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The method of asymptotic partial domain decomposition for thin tube structures (finite
unions of thin cylinders) is revisited. Its application to the Newtonian and non-Newtonian
flows in great systems of vessels is considered. The possibility of a parallelization of its
algorithm is discussed for linear and non-linear models.
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r é s u m é

La méthode de décomposition asymptotique de domaine pour des structures minces (une
réunion des cylindres minces) est revisitée. Son application aux écoulements newtoniens
et non newtoniens est considérée. La possibilité d’une parallélisation de son algorithme est
discuté pour des modèles linéaires ainsi que non linéaires.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction. Tube structures. Setting the problem. Description of the asymptotic behavior of solutions for the Stokes
and Navier–Stokes equations

A computational strategy of partial asymptotic decomposition for thin domains with complex geometry (tube structures
or finite rod structures) is discussed. These structures have been studied in some previous papers (see for example, [1–4])
and they can be considered as some idealized geometrical model of the blood circulation system. The method of asymp-
totic partial domain decomposition (MAPDD) (see [1]), reduces considerably the volume of computations with respect to
the direct numerical simulations. The MAPDD generates a multi-scale model of hybrid dimension with one-dimensional
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description of the flow at some small distance from the ends of the cylinders and with a three- (or two-) dimensional
description (“zooms”) at some small domains around the bifurcations of vessels. It was formulated and justified for the
Stokes and Navier–Stokes equations with homogeneous no-slipping boundary condition of vanishing velocity. However, this
method was not studied in the case of the Navier–Stokes or Stokes equations with non-homogeneous boundary conditions,
which are more natural for the fluid motion with some inflows and outflows on some parts of the boundary. In the present
paper we formulate the version of the MAPDD in this case and give a theorem (Theorem 2.1) which justifies an error esti-
mate for this method. Another important question is discussed in Section 3: it is the possibility of the parallelization of the
algorithm of MAPDD. This parallelization plays an important role in practical multi-processor implementation of the MAPDD
for great systems of tubes or channels. In the fourth section the applicability of the MAPDD and its parallelization in case
of non-Newtonian flows are discussed.

Let us remind the definition of a tube structure. Define first a tube structure containing one bundle. We consider here
two possible dimensions of the space: two and three.

Let e1, . . . , en be n closed segments in R
s (s = 2,3), which have a single common point O (i.e. the origin of the coordinate

system), and let it be the common end point of all these segments. Changing variables (by rotations) we pass to the local
coordinate system, associated to the segment e j : the new axis x1 is denoted x

e j

1 and it contains the segment e j , while the

axes x
e j

2 , . . . , x
e j
s are orthogonal to the segment e j . Define the graph

B =
n⋃

j=1

e j

Let b1, . . . ,bn be n bounded (s − 1)-dimensional domains in R
s−1, which contain the origin O ′. Let β j be the set

of points, such that in the local coordinate system associated to the segment e j it has a form β j = {x ∈ R
s: x

e j

1 = 0,

(x
e j

2 , . . . , x
e j
s ) ∈ bi}; it belongs to a hyperplan orthogonal to e j . Let ε be a small positive parameter. Let βε

j be the image of
β j obtained by a homothetic contraction in 1/ε times with the center O . Denote Bε

j the open cylinders with the bases βε
j

and with the heights e j:

Bε
j =

{
x ∈ R

s: x
e j

1 ∈ (
0, |e j|

)
,

(
x

e j

2

ε
, . . . ,

x
e j

2

ε

)
∈ b j

}

Denote β̂ε
j the second base of each cylinder Bε

j and let O j be the end of the segment e j which belongs to the base β̂ε
j ,

O j ∈ β̂ε
j .

