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The isotropic compression of polydisperse packings of frictionless spheres is modeled with
the Discrete Element Method (DEM). The evolution of coordination number, fraction of
rattlers, isotropic fabric, and pressure (isotropic stress) is reported as function of volume
fraction for different system parameters. The power law relationship, with power ≈ 1/2,
between coordination number and volume fraction is confirmed in the jammed state
for a broad range of volume fractions and for different (moderate) polydispersities. The
polydispersity in the packing causes a shift of the critical volume fraction, i.e., more
heterogeneous packings jam at higher volume fractions. Close to jamming, the coordination
number and the jamming volume fraction itself depend on both history and rate. At larger
densities, neither the deformation history nor the loading rate have a significant effect on
the evolution of the coordination number.
Concerning the fabric tensor, comparing our DEM results to theoretical predictions, good
agreement for different polydispersities is observed. An analytical expression for the
pressure as function of isotropic (volumetric) strain is proposed for polydisperse packings,
based on the assumption of uniform deformation. We note that, besides the implicit
proportionality to contact number density (or fabric), no single power-law is evidenced in
the relation between pressure and isotropic strain. However, starting from zero pressure
at the jamming point, a linear term with a quadratic correction describes the stress
evolution rather well for a broad range of densities and for various polydispersities. Finally,
an incremental evolution equation is proposed for both fabric and stress, as function of
isotropic strain, and involving the coordination number and the fraction of rattlers, as
starting point for further studies involving anisotropic deformations.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

La compression isotrope d’assemblages polydisperses de sphères sans frottement est
modélisée par une méthode aux éléments discrets (DEM). L’évolution du nombre de
coordination, de la fraction de « rattlers » (les particules instables, sans contactes), de la
texture isotrope et de la pression (contrainte isotrope) est étudiée en fonction de la
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fraction volumique pour différentes valeurs des paramètres du système. Une relation
en loi puissance, avec un exposé proche de 0,5, entre le nombre de coordination et
la fraction volumique est confirmée en régime de blocage pour une large gamme de
fractions volumiques et pour différentes polydispersités. La polydispersité de l’assemblage
induit un décalage de la fraction volumique critique, c’est-à-dire que les assemblages plus
hétérogènes se bloquent à des fractions volumiques plus élevées. Au voisinage du jamming,
le nombre de coordination et la fraction volumique de blocage dépendent à la fois de
l’histoire et de la vitesse de chargement. A des densités plus élevées, ni l’histoire des
déformations et ni la vitesse de chargement ont un effet significatif sur l’évolution du
nombre de coordination.
En ce qui concerne le tenseur de texture, la comparaison de nos résultats DEM avec les
prédictions théoriques est satisfaisante pour différentes polydispersités. Une expression
analytique de la pression en fonction des déformations volumiques est proposée pour
différents assemblages polydisperses, fondée sur une hypothèse de déformation uniforme.
On notera que, outre la proportionnalité implicite vis-à-vis de la densité de nombre de
contacts, aucune loi puissance ne peut être mise en évidence dans la relation donnant
la pression. Cependant, partant d’une pression nulle au point de blocage (jamming), un
terme linéaire peut décrire, avec une correction quadratique, l’évolution de la contrainte de
manière satisfaisante, pour une large gamme de densités et pour diverses polydispersités.
Finalement, une équation d’évolution incrémentale est proposée à la fois pour la texture
et la contrainte, en fonction de la déformation volumique, et impliquant le nombre de
coordination et la fraction de rattlers. Elle constitue un point de départ pour de futurs
travaux en relation avec les déformations anisotropes.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Dense granular materials show peculiar mechanical properties quite different from classical fluids or solids [1,2]. This is
true not only for realistic contact forces involving friction and adhesion [3,4], but already in the frictionless case. Describing
granular matter with continuum models is difficult due to their inherent discrete structure and since the origin of their
behavior is far from understood [4–8].

The transition from liquid to solid phases in disordered systems is generally investigated in the context of jamming
[6,7,9]. Liu and Nagel [5] have suggested that this concept can be applied to different materials in a single framework using
a jamming phase diagram with temperature, shear stress, and volume fraction as control parameters. (The volume fraction
is the ratio of solid volume to total volume.) For athermal systems like granular materials jamming, i.e., the transition
from fluid-like to solid-like behavior, is then essentially determined by the volume fraction and the shear stress [10–13].
Particularly, if a granular packing is subject to isotropic compression the shear stress is practically zero and the only control
parameter is the volume fraction, or equivalently the density (which is the product of volume fraction and material density).
Recent numerical and experimental studies with disk and sphere assemblies were performed to identify the critical value at
which jamming first occurs [6,14–16]. For monodisperse systems it corresponds approximately to the random close packing
[9,15,16]. Other quantities such as coordination number and pressure were reported to evolve as power laws of the volume
fraction in a small interval above the jamming density [6,7,15], resembling a phase transition and critical phenomena [1,2,
5,7,15].

Another issue is predicting the mechanical properties of granular materials, which are controlled by the internal structure
of the assembly of grains – where the internal structure itself depends on the history of the sample. Although, particles
are much smaller than the packing, the presence of discrete force chains in the contact network can lead to long range
correlations and thus precludes a straightforward continuum description. Fluctuations of quantities like stress are extreme
on the particle scale, i.e., much larger than the mean values, and only over rather large representative volumina these
fluctuations decay.

The fabric tensor is commonly used as first harmonic approximation to quantify the structure in disordered systems
with an average and a deviatoric (anisotropic) contact density [17,18]. Numerical studies of the fabric tensor under isotropic
deformation of systems with disks, for different polydispersities, have been realized [17,19] and at least the contact number
density could be related to the first three moments of the size-distribution for isotropic situations. Advanced constitutive
models within the framework of continuum mechanics employ various definitions of the fabric tensor as a non-classical
field. For example, elasto-plasticity and hypoplasticity [20,21] were generalized to include more general structure field vari-
ables, however, accurate modelling of the effect of structure on the anisotropy of granular materials remains a challenge.

The goal of this study is to test the validity of the power law for the coordination number in polydisperse packings of
frictionless spheres also at relatively high volume fractions above jamming and to provide incremental evolution equations
for fabric and stress under isotropic deformation. For this, we perform DEM simulations, as introduced in Section 2, with
packings of different polydispersities, number of particles and loading rates. In Sections 3 and 4, we analyze numerically
the evolution of the coordination number and of the (isotropic) trace of fabric as function of volume fraction and compare
the result with theoretical predictions in Refs. [17,22]. In Section 5, based on a theory derived in Ref. [22], we present an
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Fig. 1. Probability density function of the uniform distribution.

analytical expression for the pressure as function of the volume fraction, resulting in an incremental evolution equation for
isotropic structure (fabric) and stress.

