy of fabric have been chosen as internal variables for the description
of the internal state of the material. An elastic-plastic model for soils, CJS, has been used
to study the evolution of the material at the global scale. This work shows the complex
path followed by some variables or key parameters involved in this model throughout
simulations. Moreover, the parameters that are usually taken as constants in the CJS model
definitely need to evolve with respect to the two internal variables in order to provide a
precise prediction of the behaviour of granular materials throughout complex loadings.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Des essais numériques ont été réalisés sur des échantillons composés de sphères rigides
pour étudier le comportement des matériaux granulaires sur des chemins de chargement
complexes, impliquant des chemins triaxiaux monotones ou cycliques alternés. Ces
simulations, qui utilisent la Méthode aux Eléments Discrets (MED), mettent en relief le rôle
concomitant de l’indice des vides et de l’anisotropie de structure dans le comportement de
ces échantillons. Aussi, l’indice des vides et l’anisotropie de structure ont-ils été choisis
comme variables pour décrire le comportement de l’état interne du matériau. Par la suite,
un modèle élastoplastique de sols, CJS, a été utilisé pour étudier l’évolution du matériau à
l’échelle de l’échantillon. Ce travail montre le chemin complexe suivi par certaines variables
ou paramètres de modèle impliqués dans CJS au cours de ces simulations. Les simulations
ont établi que ces paramètres de modèle, généralement des constantes dans CJS, doivent
être modifiés selon la valeur des deux variables internes identifiées afin d’obtenir une
description plus fine du comportement des matériaux granulaires sur des chemins de
contraintes complexes.
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1. Introduction

So far, constitutive modelling of granular materials remains an open problem. Recently, even if compact and efficient
phenomenological models were proposed to model the behaviour of soils [1–4] under monotonous loadings, accurate fore-
casts for granular soils submitted to complex loading paths are difficult to obtain. These difficulties arise from the lack of
precise information about the evolution of the internal structure of granular soils. To overcome these difficulties, discrete
element modelling (DEM) of granular materials can be very helpful. Indeed this method allows having access to information
at both the local and sample scale while the conditions of the tests are precisely controlled. First, the DEM has been used as
a substitute to experimental tests and as a convenient tool to analyse the global behaviour of granular materials in relation
to different loading conditions or physical properties for the studied samples ([5–10], among others). Other authors have
also used the DEM to reassess the general framework of elastoplasticity for granular material [11–13] and finally others
have used this method to study the evolution of physical internal local variables all along different loading paths able to
help to the improvement of constitutive modelling for soils [14–19].

This study is motivated by the latter aspect and DEM simulations of triaxial tests of different kinds were performed
by Yunus [18] to investigate the evolution of the internal state of samples composed of polydisperse spheres throughout
monotonous and cyclic loading paths. Different tests, involving different densities and different states of anisotropy, showed
the dependency of classical reference states with the density and the anisotropy of fabric (orientation of normals at con-
tact) [19]. These reference states are the state of maximum shear resistance and the characteristic state, transitory state
between volumetric contractive deformations to dilative volumetric deformations for the granular material when shearing
takes place. Thus, these two variables, void ratio and anisotropy of fabric, seem to be relevant to reflect the internal state of
the material when loading [19].

The goal of this article is to show how some variables or parameters involved in the phenomenological model CJS [20,21]
are related to the evolution of the two considered internal variables. This aspect was not addressed in previous works and
typically shows the benefit of the approach to improve the forecast of constitutive models for soils. In particular, it tends to
demonstrate that the parameters of constitutive models for soils must not be kept constant to provide a precise forecast of
granular samples’ behaviour. They must depend both on the void ratio and on the anisotropy of fabric.

First, the context of the simulations and some fundamental results obtained for the simulations performed from isotropic
or anisotropic states will be recalled [19]. More precisely, we present the evolution of quantities measured at the sample
scale throughout the performed triaxial simulations in relation with the internal state of the material. Secondly, the main
equations of the constitutive model for soils, CJS, in relation with the studied variables or the model parameters are pre-
sented. Finally, equations relating these model parameters to both void ratio and anisotropy of fabric are presented and a
forecast of the characteristic state using these models under a complex loading is compared to the one directly identified
throughout numerical simulations.