Denote below O 0 = O . Let γ0 be a bounded domain containing O , let γ j be bounded domains containing O j . For the
sake of simplicity assume that the diameters of all these domains γ0, γ j are less than 2. Let γ ε

j , j = 0,1, . . . ,n, be the
images of the bounded domains γ j (such that γ̄ j contain the ends of the segments O j and independent of ε) obtained by
a homothetic contraction in 1/ε times with the center O j :

γ ε
j =

{
x ∈ R

s:
x − O j

ε
+ O j ∈ γ j, j = 0, . . . ,n

}

Define the tube structure associated with the graph B as

Bε =
(

n⋃
j=1

Bε
j

)
∪

(
n⋃

j=0

γ ε
j

)

We suppose it be a domain with C2-smooth boundary ∂ Bε.

We add the domains γ ε
j , j = 0,1, . . . ,n, to make the boundary of the tube structure C2-smooth surface.

In a more general case consider a finite set of the tube structures Bε1, Bε2, . . . , Bεm , associated to the graphs consisting
of the segments

e11, . . . , e1n1 for (Bε1)

e21, . . . , e2n2 for (Bε2)

...

em1, . . . , emnm for (Bεm)

Assume that any two segments of this list may have not more than one common point, that this point is an end point for
both segments and that the graph is a connected set. The union

Bε = Bε1 ∪ Bε2 ∪ · · · ∪ Bεm
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of all these one bundle structures is called a multi-bundle structure. We assume that it is a connected domain with the
C2-smooth boundary. Its graph B is defined as a union of all segments e jl of the above list. A vertex O jl of the graph is
called single iff it is an end point of the only one segment e jl of the above list.

Denote Γi, i = 1, . . . , r, some smooth parts ∂γ ε
i of domains γ ε

i , which are at the same time some parts of ∂ Bε , and such
that the vertices x̂i belonging to γ ε

i , are single. Moreover, Γi = ∂γ ε
i ∩ B(x̂i, riε). Here and below, ri are independent of ε,

and B(a, r) is an open ball with the center a and radius r. Consider the Stokes equation in Bε

div

(
ν

2

(∇uε + (∇uε)
T ) − pε I

)
= 0

div uε = 0 (1)

where the divergence is applied to every string of the matrix ν
2 (∇uε + (∇uε)

T )− pε I , and ν is a positive number (viscosity).
The boundary conditions are:

uε = 0, x ∈ ∂ Bε

∖(
r⋃

t=1

Γt

)
(2)

uε = gt(x) = G

(
x − xbt

ε

)
, x ∈ Γt (3)

Here xbt is an end point of the segment e j such that xbt ∈ γt , n is an outer normal vector, G ∈ C2
0(Γ̄t),

∑
t

∫
Γt

G

(
x − xbt

ε

)
n ds = 0

Along with the Stokes equation consider the Navier–Stokes equation

div

(
ν

2

(∇uε + (∇uε)
T ) − pε I

)
− (uε,∇)uε = 0

div uε = 0 (4)

with the same boundary conditions.
A solution uε is defined as a vector-valued function from the space Hdiv=0(Bε), that is a subspace of (H1(Bε))

s such that
its elements are divergence free vector-valued functions vanishing at the boundary of Bε everywhere except for the parts
Γt , and such that uε − g ∈ H0

div=0(Bε) and for any test function ϕ ∈ H0
div=0(Bε),

−ν

∫
Bε

s∑
i=1

(
∂uε

∂xi
,
∂ϕ

∂xi

)
dx +

∫
Bε

s∑
i=1

ui,ε

(
uε,

∂ϕ

∂xi

)
dx = 0

Here g ∈ Hdiv=0(Bε) is an extension of function G defined on Γt , and H0
div=0(Bε) is a subspace of vector-valued functions of

Hdiv=0(Bε), vanishing at the boundary. In the case of the Stokes equation the second integral of this variational formulation
should be omitted.

A complete asymptotic expansions of solutions to these two problems are constructed and rigorously justified in [1,2,4].
In particular, the error estimates are proved for the difference of the asymptotic solution and the exact solution of these

problems. The asymptotic expansions have a form of the Poiseuille flows at some small distance from the vertices of the
graph glued near the vertices by some boundary layer correctors depending on the fast variable

x−O j
ε . The technique is close

to the matching. This structure of the solution allows to justify the method of asymptotic partial domain decomposition
(MAPDD), projecting the variational formulation on the subspace of Hdiv=0(Bε) of functions exactly equal to the Poiseuille
flows at some distance from the vertices greater than some δ.