2. Simulation method

The Discrete Element Method (DEM) [3,4,23] allows us to enclose frictionless particles in a cubic volume with periodic
boundary conditions. A linear viscoelastic contact model determines the particle contact forces in the normal direction. In
order to reduce dynamical effects and shorten relaxation times an artificial viscous background dissipation proportional to
the particle velocity is added, resembling the damping due to a background medium. In all simulations gravity is neglected,
so that the applied deformations can be assumed isotropic.

2.1. Simulation parameters

Typical values of the simulation parameters are: system size N = 1000, 5000, or 10 000 particles with average radius
〈r〉 = 1 [mm], density ρ = 2000 [kg/m3], elastic stiffness kn = 108 [kg/s2], particle damping coefficient γ = 1 [kg/s], back-
ground dissipation γb = 0.1 [kg/s] (see Ref. [4] for a discussion of these artificial units, which can be re-scaled due to the
simplicity of the contact model). Since the particle size distribution is polydisperse, the contact time depends on the radius
of the particles. For example, tc = 0.31 [μs] is the duration of a contact between the smallest and the biggest particles,
with the polydispersity parameter w = rmax/rmin = 3 as defined below. The contact time between two average particles
with r/〈r〉 = 1, is tc = 0.64 [μs] and their mutual coefficient of restitution is r = 0.92. Because tc is stiffness dependent and
can be scaled arbitrarily [4], we do not consider it as an important simulation parameter (as long as the deformation is
performed slow, i.e., quasi-statically). Increasing stiffness leads to smaller tc , i.e., the system has a shorter response time,
but has otherwise no effect on the quasi-static results presented in this study.

In order to quantify the volume fraction rate of change during isotropic deformation, the relative loading rate for pack-
ings undergoing the same deformation is defined as D = Tref/Tsim, where Tref = 1000 [μs] is the duration of the fastest
simulation. Values of D used for simulations are 10−3, 10−2, 10−1 and 1.

A typical deformation is applied in a strain-controlled manner to the system boundaries (periodic “walls”), with a cosine-
shape in order to avoid shocks. In a few cases, other strain functions such as pressure-controlled “wall” displacement and
uniform strain field deformation were tested. In the latter case, the particle displacements are determined such that the
instantaneous strain field is uniform inside the packing, but relaxation is allowed due to the interactions. We observe that
there are no strong differences in the simulation results obtained from different methods as long as the deformation rates
are small. (Therefore we do not discuss the actual strain rate, but refer to the scaled (relative) inverse period of deformation
D = Tref/Tsim as dimensionless rate.)

2.2. Polydispersity

The polydispersity of the particles can be quantified by the width w = rmax/rmin of the uniform distribution (Fig. 1):

f (r) = w + 1

2(w − 1)〈r〉Θ
(

2w〈r〉
w + 1

− r

)
Θ

(
r − 2〈r〉

w + 1

)
(1)

with the step function Θ(x � 0) = 1 and Θ(x < 0) = 0. The dimensionless moments of the size distribution can be expressed
as functions of w:

r̂k := 〈rk〉
〈r〉k

= 2k

(k + 1)(w + 1)k

k∑
wi (2)
i=0
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Fig. 2. Snapshots of the (a) initial (fully) random configuration of the particles with big (artificial) overlaps and (b) the situation after only 40 μs compression
when all artificial overlaps have disappeared. The color code indicates overlaps of the particles (red: big overlaps, blue: no overlap). (c) Snapshot of the
relaxed granular “fluid” with volume fraction νi = 0.64. Note that although particles are densely packed they have still practically no overlap, since the
volume fraction is below the jamming value νj . (d) Snapshot of the strongly compressed packing, with νmax = 0.75 using the same color code as in (a), (b)
and (c). (e) Evolution of the volume fraction, the potential and the kinetic energy during initial compression and relaxation and (f) the loading–unloading
cycle.

with the first two moments r̂1 = 1, and r̂2 = 4
3

1+w+w2

(w+1)2 . Typical values of w are 1, 2 and 3, where w = 1 corresponds to a

monodisperse packing. A few simulations with larger w � 8 were also performed. Simulations with other size distribution
functions and a theoretical analysis of polydisperse packings will be published elsewhere [22].

2.3. Preparation and test procedure

The initial packing is obtained by compressing a (fully) random granular “gas” up to a volume fraction close to jamming
and letting it relax. Fig. 2 shows the initial configuration of the particles, the granular gas state, before, and the granular fluid
state, after first relaxation at an initial volume fraction below jamming νi = 0.64. From the granular fluid, below jamming,
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the system is slowly compressed and the evolution of the kinetic and potential energies are displayed during relaxation and
compression. The packings are isotropically compressed by moving simultaneously inwards the (fictive, periodic) boundaries
of the simulation domain, see Figs. 2(b)–2(d). After maximal compression to νmax = 0.75, the process is reversed until the
initial volume fraction νi is recovered.

Besides (artificial) contacts at the initial state (which disappear immediately due to the high repulsive forces involved),
contacts are closed permanently only above the jamming volume fraction. The potential energy is an indicator of the over-
laps of the particles. However, since the compression is rather fast, one can observe considerable potential energy due to
collisions in the fluid-like state, at densities νi < ν < νj , with jamming volume fraction νj . From Fig. 2(f), in the loading or
unloading state, one observes that the kinetic energy is smaller than the potential energy at the higher densities. In the
(isotropic) jammed, solid state, the potential energy is considerably larger than the kinetic energy, whereas in the fluid-like
state referred to above it is significantly smaller. This is a rough indicator of the jammed regime, however, not really an ob-
jective criterion due to the dynamic loading and unloading. Close to the maximal volume fraction, due to our co-sinusoidal
loading procedure, the kinetic energy drops exponentially over about two orders of magnitude between times t = 480 μs
and ∼ 580 μs. For larger times, the rate of change increases so that the kinetic energy increases again, showing jumps
whenever the packing re-arranges.

Around time t = 850 μs, the volume fraction drops below the unloading jamming value and the kinetic energy becomes
larger than the potential energy. Also in this fluid-like high-density granular gas, the kinetic energy drops approximately
exponentially due to collisional cooling, however, with a different rate as before in the high density, slow deformation
regime.

