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In polycrystalline elastic simulations, grain boundaries can be considered as volume
interphases or as elastic interfaces assuming a displacement jump across the interface.
Such an interface description does not account for the in-plane deformation of the interface
and Poisson effects cannot be reproduced. The purpose of this Note is to provide an
enriched description of the elastic interface which takes into account such effects. When
considering a multilayer material, the interphase description and the enriched interface
description yield identical homogenized behaviour while quite important discrepancies can
be observed with the classical interface description.
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r é s u m é

Afin de réaliser des simulations du comportement élastique de polycristaux, les joints
de grains peuvent être considérés comme des interphases volumiques ou comme des
interfaces auxquelles on associe classiquement un saut de déplacement. Cette description
ne prend pas en compte la déformation dans le plan de l’interface et ne peut rendre
compte d’effets de type Poisson. L’objet de cette Note est donc de proposer une description
enrichie du comportement élastique d’interfaces. Appliquées au cas d’un matériau multi-
couches, les descriptions « interface enrichie » et « interphase volumique » conduisent à un
comportement homogénéisé identique tandis que d’importants écarts sont observés avec
la description « interface classique ».

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

A polycrystal can be considered as an assembly of grains separated by grain boundaries, each grain being characterized by
its crystallographic orientation. From an atomistic point of view, a grain boundary is characterized by a region of thickness h
in which the atoms positions are not exactly situated on the ideal crystallographic positions of the two neighbouring grains.
This discrepancy between the ideal positions and the real ones is due to the atom interactions and the exact position of
atoms in grain boundaries can be obtained from empirical interatomic interaction simulations by relaxation of an initial
configuration where the atoms are situated on their ideal positions (Refs. [1] and [2] are two examples among an abundant
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literature). The consequences arising from the relaxed configuration of the grain boundary are twice. First, intrinsic stresses
and strains appear on the unloaded configuration and secondly, the elastic (and thermal) properties evolve across the
thickness of the grain boundary and can be very different from the behaviour of the neighbouring grains [1,3–5]. This Note
focuses on the last point and intrinsic stresses and strains are not considered.

To take into account the grain boundaries in continuum mechanics, two different approaches can be used. The first
one is associated to an “interphase” description of the grain boundary: the grain boundary is considered as a new phase
with varying or homogeneous elastic properties [6]. The second one is associated to an “interface” description: the grain
boundary is considered as a surface associated to an interface elastic behaviour [5,7,8].

When considering the interface description in polycrystalline simulations, the interface elastic behaviour accounts for a
displacement jump across the interface [5,7,8] and relates it to the normal stress applied to the interface. As the in-plane
interface strain is not considered, different effects are neglected such as Poisson effects (i.e. when loading the interface with
a uniaxial normal stress, the interface does not stretch). This description is referred as the “simplified” description.

The purpose of this Note is to provide an “enriched” description of the interface behaviour which takes into account
Poisson effects. Moreover, a procedure to derive the interface elastic properties from the interphase description is proposed.
Finally, calculations are performed on a multilayer material for which the exact homogenized elastic tensor can be ob-
tained. The interphase description and the enriched interface description yield identical homogenized behaviour while quite
important discrepancies can be observed with the “simplified” interface description.

Note that the behaviour of imperfect interfaces has been extensively studied by Hashin [9] and recently, in the continuity
of Hashin, by Benveniste [10]. The following model, established for planar interfaces, can be regarded as an alternative
model, which could be easily implemented in a finite element code, between the “simplified” model and their much more
complex model. Finally, the comparison with Benveniste and Hashin’s work is not straightforward and our approach can be
considered as a new approach mainly based on the introduction of the so-called “localized” in-plane stress.

2. Interface elastic behaviour

2.1. Notations

The projections of stresses and strains in the plane (P ) and out of the plane (A, for anti-plane) of the interface are often
used in this section. Eq. (1) gives an example for an interface perpendicular to e1:

X = X A + X P with X A =
( X11 X12 X13

X21 0 0
X31 0 0

)
and X P =

(0 0 0
0 X22 X23
0 X32 X33

)
(1)

A fourth order tensor T can be written with the same notations through the introduction of the four tensors T A P , T P A , T A A

and T P P (Eq. (2)).