2. Method of asymptotic partial domain decomposition for Newtonian flows

Let us describe the algorithm of the MAPDD for the Stokes and the Navier–Stokes problems set in a tube structure Bε .
This method for the homogeneous boundary condition uε = 0 all over the whole boundary ∂ Bε and with some right-hand
side in the equations has been introduced and justified in [1,3,4]. Here we consider the homogeneous equation and the non-
homogeneous boundary conditions (1)–(4). Let δ be a small positive number much greater than ε (it will be chosen of order
O (ε|lnε|)). For any segment ei j of the graph of the structure introduce two hyperplanes orthogonal to this segment and
crossing this segment at the distance δ from its ends. Enumerate the vertices of the graph O 1, . . . , O M . Let O j1 and O j2 be
the ends of the segment ei j , Denote the cross-sections of the cylinder containing ei j by these two hyperplanes respectively,
S j1, j2 at the distance δ from O j1 , and S j2, j1 at the distance δ from O j2 , and denote the part of the cylinder between

these two cross-sections by Bdec,ε
. Denote Bε,δ the connected truncated by the cross-sections Si, j , part of Bε containing
i j i
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the vertex O i . Define subspaces Hdiv=0(Bε,δ) of the space Hdiv=0(Bε), and H0
div=0(Bε,δ) of space H0

div=0(Bε), such that the

elements of these subspaces (vector-valued functions) are the Poiseuille flows on every truncated cylinder Bdec,ε
i j . Here the

Poiseuille flow is a vector-valued function u P , such that in the local coordinates xeij associated to segment ei j , its “first”
(longitudinal) component ũ1,P (xeij /ε) is a solution to the problem


ξ ũ1,P (ξ) = ci j, ξ ∈ beij , ũ1,P (ξ) = 0, ξ ∈ ∂beij

where ci j is a “free” constant, and ∂beij is the boundary of the domain bi , corresponding to the segment ei j; all other
(normal) components of the Poiseuille function u P in local coordinates are equal to zero.

The method of asymptotic partial domain decomposition (MAPDD) replaces the problem (1)–(4) by its projection on
Hdiv=0(Bε,δ):

Find Ûε,δ from Hdiv=0(Bε,δ), such that Ûε,δ − g ∈ H0
div=0(Bε,δ) and for any test function ϕ ∈ H0

div=0(Bε,δ),

−ν

∫
Bε

2∑
i=1

(
∂ Ûε,δ

∂xi
,
∂ϕ

∂xi

)
dx +

∫
Bε

2∑
i=1

Û i,ε,δ

(
Ûε,δ,

∂ϕ

∂xi

)
dx = 0

Let g be an extension of function G from the boundary to the domain Bε , belonging to Hdiv=0(Bε,δ). Such an extension
exists. Indeed, applying the asymptotic expansion for problem (4), (2), (3) constructed in Section 4.5 of [1] with the small
additional correctors from Section 6.3 of [1], we see that this asymptotic approximation gives one of such extensions. Then
following the arguments of Section 6.3 of the same book, using the construction of the asymptotic expansion of Section 4.5
of [1] and applying the arguments of Section 5.1 of [6], we get the following

Theorem 2.1. For any integer K there exists a constant C K , independent of ε, such that for δ � C K ε| lnε| the estimate holds:

‖Ûε,δ − uε‖H1(Bε) = O
(
εK )

This estimate justifies the MAPDD for problem (4), (2), (3). In a similar way we can prove the same estimate for the
Stokes problem (1)–(3).