3. Evolution of the coordination number

In theory, the jamming transition occurs at the isostatic point [7,15,24]. In an isostatic packing of frictionless particles,
the coordination number, i.e., the average number of contacts per particle, is C = 2D where D is the dimensionality of
the system. One can expect smaller coordination numbers when tangential elastic forces are involved, however, even in
simulations and experiments with very small tangential forces, the reported values of C are consistently below 2D . This
is due to the definition of an isostatic packing, which excludes all particles that do not belong to the force network, i.e.,
ideally, particles with exactly zero contacts are excluded. Nevertheless, in addition to the particles with zero contacts, there
may be particles having a finite number of contacts for some short time, which do not contribute to the mechanical stability
of the packing. The contacts of these rattlers are transient because the repulsive contact forces push them away from the
mechanically stable backbone. Thus, if the packing were allowed to relax after every deformation step, or be deformed very
slowly, these particles would lose all of their contacts.

Although it is possible to check numerically the contribution of every particle to the force network [25] an easier al-
though less rigorous way to identify rattlers is to just count their contacts. Since frictionless particles with less than four
contacts are not mechanically stable they are defined as rattlers. This leads to the following abbreviations and definitions as
used in the rest of this study:

N Total number of particles

N4 := NC�4 Number of particles with at least 4 contacts

M Total number of contacts

M4 := MC�4 Total number of contacts of particles with at least 4 contacts

Cr := M

N
Coordination number (classical definition)

C := Cm = M4

N
Coordination number (modified definition)

C∗ := M4

N4
= C

1 − φr
Corrected coordination number

φr := N − N4

N
(Number) fraction of rattlers

ν := 1

V

∑
p∈N

V p Volume fraction of the particles

ν∗ := ν − νr = 1

V

∑
p∈N4

V p Volume fraction of the particles excluding rattlers

νr := 1

V

∑
V p Volume fraction of rattlers
p /∈N4
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Fig. 3. (a) Evolution of the fraction of rattlers as function of volume during fraction during unloading for a simulation with N = 10 000, w = 3, and
D = 0.001. Insert: Fit of Eq. (3). (b) Comparison of the coordination numbers computed using the classical Cr , the modified C and the corrected C∗ , for the
same simulation. The data for loading and unloading are shown by solid and dashed lines, respectively.

The difference between the coordination numbers Cr and C is not caused by the “ideal rattlers” with C = 0, since those
do not contribute to C anyway. It is caused by those particles (virtual, dynamic rattlers) with 1 � C � 3, which are not
mechanically stable, i.e., temporary, members of the contact network. They are neglected when counting the contacts M4.
In the following, we will use the modified coordination number C := Cm , instead of Cr , since it better resembles the slow,
quasi-static deformation mode of the system, as will be discussed below.

The ratio of M4 and N4 provides the corrected coordination number C∗ , which perfectly follows the isostaticity arguments.
The fraction of rattlers and a comparison between the classical, the modified and the corrected definitions are shown
in Fig. 3. The values of Cr and Cm are very similar, since the number of contacts originating from particles with C = 1,
2, or 3 contacts is small anyway and decays with decaying rate of deformation. As to be expected, the value of C∗ is
considerably larger and all coordination numbers display a sharp jump at the jamming transition during unloading. In the
left panel, Fig. 3(a), the respective fractions of particles with different numbers of contacts are shown, where the red solid
line represents φr . Coming from high densities, the fraction of rattlers increases and jumps to unity when approaching νr . In
the right panel, Fig. 3(b), the different versions of the coordination numbers are compared, showing that, while the loading
and unloading branch are clearly different, Cr , and C , are only slightly different close to and below the critical volume
fraction νc . Even though larger, C∗ behaves qualitatively similar below and above the jamming transition.

However, since C∗ involves not all particles, it cannot easily be related to the total particle volume, or the mass-density
of the system – that is equivalent to the volume fraction, i.e., ρ = ρ pν , with the particle material density ρ p – as experi-
mentally accessible for many systems. The average contact number density νC can be related to the mechanically relevant
contact number density ν∗C∗ (without rattlers):

νC = N〈V p〉
V

C = (1 − φr)N〈V p〉
V

C

1 − φr
= (1 − φr)νC∗ �= ν∗C∗ = (ν − νr)C∗

where V is the volume occupied by the packing. The non-equality could become an equal only if the average volume of
rattlers is equal to the average volume of all particles, i.e., if νr/ν = φr . Unfortunately, there is no simple exact relation
between νC and ν∗C∗ , as discussed below in Section 4, since the smaller particles are more likely to be rattlers. Therefore,
we will work with the parameters ν , C∗(ν) (see below), and φr(ν).

The fraction of rattlers, in the quasi-static limit, i.e., for extremely slow deformations, as presented below, obeys the
empirical relation:

φr(ν) = φc exp

[
−φν

(
ν

νc
− 1

)]
(3)

for ν � νc and φr(ν < νc) = 1 otherwise. This involves two fit parameters: (i) the fraction of rattlers at jamming, φc; and
(ii) the rate of decay of rattlers with increasing packing fraction, φν . A fit of φr(ν) is shown in the insert of Fig. 3(a). Note
that νc cannot be obtained by the fit like equation (3), but has to be obtained by other means [14], e.g., by identification
of the jump/discontinuity of φr(νc). Typical values are φc ≈ 0.13 ± 0.03 and φν ≈ 15 ± 2. The observation that one has
φr(νRLP) ≈ 1 at the random loose packing fraction νRLP ≈ 0.57 is presumably accidental.

The corrected coordination number C∗ , obtained by disregarding rattlers, obeys a power law of volume fraction as re-
ported previously [6,7,15,24]:

C∗(ν) = C0 + C1

(
ν

νc
− 1

)α

(4)

where νc is the critical volume fraction, C0 is the critical coordination number, and C1 is the prefactor for the power-law
with power α. Given C0 = 4, 6 in two and three dimensions, for isostatic packings of frictionless particles, this would leave
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Fig. 4. Coordination number C as function of volume fraction ν for packings of 1000 particles with different size distributions of width w , as given in
the figure. The arrows indicate the compression (up) and decompression (down) directions. Insert: The lines are fits of the corrected coordination number
according to Eq. (4), with the fit-parameters given in Table 1.

Table 1
(a) Numerical values of the fit-parameters obtained by fitting Eq. (4) to the unloading simulation data of Fig. 4, in the intervals [0.655:0.85], [0.66:0.85]
and [0.672:0.85] for w = 1,2 and 3, respectively. (b) Numerical values of the fit-parameters obtained by fitting Eq. (4) to the unloading simulation data of
Fig. 4, in the same intervals and fixing C0 = 6.