2. Granular materials and construction of samples

The DEM simulations have been performed using PFC3D software [22]. In this code, rigid spherical bodies with de-
formable contacts can be modelled. The law that rules the contact between two bodies is of Coulomb type and involves
both a normal and a tangential stiffness (kn and ks respectively). It also requires the definition of a friction ratio f . Further
dissipation in the system is included by means of a local non-viscous damping (also called Cundall’s damping) α defined at
the centre of each particle and proportional to acceleration forces.

The simulated material is composed of 10,000 spherical particles with diameters ranging from 3 cm to 6 cm. The pro-
cedure used for the sample construction has been accurately described in [19]. Three samples with different densities have
been obtained using three different values for the friction ratio: 0.7, 0.4 and 0 for the densest sample. Hereafter, they will
be denoted L50, M50 and D50. These friction ratios are imposed throughout the generation stage of the samples but are
set to 0.7 throughout the simulated triaxial tests. Table 1 gives the values of all mechanical parameters considered in the
numerical simulations.

Table 1
Mechanical properties of particles and walls.

Body Mechanical properties Values

Particles Normal rigidity 1.0e7 (N/m2)
Tangential rigidity 1.0e7 (N/m2)
Friction ratio 0.70
Damping coefficient 0.25

Walls Normal rigidity 1.0e7 (N/m2)
Tangential rigidity 1.0e7 (N/m2)
Friction ratio 0.0
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3. Numerical simulations

In this section we present the global trends obtained for some reference states such as the critical state, the state
at maximum shear resistance and the characteristical state throughout simulations of monotonous triaxial tests. These
simulations are performed from both isotropic and anisotropic initial states and involve samples having different initial
densities.

3.1. Variables considered to characterise the internal state

Two variables have been considered to characterise the internal state: the void ratio e and a measure of the anisotropy
of fabric, say the anisotropy of the orientation of normals at contacts. The tensor A associated to this anisotropy is derived
from the fourth rank tensor defining the tensor of fabric H which is defined by [23]:

Hijkl = 〈nin jnknl〉 (1)

where 〈 〉 denotes the average over all the contacts. More details about the use of such fourth tensor and its relationship
with the corresponding second order tensor of normals at contacts can be found in [18] or [24]. Then a tensor defining the
anisotropy of fabric is defined as:

Aijkl = Hijkl − 1

3
tr(Hijkl)δi jkl (2)

Due to the symmetry of the loading (triaxial tests) and for the sake of simplicity, the component A1111 will be taken as
a measure of the anisotropy within the sample. It is clear that, for the kind of loading analysed in this paper, a second
rank tensor would have given the same information. The fourth rank tensor has been chosen because it gives more accurate
information in case of complex loadings [18,24] which will be considered in future studies.

3.2. Monotonous loadings from an isotropic initial state

Different triaxial tests have been performed on isotropically placed materials considering different initial densities and a
confining stress of 50 kPa. Some main information obtained throughout the different simulations is drawn in Figs. 1(a), (c),
for a compression stress path, and in Figs. 1(b), (d) for an extension path. In Fig. 1, the stress ratio q/p is the ratio between
the second invariant of the stress tensor and the mean pressure. More complete results can be obtained in [19].

All the curves show that, for very large strains (axial strain larger than 30%), the sample reaches a unique state irrespec-
tive of the initial properties. This state corresponds to the well known “critical state” which is characterised by a critical
stress ratio (q/p), a critical void ratio for a given confining pressure [25–27] and a critical anisotropy. One can note that
the internal friction angle at the critical state obtained throughout a compression test and an extension test is different.
This result has previously been well established from experimental results [28]. This discrepancy is also noticeable for the
critical void ratio and the critical anisotropy obtained from a compression test and an extension test.