Thus, the method reduces considerably the computational cost of the numerical solution of the Stokes or the Navier–
Stokes equation set in a thin tube structure and it keeps a high order accuracy. This approach can be applied for the
computations of flows in great system of tubes or channels, such as the blood circulation system. In this case a paralleliza-
tion of computations and multi-processor strategy becomes a very important issue.

3. Parallelization of the algorithm of the method of asymptotic partial domain decomposition

1. In the case of a linear problem such parallelization can be done with help of the principle of superposition. Actually,
consider the Stokes problem (1)–(3). Consider a truncated part Bε,δ

i . Integrating by parts the variational formulation of the

problem for Ûε,δ we obtain that on every cross-section Si, j the flux rate is conserved; moreover, the trace of function Ûε,δ

on Si, j is equal to some Poiseuille flow corresponding to some constant ci j . Let the boundary of Bε,δ
i contains Mi sections

Si, j : Si, j1 , . . . , Si, jMi
. Assume that ∂ Bε,δ

i does not contain parts Γt . Then on Bε,δ
i we have

Ûε,δ =
Mi∑

r=1

ci jr Û jr
ε,δ

where Û jr
ε,δ is a solution of the homogeneous Stokes equation (1) with the boundary condition Û jr

ε,δ = 0 on ∂ Bε,δ
i except for

Si, jr , and on Si, jr , Û jr
ε,δ = u0

P , where u0
P is the Poiseuille function corresponding to constant ci j = 1.

In the case if Γt ⊂ ∂ Bε,δ
i , then Bε,δ

i contains a single vertex O i = xbt and its boundary ∂ Bε,δ
i contains only one section of

truncation Si, j1 . Then

Ûε,δ = Û 0
ε,δ + ci j1 Û j1

ε,δ,

where Û 0
ε,δ is a solution of the homogeneous Stokes equation (1) with the boundary condition Û jr

ε,δ = 0 on ∂ Bε,δ
i except for

Γt , and on Γt , Û jr
ε,δ = G(

x−xbt
ε ), and Û j1

ε,δ is a solution of the homogeneous Stokes equation with the boundary condition

Û j1
ε,δ = 0 on ∂ Bε,δ

i except for Si, j1 , and on Si, j1 , Û j1
ε,δ = u0

P .

We see that the solution Ûε,δ of the partially decomposed problem is some linear combination of the problems for Û jr
ε,δ

and these problems are completely independent each of the other. So, they can be solved in parallel. The only one problem
which binds all these auxiliary problems is the linear algebraic system of equations of flux conservation at each truncation



G. Panasenko / C. R. Mecanique 338 (2010) 675–680 679
section Si, j ; the unknowns are coefficients ci, j and its dimension is equal to the global number of segments ei j in the graph.
The same approach was applied for the Laplace equation in [5].

2. For non-linear problem, such as Eq. (4), the superposition principle is not true. However, in some special cases the
complete decomposition (parallelization) is possible.

2.1. In the case of one bundle structure with given velocities gt(x) = G(
x−xbt

ε ) on Γt , such that vertex xbt belongs to
the boundary of cylinder Bε

j , the flux passing over every section of this cylinder (and in particular, over the truncation
section Sij) has the rate equal to

D j = −
∫
Γt

gt(s) · n ds (5)

where n is an outer normal. It is a consequence of the incompressibility condition div u = 0. Therefore, the constants of the
Poiseuille flow ci j can be calculated explicitly for all cylinders. So, the Navier–Stokes equations in all Bε,δ

i have boundary
condition with known right-hand side (known Poiseuille function on every truncation) and these problems are completely
decoupled: we get n + 1 independent problems on the truncated parts Bε,δ

i with given Poiseuille flow boundary conditions
at all truncated sections of the cylinders.

2.2. Similar result holds in the case of a multi-bundle structure, such that all flux rates D j can be found from the linear
system of equations∑

j: O i∈ē j

D j = 0, i = 1, . . . , N (6)

for all vertices O i of the graph.
2.3. In the general case, when number N of vertices O j may be less than the number of segments e j , the system of Eqs.