(a) (b)

w 1 2 3 w 1 2 3

C0 6.0000 5.9690 6.1158 C0 6 6 6
C1 8.7989 8.5539 7.9439 C1 8.7363 8.5561 7.9367
α 0.5363 0.5776 0.5737 α 0.5662 0.5826 0.5542
νc 0.6524 0.6582 0.6718 νc 0.6548 0.6585 0.6707

three more fit parameters: (iii) νc ≈ νRCP; (iv) C1 ≈ 8; and (v) α ≈ 0.5. However, we sometimes allow also C0 as a free
parameter in order to check the consistency with the isostaticity assumption for the packings.

Below we check this analytical expression for C∗(ν) for the unloading branch of our simulations, since these data show
much less dynamical artefacts than data from the loading branch. We do not discuss cyclic loading and unloading, which
can lead to a continuous “drift” (increase) of νc with each loading cycle [26]. Within the present paper, the hysteresis under
cyclic loading, and possible quantitative information that can be extracted from it (as, e.g., in magnetic systems), is not
studied in detail.

Note that we do not identify the νc for unloading with the jamming volume fraction ν j . Actually, we doubt that there is
one jamming volume fraction. The critical value rather depends on the contact properties and on the history of the packing,
especially when realistic properties like friction are involved, but also for the frictionless case studied here. A detailed study
of the dependence of νc on the contact properties and on the history of the packing in general is far from the scope of this
study, so that we focus mainly on the first unloading branch.

3.1. Influence of polydispersity

In order to understand the effect of polydispersity, we first perform simulations using three rather small packings of
1000 particles with three different widths of the size distribution w = 1, 2, 3. These samples are compressed and then
decompressed, at the same rate, between νi = 0.5 and νmax = 0.9. Fig. 4 displays the relation between volume fraction
and coordination number for these packings. The finite values of the coordination number during compression, at low
densities, make the transition from fluid to solid state difficult to detect. This is due to temporary contacts which arise from
the dynamics at low densities. If the packing is allowed to relax the dynamic contacts become less and the state of zero
coordination is approached, as expected.1 However, not even our slowest simulations allowed us to avoid dynamic contacts
in the compression branch.

1 Remark on the fit of Eq. (4). We choose to fit Eq. (4) to the decompression branch of the simulation data because the system’s kinetic to potential energy
ratio is much lower than during compression in this density range, see Fig. 2(f), even for the rather fast compression used. Furthermore, boundary effects
are less important during decompression because the system is expanding and possible spurious contacts caused by the (virtual, periodic) wall motion are
avoided. In a separate set of simulations, we find that by adding extra relaxation between deformation steps, the compression and decompression branches
of C(ν) can get closer to each other (data not shown). The distance between the branches reduces with the relaxation step but does not disappear even
for the largest relaxation-times. Since the unloading branch is much less sensible to the protocol and rate of deformation, from now on, we will fit Eq. (4),
i.e., the analytical expression of the corrected coordination number, exclusively to the decompression branch of the simulation data.
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Fig. 5. (a) Coordination number C as function of volume fraction ν for different compression histories. (b) Evolution of C∗ during decompression. The solid
line is the fit of Eq. (4) to the data obtained from the moderately compressed sample (ν : 0.64 � 0.75).

Fig. 6. Evolution of the coordination number for different system sizes, with w = 3 and D = 0.5. Insert: Fits of the corrected coordination number C∗
according to Eq. (4). The red, green and blue lines are the fits for N = 1000, 5000 and 10 000, respectively.

On the other hand, a much cleaner, very sharp decrease in C is observed during unloading (decompression), when we
approach νc from high densities, see Fig. 4. The fit of Eq. (4) to the corrected coordination number, C∗ , computed during
decompression, is shown in the insert of Fig. 4. The transition from the jammed to the unjammed state occurs at higher
volume fractions for more polydisperse, heterogeneous packings. A list of the numerical values of the fit parameters is given
in Table 1.

Even though the system is rather small and the deformation rate is rather high, the fitted parameters are almost con-
sistent with the isostaticity assumption, C0 = 6. When this is imposed, the fit parameters are quite close to each other and
become almost independent of w . Only for νc there is an increasing trend for increasing w .

3.2. History and system size dependence

It is especially interesting to see how simulation parameters such as deformation history and system size affect jamming
and the evolution of the coordination number. We studied the effect of deformation history by compressing and decom-
pressing isotropically two packings with 1000 particles and polydispersity w = 3, but for different volume fraction ranges.
The first sample is compressed from an initial state close to jamming up to a very high volume fraction (ν : 0.64 � 0.9) and
back. The second sample is compressed from the same initial state up to a moderate volume fraction (ν : 0.64 � 0.75) and
back.

Fig. 5(a) shows the evolution of the coordination number as function of ν for both samples. Although, the highly com-
pressed packing seems to have a larger critical volume fraction, the difference practically disappears when rattlers are
removed. Fig. 5(b) shows the corrected coordination number C∗ during decompression and the fit of Eq. (4) to the data
obtained from the moderately compressed sample. Note that the fit is also quite good as an extrapolation for stronger com-
pression, i.e., higher densities, suggesting that isotropic deformation history has no substantial effect on the coordination
number at higher volume fractions.

The size of the system has no effect on the critical volume fraction and the evolution of the coordination number. Fig. 6
illustrates the coordination number as function of volume fraction during a cycle of compression–decompression for three



578 F. Göncü et al. / C. R. Mecanique 338 (2010) 570–586
Table 2
Numerical values of the fit parameters of Eq. (4) for various system sizes and loading rates. All packings have the polydispersity parameter w = 3 and are
deformed within the range ν : 0.64 � 0.75. The fits are performed in the intervals [ν1 : ν2], with ν1 = 0.665 and ν2 = 0.75. ν

†
c are the volume fractions

at which the pressure vanishes during unloading, see Ref. [14]. Note that the data in Table 1 are slightly different (since they come from simulations with
different initial conditions), which tells us something about the sensitivity and variation of parameters with different initial configurations.