Fig. 2 shows the trends for the mobilised friction angle at maximum shear resistance state (peak state) and characteristic
state. When increasing the density of the material, the internal friction angle at maximum shear resistance (peak) increases
and the internal friction angle at characteristic state decreases. We recall that the characteristic state corresponds to a
transitory state where the volumetric deformations pass from a contractive to a dilative pattern [29]. This result is in
agreement with experimental results [30–32] and simulations performed on two-dimensional polygonal materials [33]. It
implies that the dilative domain increases when the material is getting denser.

3.3. Monotonous loadings performed from anisotropic states

To have more insight onto the global behaviour of considered samples, further simulated triaxial tests have been per-
formed on a sample exhibiting anisotropic initial states. In order to obtain an anisotropic state, sample L50 is first submitted
to an extensive axial loading until reaching one of the following axial strains ε1 of −2%, −5%, −10% or −45%, giving birth
to four samples exhibiting distinct “initial” states of anisotropy (dark grey path in Figs. 3(a), (b), (c)). These four samples are
subsequently and individually submitted to an axial loading in compression (stress reversal) performed up to an axial strain
equal to 45% (pale grey paths in Figs. 3(a), (b), (c)).

Similar tests were performed in order to create an initial anisotropy in compression (compression test up to axial strains
ε1 of 2%, 5%, 10% or 45%), and from these states, extension tests are performed. They are not shown here.

Figs. 4(a) and (b) show the different values obtained for the internal friction angle at characteristic state, at maximum
shear resistance (peak) and at critical state for these two series of simulations. As expected, the critical state is found
independent of the “initial” anisotropy indicating that history has been totally erased by the large deformations. This is
not the case for the peak state and the characteristic state. The peculiar shape of the curve related to the friction angle
at characteristic state tends to show its dependency both on void ratio and anisotropy. Indeed, considering in Fig. 4(b) the
results for the compression tests shown in Figs. 3(a), (b), (c), one can note that the friction angles at the characteristic state
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Fig. 1. Monotonous tests from isotropic states for samples: L50, M50, D50. (a), (c) Stress ratio and void ratio for a compression loading path
respectively. (b), (d) Stress ratio and void ratio for an extension loading path respectively. (e), (f) Evolution of the anisotropy measure A1111.

Fig. 2. Trends for the mobilised friction angle at characteristic state and at peak according to initial void ratio for sample L50: extension path, com-
pression path.

evolve in a global similar way as the value of the void ratio at the “initial state”: the angle decreases if the void ratio at
the “initial state” decreases. But the void ratio at “initial state” for the test performed from ε1 of −10% is greater than the
void ratio corresponding to tests performed from ε1 of 0%, −2% or −5%, though its friction angle at characteristic state is
lower than the ones obtained for these latter tests. The same findings could be pointed out for the tests performed from ε1
of −45%.
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Fig. 3. Compression tests performed from different anisotropic initial states for sample L50: (a) stress ratio, (b) void ratio, (c) anisotropy measure A1111.

Fig. 4. Evolution of the mobilised friction angle at characteristic state, at peak and at critical state for sample L50: (a) extension test, (b) compression test.

Fig. 5. Two-way cyclic loadings with axial strain amplitude of 2.5% for sample L50: (a) stress–strain curve, (b) volume strain evolution, (c) anisotropy
evolution.

This demonstrates the necessary influence of a factor other than density. As the anisotropy of fabric tends to increase
when the axial strain reached in the first stage increases, it seems to be responsible for damping out the influence of the
void ratio at characteristic state. A same conclusion can be drawn for the friction angle at maximum shear resistance.

3.4. Cyclic loadings

Apart from monotonous tests, two-way cyclic triaxial loadings including 15 cycles of 2.5% axial strain amplitude were
also performed on sample L50. These simulations were performed on a sample having an initial isotropic state. Figs. 5(a),
(b), (c) present the results of the simulations showing in particular the evolution of the two internal variables considered in
this paper: e (linked to εv ) and A1111. These tests will be analysed hereafter.