(6) doesn’t determine all the fluxes D j . In this case the problems on Bε,δ
i are coupled. However the asymptotic analysis of

the pressure shows that in the first approximation it is continuous on the graph B = ⋃
j e j , linear for every segment e j of

the graph function, satisfying relation

D j = −K j
∂ p

∂x
e j

1

(7)

for all e j . Here K j stands for the permeability coefficient, i.e. the flux of the Poiseuille flow corresponding to a unitary
pressure drop. For example, in the 2D case for the channel of the thickness εα

2 and ν = 1, the Poiseuille function is equal to

(
1

2

(
x2

2 −
(

εα

2

)2)
,0

)T

where x2 is the transversal variable in the local system, and

K j = −
εα
2∫

− εα
2

1

2

(
x2

2 −
(

εα

2

)2)
dx2 = 1

12
(εα)3

Finally for the macroscopic pressure we get the differential equation set on the graph:

D ′
j = 0 (8)

where D j is related to the pressure by Eq. (7), and at the vertices we have the junction conditions (6) and the continuity of
the pressure. At the single vertices we have condition (5). Problem on the graph (5)–(8) may be formulated in variational
sens and its existence and uniqueness of solution follow immediately from the Riesz theorem or Lax–Milgram lemma.
Solving this problem, we find the macroscopic pressure on the graph B , then we can find the fluxes D j on all cylinders Bε

j

with a relative error of order ε, and so decouple (with accuracy of order ε) the sub-problems on all Bε,δ
i .

4. MAPDD for non-Newtonian flows

The blood motion is described in a more adequate way by non-Newtonian flow laws (see [6–10]), for example, by
equations

−div
(
ν(Du)Du

) + ∇p = 0 (9)

div u = 0 (10)
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where D = 1
2 (∇ + ∇T ), and ν(y) is some given relation between the symmetric matrix y and a scalar viscosity ν . The

results on existence of solutions of such equations in some cases were obtained in [6–9], however, an asymptotic expansion
of solution in a tube structure is not yet constructed because of absence of results on stability. Although the MAPDD is
not justified in this case, its algorithm can be formulated as above for Newtonian flows with the only one difference: the
Poiseuille flow should be replaced by the quasi-Poiseuille function u P . As in the case of Newtonian flows, in the local
coordinates x̃e its normal components are equal to zero, while the longitudinal one ũ P ,γ is a function of the transversal
variables x̃′ = (x̃e

2, . . . , x̃e
2) and it is an exact solution of Eqs. (9), (10) in an infinite cylinder B∞

j = β j × l j, with the boundary
condition of vanishing of the velocity ũ P ,γ on the whole lateral boundary of the cylinder (ũ P ,γ = 0) with p = γ x̃e

1; here l j
is a straight line, orthogonal to β j ,γ is a real parameter and x̃e

1 is the longitudinal local variable. Let us define the flux

D j(γ ) =
∫

ũ P ,γ dx̃′

where the integration holds in the cross-section of the cylinder. The quasi-Poiseuille in the thin cylinder Bε
j is calculated

as εũ P ,γ ( x̃′
ε ), and it corresponds to p = ε−1γ x̃e

1. Assume that such a quasi-Poiseuille function exists for any real γ . Then
we can do the same parallelization for the MAPDD algorithm (replacing the Poiseuille flow by the quasi-Poiseuille flow). In
particular, Eq. (7) is replaced by

D j = D j

(
∂ p

∂ x̃e
1

)

with γ = ∂ p
∂ x̃e

1
.

The above MAPDD algorithm for the Carreau law in the 2D case with

ν(y) = M
(
1 + (λy12)

2) n−1
2

n = 0.7, M = 7, λ = 0.11 was tested in numerical COMSOL simulations developed in collaboration with A. Nachit and
A.M. Zine. These numerical experiments, corresponding to the blood flow data [10], confirmed a high accuracy of the
method even in the case when δ = 1.5ε, i.e. for δ much less than δ = constε| lnε| in the theoretical predictions.
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