Y = T : X ⇔
{

Y A = T A A : X A + T A P : X P

Y P = T P A : X A + T P P : X P

}
⇔

[
Y A

Y P

]
=

[
T A A T A P

T P A T P P

]
:
[

X A

X P

]
(2)

For symmetric tensors X and Y , T A P can be written with a matrix notation T̃ A P (Eq. (3)) and contains 9 parameters or 6

parameters if T A P is symmetric. Notations T P A , T A A and T P P follow the same description.⎡
⎣ Y11√

2Y12√
2Y13

⎤
⎦ = [

T̃ A P ]⎡
⎣ X22

X33√
2X23

⎤
⎦ (3)

2.2. Thermodynamic definition

To define the elastic behaviour of the interface, the first step consists in defining the kinematic and the stresses associated
to an interface. We assume classically that a displacement jump [u] occurs between the two sides of the interface. In
addition, the in-plane deformation εP , which is assumed to be constant across the interface, is considered. On the other

hand, if the normal stress (i.e. σ A ) is assumed to be constant across the interface, the in-plane stress can be different

from on side to another. To account for this jump, a “localized” in-plane stress, σ P∗
(with the unit N m−1), is defined. As

a consequence, the stresses and strains within a volume Ω with an interface S are given by Eqs. (4) and (5), where δ(S)

is the Dirac function localized on the surface S , σ 0 and ε0 the stresses and strains within the bulk part of the volume
element. The surface density of internal power is given for the interface by Eq. (6):

ε(x) = ε0(x) + ([u] ⊗S n
)
δ(S) (4)

σ(x) = σ 0(x) + σ P∗
δ(S) (5)

pi = σ A : ([u̇] ⊗S n
) + σ P∗ : ε̇P (6)
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To define the linear elastic behaviour of the interface, the surface density of free energy is given by a quadratic function of
the state variables [u] and εP (Eq. (7)), where C A A , C P P , C A P and C P A are fourth order tensors, with C A P = (C P A)t and

C A A and C P P symmetric tensors:

ψ
([u], εP ) = 1

2

([u] ⊗S n
) : C A A : ([u] ⊗S n

) + 1

2
εP : C P P : εP

+ 1

2

([u] ⊗S n
) : C A P : εP + 1

2
εP : C P A : ([u] ⊗S n

)
(7)

From the Clausius–Duhem inequality (i.e. equality for the considered reversible behaviour) and the derivation of the surface
density of free energy, the following relations can be derived for the elastic interface behaviour (Eqs. (8) and (9)). These
relations can be written using a matrix notation (Eq. (10)), in which e1 is perpendicular to the interface direction:

σ A = C A A : ([u] ⊗S n
) + C A P : εP (8)

σ P∗ = C P P : εP + C P A : ([u] ⊗S n
)

(9)⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σ11√
2σ12√
2σ13

σ P∗
22

σ P∗
33√

2σ P∗
23

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=
[

C̃ A A C̃ A P

C̃ P A C̃ P P

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

[u1]√
2[u2]√
2[u3]
εP

22

εP
33√

2εP
23

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(10)

The classical interface elastic behaviour taken into account in polycrystalline simulations, analytically [7] or numeri-
cally [8], only considers the displacement jump across the interface and the elastic behaviour reduces to Eq. (11):⎡

⎣ σ11√
2σ12√
2σ13

⎤
⎦ = [

C̃ A A]⎡
⎣ [u1]√

2[u2]√
2[u3]

⎤
⎦ (11)

2.3. From interphase behaviour to interface behaviour

As demonstrated from Molecular Dynamics calculations [4], a grain boundary can be considered as an interphase defined
as a region of thickness h in which the elastic properties evolve continuously from the bulk properties of one grain to the
bulk properties of the other grain. However, although continuous this evolution is not monotonous and the elastic properties
within the interphase can be very anisotropic, and very different from the behaviour of the two neighbouring grains. Let us
now consider a bimaterial as an infinite volume Ω with a planar interphase located at x = 0, and a macroscopic loading
applied on the boundary of the infinite volume. The average stress and strain over Ω are respectively σ and ε. Considering
perfect interfaces between the interphase and the two materials, the normal stress and the in-plane strain within the
interphase are equal to the average ones (Eq. (12)). The elastic behaviour of the interphase (Eq. (13)), that depends on x
between −h/2 and h/2, can be written using Eq. (12):

εP (x) = εP , σ A(x) = σ A (12)[
σ A

σ P (x)

]
=

[
K A A(x) K A P (x)

K P A(x) K P P (x)

][
εA(x)

εP

]
(13)

This relation is partially inversed to obtain Eq. (14) and integrated over the interface thickness to provide Eq. (16). The in-
tegration of εA(x) on the interphase thickness is related to the relative displacement of the two sides of the grain boundary
([u]) (Eq. (15)) which can be regarded as the displacement jump across the interface as described in the previous section.
The integration of σ P (x) on the interphase thickness (σ P∗

) can be regarded as the “localized” plane stress introduced pre-
viously. Finally, a partial inversion of Eq. (16) leads to Eq. (17) which corresponds to Eqs. (8) and (9). As a consequence, the
interface elastic properties defined in the previous section can directly be derived from the evolution of the volume elastic
properties within the interphase.[

εA(x)

σ P (x)

]
=

[
T A A(x) T A P (x)
T P A(x) T P P (x)

][
σ A

εP

]
(14)

h/2∫
εA(x)dx = [u] ⊗s n (15)
−h/2
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[ [u] ⊗s n

σ P∗

]
=

[
T A A∗

T A P∗

T P A∗
T P P∗

][
σ A

εP

]
(16)

[
σ A

σ P∗

]
=

[
C A A C A P

C P A C P P

][ [u] ⊗s n

εP

]
(17)

The equations to obtain T I J from K MN and C I J from T MN∗
are not detailed here. They involve elementary tensor manipu-

lations and can be found in [11,12].