4. Presentation of CJS model

The CJS model is a phenomenological elastic-plastic model which has first been developed in 1989 [20] and improved
later by Maleki [21].
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Fig. 6. Definition of the yield surfaces linked to the two mechanisms of plastic strains in CJS model.

The model takes into account two plastic strain mechanisms: one is related to the evolution of the isotropic part of the
stress tensor, the other to the evolution of the deviatoric part of the stress tensor.

We will focus this short presentation on the latter mechanism which is described in the principal stress axes by a cone
presented in Fig. 6. The evolution of this yield surface is ruled by two hardening mechanisms, an isotropic hardening which
controls the spread angle (measured by the mean radius R in the deviatoric plane) of this cone and a kinematic hardening
which controls the position of its axis (defined by the non-dimensional tensor Xij).

The modelling of the plastic strain linked to the deviatoric mechanism of plasticity is defined from two usual equations:
the first one defines the yield surface itself and the second one defines the plastic flow rule.

The yield surface which has the same shape as the isotropic failure surface is written:

f (σi j, R, Xij) = qIIh(θ) − R I1 (3)

with

qII = (qijqi j)
1/2

qij = si j − Xij .I1

si j is the deviatoric part of the stress tensor, while I1 is the first invariant of the stress tensor, θ is the Lode angle in the
deviatoric plane and h(θ) = (1 − γ cos 3θ)1/6. γ is related to the dissymmetry of the yield surface which is stated to be
equal to the dissymmetry of the isotropic failure surface.

The plastic flow rule is written:

ε̇
dp
v = β

(
sII

schar
II

− 1

) |si j ε̇i j|
sII

(4)

where ε̇i j is the increment of the strain tensor and sII is the second invariant of the stress tensor. The value for schar
II in

Eq. (4) is obtained by stating the equation for the isotropic characteristic surface which defines the boundary between the
contractancy and the dilatancy domains in the stress space:

f
(
σ char

i j , Rchar
) = schar

II h(θ) − Rchar I1 (5)

The characteristic surface separates the stress space into two domains, the inner space where only contractive volumetric
deformations can take place and an outer domain where dilatancy is generated. For simplicity, this surface is generally sup-
posed to be isotropic and herein it is defined by an average radius equal to Rchar in the deviatoric plane. Some preliminary
studies [18] have shown that the dissymmetry of this surface is actually different than the one observed for the failure
surface and will be characterised by a specific γ value: γchar in this study.

5. Evolution of some parameters used in CJS model with the internal state

The numerical simulations based on the DEM method give access to different types of information: first, information
related to the internal state (through e and A1111) and secondly to the evolution of some variables or parameters used
in model CJS such as XII , R , β , Rchar and γchar with respect to the internal state. The scalar XII associated to the stress
anisotropy is defined the same way as qII was previously defined.

A first study involving the anisotropy XII has been performed based on the analysis of the cyclic simulations described
in Fig. 5. Figs. 7(a) and 8(a) present the path of this variable throughout the compression stages and extension stages of the
two-way cycles respectively. Figs. 7(b) and 8(b) demonstrate that a close relationship exists between the anisotropy XII and
the anisotropy of normal at contacts which is a local anisotropy. The relation between XII and A1111 seems to be linear in
a first approximation for the stress path considered in this work.
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Fig. 7. Evolution of the anisotropy XII throughout the compression stages of two-way cyclic loadings (ε1 = 2.5%): (a) against the number of cycles of loading,
(b) against the local anisotropy measure A1111.

Fig. 8. Evolution of the anisotropy XII throughout the extension stages of two-way cyclic loadings (ε1 = 2.5%): (a) against the number of cycles of loading,
(b) against the local anisotropy measure A1111.