N = 1000 N = 5000 N = 10 000

D = 1 D = 0.5 D = 1 D = 0.5 D = 1 D = 0.5 D = 0.1 D = 0.01 D = 0.001

C0 5.0256 5.8221 5.7645 5.8838 5.7645 5.7887 6.0643 6.1587 6.1853
C1 7.5938 8.4875 8.2019 8.1661 8.2019 7.9915 8.4204 8.8347 8.7514
α 0.3904 0.5572 0.5279 0.5431 0.5279 0.5199 0.5909 0.6301 0.6318
νc 0.6650 0.6650 0.6654 0.6647 0.6654 0.6652 0.6648 0.6645 0.6644

ν
†
c 0.6652 0.6644 0.6624 0.6620 0.6627 0.6632 0.6633 0.6634 0.6633

Fig. 7. (a) Evolution of the coordination number for different deformation rates. Insert: Zoom into the decompression branch during transition from the
jammed to the unjammed state. (b) The corrected coordination number C∗ and the fits of Eq. (4). (c) Log–log plot of C∗ − C0 against (ν/νc − 1) from the
same data as in (a) and (b). (d) The ratio of data and fit, C∗/C∗(ν), indicates that the quality of the fit is better than one percent for the full range of data
[νc;0.75].

packings comprising N = 1000, 5000 and 10 000 particles. All samples are deformed at the same relative rate D = 0.5,
with the same polydispersity parameter w = 3. The small size systems show stronger fluctuations prior to jamming since
dynamical effects are more pronounced for these sytems. On the other hand, after jamming all curves obey a similar power
law as confirmed by the fits of Eq. (4) to the corrected coordination number C∗ , shown in the insert of Fig. 6.

The values of the critical volume fractions obtained from the fits are 0.6650 ± 0.0002, 0.6647 ± 0.0001, and
0.6652 ± 0.0001, for N = 1000, 5000, and 10 000, respectively. The other parameters, see Table 2, are very close to each
other and to those reported in Table 1. These rather small differences between the critical volume fractions (and also the
other fit parameters) for different N imply that the system size does not have an important effect on the evolution of the
(corrected) coordination number C∗ . Larger systems display smaller statistical fluctuations, however.

3.3. Effect of loading rate

The effect of the loading rate on jamming and the evolution of the coordination number is analyzed by applying isotropic
deformation to a polydisperse (w = 3) sample at various rates. Fig. 7(a) shows the evolution of the coordination number



F. Göncü et al. / C. R. Mecanique 338 (2010) 570–586 579
as function of volume fraction for a packing of 10 000 particles deformed at relative rates D = 1, 0.5, 0.1, 0.01, and 0.001.
The fits of Eq. (4) to the corrected coordination number are shown in Fig. 7(b) and the fit parameters are summarized in
Table 2.

The jamming transition should best be studied in the quasi-static limit, i.e., for D → 0, when the sample has infinitely
long time to relax. However, practically, this is impossible [15]. Using the fit of Eq. (4) for a systematic study of the defor-
mation rate effect on the critical volume fraction is not reliable due to the singularity of its derivative at this point. The
rapid change of the slope of C∗(ν) near jamming increases the sensitivity of other parameters to the fit range and causes
them to fluctuate. When studying the jamming transition, in recent studies, the densities very close to νc were carefully
studied. Note that here, we provide data for a much wider range of densities, far away from the transition – to be used for
practical applications. Therefore, the parameters and especially the exponents reported in this study can be slightly different
from those in previous studies.

For example, the exponent α 
 0.5 previously reported in [6] for 2D and [7,15] for 3D, cannot be always recovered
(see Table 2) for very slow compression; we rather find α 
 0.66 for the slowest compression rates. The critical volume
fraction, on the other hand, is not varying much and these variations are presumably due to the sensitive fit function with
a singular slope close to νc , as mentioned already above. In Ref. [14], alternative methods were compared to determine the
critical volume fraction based on the fraction of rattlers, the pressure, and the ratio of the kinetic and potential energies
of the packing. For a better, more objective analysis of rate effects, we believe that the fit should be used in conjunction
with at least one of these methods. Then, when obtained independently, νc is not a free fit parameter anymore. However,
since changing the loading rate seems to have no strong effect on νc , and the coordination numbers at volume fractions
considerably above νc , we do not pursue this further.

4. Fabric tensor

In the following, we compare the simulation results on the trace of the fabric tensor to the recent 3D predictions of
Durán et al. [22] that complement the older 2D results by Madadi et al. [17,19]. In these studies, the effect of polydispersity
on the trace of the fabric tensor was expressed in terms of the moments of the size distribution. The basic assumption, in
both 2D and 3D, is that the linear compacity cs , defined as the fraction of the particle surface shielded by its neighbors,
is independent of the particle radius. From this the trace of the fabric is found to be proportional to the contact number
density, νC , and a dimensionless pre-factor (see g3 below) that only depends on the moments of the size-distribution. Since
derivation is similar in both 2D and 3D, only some formulas are shown; for more details we refer to Refs. [17,19,22].

As first order approximation, in 3D, the mean number of contacts, C(r), of a particle with radius r is inversely propor-
tional to the fraction of its surface Ω(r)/(4π) shielded by a neighboring sphere of characteristic radius 〈r〉, such that:

C(r) = 4πcs

Ω(r)
(5)

where Ω(r) = 2π(1 − cosα), with the sinus and cosinus of the shielding half-angle, sinα = 1/(r/〈r〉 + 1) and cosα =√
1 − sin2 α, respectively. When inserting Eq. (5) into the definition of the average coordination number C = ∫ ∞

0 C(r) f (r)dr =
4πcs

∫ ∞
0 [ f (r)/Ω(r)]dr, it is possible to calculate explicitly the expected compacity for different C :

cs(C) = a2C

1 − C2 + C2r̂2
(6)

with the dimensionless second moment r̂2 from Eq. (2). Using the quadratic approximation of Durán et al. [22] for the
solid angle Ω(r) leads to a2 = Ω(〈r〉)/(4π) = 1

2 (1 − √
3/2), B2 = √

3/24a2, and C2 = B2(B2 − 5/6). For example, in the
monodisperse special case one has cs = a2C , so that inserting the isostatic limit C∗ = C(1 − φc) = 6 leads to cs = 6a2/(1 −
φc) ≈ 0.47 for φc ≈ 0.15, i.e., about half of the surface of particles is shielded close to the jamming point.

Fig. 8 shows the numerical data for the coordination number C(r) and the compacity cs(r) as function of r/〈r〉 for w = 3
(for which r̂2 = 13/12) and two different volume fractions: a very high one (ν ≈ 0.74) and one close to jamming (ν ≈ 0.67),
along with the predicted relations from Eqs. (5) and (6), for coordination number and compacity, respectively. Although,
Eq. (5) describes the size-dependent contact number qualitatively well for a broad range of densities, at small radii, the
contact number drops considerably below the predictions, see Figs. 8(a) and 8(b). The assumption of a constant compacity
is confirmed for the larger particle radii, but fails for smaller radii, see Figs. 8(c) and 8(d).