The evolution of the elastic radius R of the deviatoric yield surface is given in Fig. 9(a) throughout both the compression
and extension stages. The methodology used to obtain the different values for R is precisely explained in [19]. To identify
R , we identify throughout the cycles the corresponding state of stress (second invariant of the stress tensor) when the
dissipated energy from sliding at contacts in DEM starts to rise significantly. It signifies that, at this point, the irreversibilities
within the sample become significant. R can only be identified when a reversal of loading direction takes place and is
associated to the domain limited by the stress point mentioned before, and the maximum value of the second invariant of
the stress tensor at reversal of loading.

The evolution for R is quite different throughout the stages of cycling and depends on the stress path. For the compres-
sion stages, a clear link between R and e can be identified, but this result seems to be more difficult to propose for the
extension stages. This difficulty may arise from the hypothesis of considering γ as a constant throughout the cyclic loading.

A second analysis, involving the parameters defining the flow rule, say Rchar , γchar , β has been performed. For this, the
two series of numerical simulations corresponding to monotonous loading applied on sample with an anisotropic “initial
state”, as presented in Fig. 3, have been used first. For convenience, we introduce normalised values for the internal variables
e and A1111 defined by:

Anor = Acr
1111 − Aini

1111

Acr
1111

and enor = ecr − eini

emin − ecr
(6)

The superscript cr stands for a value computed at the critical state, ini at the “initial state” (beginning of a stage of com-
pression or extension throughout cycles) and emin is the minimum void ratio for the material.
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Fig. 9. Evolution of the elastic radius of the deviatoric yield surface throughout compression and extension stages of two-way cyclic loadings (ε1 = 2.5%):
(a) against the number of cycles of loading, (b) against the void ratio at the beginning of each stage.

Fig. 10. Evolution of the radius of the isotropic characteristic surface throughout different loadings performed from different initial states corresponding to
an initial value for the axial strain: (a), (b) compression stress path, (c), (d) extension stress path.

The results are depicted in Figs. 10(a)–(d), 11(a)–(d) and 12(a)–(d) with bullets. They show that the parameters Rchar ,
γchar , β depend not only on an isotropic internal variable enor but also on an internal variable related to the anisotropy Anor .
This aspect is never taken into account in usual constitutive model for soils.

Then, a bilinear relationship is introduced to relate the model parameters with the internal normalised variables:

β = B0 − ψ |Anor| + ξ(enor) (7)
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Fig. 11. Evolution of the dissymmetry of the isotropic characteristic surface throughout different loadings performed from different initial states correspond-
ing to an initial value for the axial strain: (a), (b) compression stress path, (c), (d) extension stress path.

γchar = C0 − η|Anor| + λ(enor) (8)

Rchar = D0 − δ|Anor| + τ (enor) (9)

with parameters B0, ψ , ξ , C0, η, λ, D0, δ, τ for the relationships. The result given by the bilinear relationships (model) is
also depicted in Figs. 10(a)–(d), 11(a)–(d) and 12(a)–(d).

The set of parameters involved in Eqs. (7), (8) and (9) is identified throughout the compression and extension stress paths
of the tests performed from different anisotropic states mentioned in Section 3.2. Nevertheless, since different quantitative
patterns were obtained according to the stress path, two sets of parameters were settled, one for a compression stress path
and one for the extension stress path. The values for these parameters can be found in Tables 2, 3 and 4 for the model
parameters β , γchar and Rchar respectively. It tends to demonstrate that the behaviour of granular soils in compression or
extension paths is quite different. This feature is generally not addressed in the usual constitutive model for granular soil
(apart from the introduction of parameter γ related to the dissymmetry of the failure surface in the deviatoric plane).