Using the average coordination number, C , or inserting C∗ = C/(1 − φr) into Eq. (6) leads to the red and blue data
sets, respectively. Clearly the theoretical prediction that uses C is superior to the one using C∗ . Nevertheless, we report
the interesting and intuitive observation that the latter coordination number has a lower limit C∗(r) � 4, since rattlers are
excluded. Since small particles have smaller surface area, their chance to have less than four contacts is higher, so that more
rattlers are from the small fractions. Interestingly, the data for cs(r) indicate that those small particles that are not rattlers
have a higher compacity than the average. Different shapes and wider size distributions have to be studied to allow more
general insights.
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Fig. 8. (a), (b) Average number of contacts C(r) as function of the normalized particle radius, including (red) and excluding (blue) rattlers, at different
volume fractions for packings with N = 10 000 particles. The points are data from the simulations while the solid lines are the analytical predictions of
Eq. (5) using either cs(C) (red) or cs(C∗) (blue), and thus confirming that using cs(C) = cs((1 − φr)C∗) in Eq. (6) is self-consistent. (c), (d) Linear compacity
cs as function of the normalized radius, computed from the same packings as in (a) and (b), including (red) and excluding (blue) rattlers. Again the solid
lines are the theoretical prediction of Eq. (6).

Using the definition of the average coordination number, C , the trace of the fabric can be written as detailed in Ref. [22]:

F V = tr(F) = (1/V )
∑
p∈V

V pC p = (N/V )

∞∫
0

dr V p(r)C(r) f (r) = g3νC (7)

with the volumes V p and the contact numbers C p of particles p, and the term g3, which contains the information about
the polydispersity, which is defined as [22]:

g3 = 〈r3〉Ω
〈r3〉 =

∫ ∞
0 r3[ f (r)/Ω(r)]dr

〈r3〉 ∫ ∞
0 [ f (r)/Ω(r)]dr

(8)

where the brackets 〈. . .〉Ω indicate the normalized averaging over the modified distribution function [ f (r)/Ω(r)]. Using
the moment expansion of Durán et al. [22], the lowest order analytical approximation (that involves moments up to order
k = 5) is:

g3 ≈
1 − B2 + C2 + (B2 − 2C2)

〈r4〉
〈r〉〈r3〉 + C2

〈r5〉
〈r〉2〈r3〉

1 + C2
[ 〈r2〉

〈r〉2 − 1
] (9)

where the constants B2 and C2 were defined in the previous section. This is considerably more involved than the 2D results
[17,19], since none of the above terms can be neglected [22]. Only for the monodisperse situation, one has the simplification
g3 = 1.

Eq. (7) is plotted in Fig. 9 using the simulation data for different distribution widths w . For all distributions and packing
densities from very loose up to very dense packings (ν ∼ 0.9), the proportionality between the trace of the fabric and the
contact density is well described by Eq. (9), when the correction factor g3 is used. More explicitly, the correction factor,
even though not perfect, improves the quality of the prediction considerably. The reason for the remaining disagreement
of order of 1% can be due to the assumption of particles of radius r being surrounded by particles of mean radius, due to
neglecting the overlap of the particles in the theoretical considerations, or due to the higher probability for small particles
to be rattlers.
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Fig. 9. The trace of the fabric tensor as given by Eq. (7) for different size distributions with w given in the insert from simulations with N = 1000
(“L3” indicates a larger simulation with N = 10 000 and “crystal” indicates an ordered lattice structure whereas w = 1 is a disordered, monodisperse
configuration). Each data-point corresponds to one density and fabric, as averaged over the whole system, at different densities during decompression.
Insert: The constant g3 plotted as function of w from its definition (◦), the analytical approximation (solid line) and the simulation data (+).

The moments of the size distribution can be expressed in terms of the relative width w using Eq. (2), which allows
us to study the behavior of g3 as a function of w . The insert of Fig. 9 shows the analytical approximation and the exact
definition of g3, from Eq. (8), along with the values of g3 obtained from the DEM simulation. For highly polydisperse
packings, corresponding to large w , the kth moment becomes 〈rk〉 → 〈r〉k2k/(k + 1) and g3 thus saturates at a constant
gmax

3 ≈ 1.62. Therefore, the influence of an increase in the polydispersity on tr(F) is limited for high w in the framework
of the approximations made. A more detailed study of this prediction for wide size distributions is, however, far from the
scope of this study.

5. Pressure

In this section, the pressure is introduced and related to the other system properties volume fraction, coordination
number, fraction of rattlers, and fabric. In order to better understand the final analytical expressions, the stress is rewritten
and re-phrased, starting from the traditional definitions.

The micromechanical stress tensor components for a (static) particle (in mechanical equilibrium) are defined as:

σ
p

i j = 1

V p

C p∑
c=1

lpc
i f pc

j (10)

where lpc = (rp − δc/2)n̂ is the branch vector of contact c and fpc = knδcn̂ is the (linear) force associated, with particle
radius, rp , overlap δc , spring-stiffness, kn , and the contact-direction unit vector, n̂. Here we assume [4] that the contact
point is located at the middle of the overlap.2 From these definitions, the trace of the stress for a single particle becomes:

tr
(
σ p) = kn

V p

C p∑
c=1

δc

(
rp − δc

2

)
(11)

with the number of contacts C p of particle p. For a packing of N particles, the trace of the average stress tensor can be
computed by weighing the particles according to their volume [27]:

tr(σ ) = 1

V

∑
p∈V

V p tr
(
σ p) = kn

V

N∑
p=1

(
rp

C p∑
c=1

δc − 1

2

C p∑
c=1

δ2
c

)
(12)

where V is the total volume of the packing.

2 A more realistic alternative would be to define it on the plane bisecting the particles in contact and split the overlap accordingly, however, the accuracy
gained in doing so would be negligible for small overlaps and similar particle radii.
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One can express V in terms of the volume fraction and the volume of the N particles as V = N〈V p〉/ν , with 〈V p〉 =
4π
3 〈r3

p〉, where the brackets denote averaging of a particle-property A p over all particles in a packing, e.g., 〈A〉 := 〈A p〉 =
1
N

∑N
p=1 A p . Introducing also the normalized average normal force for each particle p as φp ≡ f p/〈 f p〉, with f p = ∑C p

c=1 knδc ,
the trace of the averaged stress tensor becomes:

tr(σ ) = 3knν

4π〈r3〉
1

N

N∑
p=1

(
rp

C p∑
c=1

δc − 1

2

C p∑
c=1

δ2
c

)

= 3kn

4π

ν

〈r3〉

(〈 C p∑
c=1

δc

〉
〈rpφp〉 − 1

2

〈 C p∑
c=1

δ2
c

〉)

= 3kn

4π

νC〈δ〉c

〈r3〉
(

〈rpφp〉 − 〈δ2〉c

2〈δ〉c

)

where C = M4
N = 1

N

∑
p∈N4

C p is the mean coordination number (or just coordination number, averaged over all particles),

〈δ〉c ≡ 1
M4

∑
c∈M4

δc is the average overlap over all M4 contacts, of particles with four or more contacts that contribute to

the contact network, and we have used the identities: 〈∑C p

c=1 δc〉 ≡ C〈δ〉c and 〈∑C p

c=1 δ2
c 〉 ≡ C〈δ2〉c .