The models defined by Eqs. (7), (8) and (9) have then been used to define the value for the stress ratio q/p at the
characteristic state q/pchar for a different stress path than the one used for the identification of the parameters. For this
purpose, the 15 two-way cyclic loadings presented in Fig. 5 are considered. The forecast obtained is drawn in Figs. 13(a),
(b) and compared with the values directly identified throughout the cyclic simulations. The prediction obtained here is very
good and provides a first validation of the models defined here above. The values of the stress ratio for the characteristic
state obtained by the default process in the CJS model are also given in Figs. 13(a) and (b). In the CJS model, the char-
acteristic state is not likely to evolve and q/pchar is kept constant throughout the cycles but different in compression and
extension. Generally, the value in compression is identified by a monotonous compression triaxial test (sample supposed to
be in an initial isotropic state). For simplicity, the corresponding value in extension is generally not identified by means of a
monotonous extension test but can be deduced from the CJS model considering that the dissymmetry of the characteristic
surface γchar is equal to that of the failure surface γ . Guided by this usual identification process, q/pchar was found equal to
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Fig. 12. Evolution of the parameter β involved in the flow rule associated to the deviatoric plastic mechanism throughout different loadings performed
from different initial states corresponding to an initial value for the axial strain: (a), (b) compression stress path, (c), (d) extension stress path.

Table 2
Values of the parameters related to the bilinear model for β .

Parameters Compression Extension

B0 0.4940 1.1977
ξ −0.2133 −0.8973
ψ 0.1398 0.2401

Table 3
Values of the parameters related to the bilinear model for γchar .

Parameters Compression Extension

C0 1.0823 0.1151
λ −1.0116 0.7435
η 0.4740 −0.1805

0.726 for L50. Indeed, since both extension and compression tests are available, γ can be computed stating that both stress
states at peak in compression and extension belong to the same failure surface written as:

f
(
σ

fail
i j , Rfail

) = sIIh(θ) − Rfail I1 (10)

with sII the second invariant of the stress tensor written at maximum shear resistance (failure), and Rfail the isotropic mean
radius of the failure surface, h(θ) = (1 − γ cos 3θ)1/6 and θ is the Lode angle in the deviatoric plane. Then, γ is derived
from the ratio:

( sII
I1

)
fail
ext

( sII )
fail
comp

= (1 − γ )1/6

(1 + γ )1/6
(11)
I1
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Table 4
Values of the parameters related to the bilinear model for Rchar .

Parameters Compression Extension

D0 0.1929 0.2042
τ −0.0249 −0.0601
δ 0.0110 0.0126

Fig. 13. Predictive model for the value of the stress ratio at the characteristic state throughout two-way cyclic loadings and typical values identified in
classical version of CJS: (a) compression stage, (b) extension stage.

For L50, γ was found equal to 0.54. Then, since it was stated that the characteristic surface has the same dissymmetry as
the failure surface:

(
q
p )char

ext

(
q
p )char

comp

= (1 − γ )1/6

(1 + γ )1/6
(12)

so q/pchar in extension is equal to 0.594.
One can note the benefits from taking into account of both the void ratio and the anisotropy (Eqs. (7), (8), (9)) in order

to model the decreasing value of the stress ratio at characteristic state throughout cycles. Nevertheless, one can also note
that it was obtained with numerous parameters and further studies are required in order to relate them to values obtained
for example at the critical state, state which is peculiar since being unique for a granular material. Moreover, the aim of
further work will be to propose a method giving the access to the local anisotropy by means of a measure of quantities at
the sample scale.

6. Conclusions

Numerical simulations of monotonous and two-way cyclic triaxial tests were performed on a granular material composed
of spheres. Different reference states were derived from these simulations: the characteristic state, the state at maximum
shear resistance and the critical state. The first two states were found strongly dependent on the internal state of the mate-
rial, that is to say, the void ratio and the anisotropy of normals at contacts. Some relationships were drawn between some
variables involved in the constitutive model for granular soil CJS and the evolution of the internal state of the granular
material. The variable related to anisotropy in this model was then found closely related to the local anisotropy. The simula-
tions show also that the parameters involved in the CJS model depend not only on the void ratio but also on the anisotropy
of the material. Bilinear relationships were designed to correlate some key parameters associated to the flow rule of the
deviatoric plastic mechanism to the internal state. Their relevancy was established but further study is required to stress the
identification of the parameters and to provide a measure of the local anisotropy by a measure of quantities at the sample
scale.
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