The non-dimensional pressure is defined as p = 2〈r〉
3kn

tr(σ ), so that introducing the normalized particle radius ξp = rp/〈r〉
and overlap c = δc/〈r〉 leads to:

p = p
(〈〉c

) = 1

4π
νC〈〉c

(
2gp − b〈〉c

)
(13)

where the factors are

gp = 〈ξpφp〉
〈ξ3〉 and b = 1

〈ξ3〉
〈2〉c

〈〉2
c

For a monodisperse packing the factor gp simplifies to 1. In the general polydisperse case, the evaluation of gp neces-
sitates an integration over the normalized particle size distribution h(ξ) using the pdf s of the normalized average normal
force φ(ξ) acting on particles of radius ξ :

gp = 1

〈ξ3〉
∞∫

0

ξφ(ξ)h(ξ)dξ (14)

as discussed in more detail in Ref. [22]. On the other hand, the non-linear factor b involves the second moment of the
normalized normal force distribution function 〈2〉c/〈〉2

c .
Now we turn our attention to the remaining variable in Eq. (13), i.e., the normalized average overlap 〈〉c . We relate it

to the volumetric strain under the simplifying assumption of uniform deformation in the packing (non-affine deformations
are relevant but go beyond the scope of this study). Given the displacement gradient, ui, j , the change of the branch vector
of a contact is:

dli = ui, jl j (15)

where summation is implied over repeating indices and the comma indicates the derivative with respect to the following
index, i.e., the j-coordinate. The scalar product with the contact normal corresponds to the change of overlap δ and we
assume that for small overlaps the length of the branch vector is equal to 〈r〉, so that:

dδ = ni dli = 〈r〉niui, jn j (16)

For an isotropic deformation and contact distribution, as considered in this study, the off-diagonal (i.e., the deviatoric as
well as the anti-symmetric) elements of the displacement gradient will cancel in average. Hence, recalling the definition of
the normalized contact overlap, c = δc/〈r〉, one can write:

d〈〉c = Dεv (17)

where εv = εii is the trace of the infinitesimal strain tensor defined by εi j = 1
2 (ui, j +u j,i) and D is a proportionality constant

that depends on the size distribution and reflects the non-affinities in the deformation, however, this issue is beyond the
scope of this study.

The average normalized overlap 〈〉c can be obtained by integrating Eq. (17), where the integral of εv, denoted by εv,
is the true or logarithmic volume change of the system, relative to the reference volume V 0, with corresponding reference
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Fig. 10. The dimensionless pressure as function of the volume fraction (left) (where the solid line is Eq. (19), with νc = 0.666 and otherwise using the
numbers giving in Table 3 that fit well data-set S with N ≈ 5000 particles and w = 3.) and the scaled pressure as function of the (negative) volumetric
strain (right). The solid line is obtained from Eq. (20) and the dashed line is the linear approximation. Insert: Zoom into the small deformation regime.

volume fraction, ν0, which we choose – without loss of generality – to be equal to the critical, jamming volume fraction
ν0 = νc , so that

〈〉c = D

V∫
V 0

εv = Dεv = D ln

(
νc

ν

)
(18)

Substituting Eq. (18) into Eq. (13) we obtain for the non-dimensional pressure:

p = p0
νC

νc
(−εv)

[
1 − γp(−εv)

]
(19)

where the prefactors are condensed into p0 ≡ νc gp D/2π and γp ≡ bD/2gp . The implications of this, e.g., the combination
gp D should not depend on νc , will be further studied and discussed elsewhere [22].

Note that in our sign-convention, compressive strains are negative – corresponding to decreasing volume with ongoing
compression – so that, accordingly, compressive stresses should be negative too. However, we rather use positive compres-
sive stress as above, for the sake of continuity.

Fig. 10 shows the non-dimensional pressure as function of volumetric strain, from representative simulations of isotropic
deformation for different size distributions. Various other data (not shown, except for one that is indicated by S) using
different system sizes and deformation protocols collapse with the same curves – as long as the rate of deformation is
small. Interestingly, the scaled pressure

p∗ = pνc

νC
= p0(−εv)

[
1 − γp(−εv)

]
(20)

is independent of the polydispersity and is well represented by the linear relation in Eq. (19), namely p∗ ≈ −p0εv, valid for
small deformations. The correction factor [1 + γpεv] is only required for large volumetric strain. The (positive) coefficients
p0 ≈ 0.0418 and γp ≈ 0.110 fit our data well.3

Eq. (19) now represents the constitutive relation for pressure, from which we can compute, e.g., the bulk modulus of a
polydisperse packing, using the definition B = −V (∂ p/∂V ) = ∂ p/∂(−εv) = ν∂ p/∂ν . Given the dimensionless bulk modulus,

B = ∂ p

∂(−εv)
= p0 F V

g3νc

[
1 − 2γp(−εv) + (−εv)

[
1 − γp(−εv)

]∂ ln(F V )

∂(−εv)

]
(21)

with F V = tr(F) = g3νC , one has an incremental evolution equation for the dimensionless stress:

dp = B(−dεv) (22)

3 The best fit quality (error less than one percent for all densities) is obtained when Eq. (20) is used to fit the pressure, disregarding the data very close
to jamming, i.e., for the best fits, data for ν < νc + 0.002 are neglected, since those are hampered by dynamic effects and are thus most unreliable – even
when following a very slow unloading procedure (data-set S). Thus we cannot exclude the possibility that the behavior very close to jamming turns out
to be different from our results. However, as compared to the very wide range of densities covered, this concerns only a very small regime at very low
pressures. The parameter p0 is of major importance, while γp depends on p0 rather strongly, however, contributing only a small variation to the pressure.
Furthermore, fitting power laws proportional to (ν − νc)

β to the pressure was not possible over the whole range. For the ranges 0.67 < ν < 0.72 and
0.7 < ν < 0.9 rather good fits lead to powers β = 1.21 and 1.34, respectively.
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Table 3
Summary of the coefficients involved in the constitutive relations for the pressure p and the isotropic fabric F V . In the column right of the symbols are
given typical values – some of them are exact, some are fits with a broad spread and some are not changing so much. In the last column some strong
dependencies are indicated, e.g., g3 depends only on the width of the size distribution, w , but not on other variables.

Fit parameters for C∗(ν)

Jamming volume fraction νc 0.66 ± 0.01 variable νc(D, w, . . .)

Coordination number at jamming C0 6 exact
Prefactor for the algebraic coordination number C1 8 ± 0.5 variable
Power for the algebraic coordination number α 0.58 ± 0.05 approximate

Fit parameters for φr(ν)

Fraction of rattlers at jamming φc 0.13 ± 0.03 approximate
Decay rate of fraction of rattlers φν 15 ± 2 approximate

Relation between fabric and contact number density
Polydispersity correction factor g3 � 1 variable g3(w)

Fit parameters for p
Linear pressure factor p0 0.0418 ± 0.001 approximate
Non-linear pressure factor γp 0.09 strongly dependent on p0

with the incremental evolution equation for the isotropic fabric:

dF V = F V

(
1 + ν

∂C

∂ν

)
(−dεv) (23)

where the classical coordination number, C = (1 − φr(ν))C∗(ν), is an analytically known function of ν , see Eqs. (3) and (4),
involving the parameters/coefficients as summarized in Table 3.

Note that the above evolution equation for the dimensionless pressure (Eq. (22)), together with Eqs. (21), (23) and (3),
(4), represents the main result of this study that can be easily translated into dimensional pressure and bulk modulus by
multiplication with the factor kn/(2〈r〉). As final remark, the bulk modulus does not explicitly depend on pressure, but F V

does implicitly, hiding the pressure dependence of B . Furthermore, the last term in the bulk modulus involves the derivative
∂C/∂ν , which can be very large close the critical density, due to the power α < 1, and thus is not negligible. Future work
should focus on the validation and comparison of the present approach with experimental data, e.g., concerning the density
dependence of pressure and the pressure dependence of B .

6. Summary and conclusion

The transition between fluid- and solid-like phases in idealized, frictionless packings of polydisperse spheres has been
investigated by means of discrete element simulations of isotropic compression and de-compression. As main result, an
incremental constitutive relation is given in Eq. (22) for the pressure change under isotropic deformation, to be used together
with Eqs. (21), (23) and (3), (4). The pressure evolution equation should be (i) valid for a broad range of volume fractions
ν � νc , (ii) should be rather insensitive to (moderate) polydispersity, and (iii) involves only analytically known functions of
the volume fraction.

The coordination number, i.e., the average number of contacts per all particles, C , is analyzed as function of the volume
fraction in order to characterize the state of the granular packing. When the rattlers (i.e. particles with less than four
contacts) are disregarded, one obtains the corrected coordination number C∗ ≈ C/(1 −φr). The fraction of rattlers, φr , jumps
at the jamming volume fraction from φr = 1 to φc and then decays exponentially with increasing volume fraction. Previous
studies have shown that the corrected coordination number C∗ is discontinuous at the transition and evolves as a power
law in the jammed phase close to the critical volume fraction. However, to the authors knowledge, the validity of the power
law has not been checked in a broader range up to much higher volume fractions. We fitted an analytical expression of the
power law to the simulation data obtained from various packings and confirm that it is not only valid in the neighborhood
of νc but also for very dense packings.

The effect of different system and simulation parameters on the coordination number and the critical volume fraction
have been analyzed. We find that changing the polydispersity of the packing causes a shift in the critical volume fraction,
i.e., more heterogeneous packings jam at higher volume fractions. However, the power law behavior of the coordination
number is not affected by polydispersity. Lowering the deformation rate has the effect of steepening the slope of the
coordination number vs. volume fraction curve at the transition, which suggests that the discontinuity will be only achieved
in the limit of quasi-static deformation. A study of the effect of deformation rate on the critical volume fraction based on
the fit of the power law is unreliable because of the singularity at this point. We recommend that the fit should be used in
conjunction with one of the methods proposed in Ref. [14] to determine νc self-consistently. Finally, we note that varying
the deformation rate as well as the system size and deformation history does not have a significant effect on the evolution
of the coordination number at high volume fractions: when the rattlers are removed, the power law behavior remains
unaffected, at higher densities.

The structure of the contact network plays an important role in determining the mechanical properties of granular mate-
rials. In Section 4 we reviewed previous theoretical predictions regarding the trace of the fabric tensor and compared them
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with our numerical results. The contact number density νC obtained from the simulations and corrected by the factor g3,
which only depends on the moments of the particle size distribution, as proposed in Ref. [22], is in good agreement with
the trace of the fabric tensor, so that tr(F) = g3νC∗(1 − φr).

Additionally, an incremental expression of the pressure has been derived in Section 5 based on the micromechanical
properties of the particles. The volumetric strain applied to the packing and the isotropic fabric was related to it, thereby
enabling us to give an analytical expression for the bulk modulus that includes an evolution term of the isotropic fabric, as
specified above. Scaling is observed between the numerical results for different polydispersities when the scaled pressure p∗
is plotted against volumetric strain relative to the critical configuration at volume fraction ν = νc . We note that the analytical
form of the pressure does not explicitly contain a closed power-law relation. The pressure is proportional to the trace of
fabric (which contains the power-law relation for the coordination number) and otherwise linear with volumetric strain –
involving a rather small quadratic correction for very large strains.

In this article we only considered isotropic deformations applied to frictionless packings of spheres. The natural next
steps are to also apply deviatoric (or shear) strain and to include friction and other material parameters. The former will
lead to structural anisotropy, while the latter allows to study the effect of various contact properties – like friction – on
the evolution of the fabric and the stress. The evolution of, not only, pressure but also of deviatoric stresses is related to
the anisotropy of the structure, see the 2D observations in Refs. [28,29] and the more recent results in 3D, [30,31], which
also confirm that the scaling relation of the fabric – as observed here without friction – holds also in the presence of
friction [23,32].

We note that the jamming volume fraction νc (e.g. under cyclic loading) is not a constant, but depends on the history of
the packing. This issue was not addressed in this study, but will be subject to future research.

Finally, the relations proposed in this study should be compared to experimental data in order to test their predictive
value. For example, the pressure dependence of the bulk modulus is a measurable bulk property, whereas the fraction of
rattlers and the isotropic fabric are usually not easily available experimentally.
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