3. Application to a multilayer material

The purpose of this section is to evaluate, on a very simple example, the difference observed on the homogenized
behaviour of a multilayer material using for the grain boundaries either an interphase description or the “classical” interface
description (Eq. (11)) or the “enriched” description (Eq. (10)). The case of the multi-layer material is interesting because
its homogenized behaviour can be derived without any approximation [11,12]. The material consists of homogeneous grain
layers of thickness d − h separated by homogeneous grain boundaries of thickness h.

In the case of an interphase description, the grain boundaries are considered as bulk layers. The stresses and strains
within the bulk layers (the interphase layers and the grain layers) are homogeneous and satisfy Eqs. (12) and (14) (consid-
ering a homogeneous elastic behaviour in this case). The average stresses and strains are given by Eqs. (18) and (19). With
this set of equations (Eqs. (12), (14), (18), (19)), the homogenized elastic tensor K h0 (so that σ = K h0 : ε) can be easily
derived [11,12].

ε =
(

1 − h

d

)
εg + h

d
εi (18)

σ =
(

1 − h

d

)
σ g + h

d
σ i (19)

In the case of an interface description, the first step consists to derive the interface properties from the interphase behaviour
(Eqs. (14) to (17)). Then, the stresses and strains within the grain layers are homogeneous and satisfy Eqs. (12) and (14).
The stresses and strains (in a general sense) within the interface are homogeneous along the interface and satisfy Eq. (17).
Assuming a zero-thickness interface, the average stresses and strains can be derived from Eqs. (4) and (5) (Eqs. (20a), (21a)).
In order to account for the interphase thickness, the contributions of the grains are balanced by their volume fraction (Eqs.
(20b), (21b)):

ε = 1

V

∫
V

ε(x)dV = εg + 1

d

([u] ⊗S n
)

(20a)

ε =
(

1 − h

d

)
εg + 1

d

([u] ⊗S n
)

(20b)

σ =
∫
V

σ(x)dV = σ g + 1

d
σ P∗

(21a)

σ =
(

1 − h

d

)
σ g + 1

d
σ P∗

(21b)

From this set of equations (Eqs. (12), (14), (17), (20b), (21b)) the homogenized elastic tensor K h1 derived from the “enriched”
interface description is identical to the exact solution K h0 while the tensor K h2 derived from the “simplified” interface
description (using Eq. (11) instead of Eq. (17)) is different and then considered as an approximation.

For numerical application, the grain layers and the interphase are isotropic. The Young modulus of the interphase evolves
between 10 and 1000 GPa whereas it is 100 GPa for the grain layers. Poisson coefficients are 0.1 for the grains and 0.4 for
the interphases. The interphase thickness is 1 nm and the grain size d is 10 nm. The interphases are parallel to the (e2, e3)
plane. The evolution of the five independent coefficients of the transverse isotropic tensors is displayed in Fig. 1 as a
function of the interphase Young modulus. First, it can be observed that K11 and K55 (coefficient between σ13 and ε13,
and σ12 and ε12) are not affected by the simplified description. Secondly, the difference between the exact solution and
the approximated one (i.e. with the simplified interface description) can be very important on the other coefficients and
increases when the stiffness of the interphase increases. Of course, this conclusion is limited to a specific set of isotropic
behaviours for both the grains and the interphase and a detailed study has to be performed for anisotropic behaviours.
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Fig. 1. Evolution of the elastic constants (GPa) of the homogenized multilayer material as a function of the interphase Young modulus (GPa) (square symbols:
interphase and “enriched” interface description, diamond symbols: “simplified” interface description).

4. Conclusion and future prospects

To summarize, an “enriched” description has been proposed for the elastic interface behaviour of grain boundaries. It
can be noted that this description is not limited to grain boundaries but can be used for different kinds of planar imperfect
interphases. The way to derive interface properties from interphase properties, which can be heterogeneous and anisotropic,
has been proposed. When dealing with an idealized multilayer material, the exact solution can be reproduced with the
“enriched” description while a quite important discrepancy can be observed with the “simplified” description. The model
presented in this paper can be considered as an intermediate model between the “simplified” model and the model derived
by Benveniste [10].

In order to deal with “real” polycrystals (such as Voronoï polycrystals) in finite element calculations, a new interface
element will have to be developed accounting for the in-plane strain of the element (which is not considered in classical
interface elements). To follow the methodology proposed in [1], the interface behaviour will have to be derived from Molec-
ular Dynamics calculations (as proposed in [3]). Finally, it is noteworthy that the derivation of an enriched description of
the thermal interface behaviour is straightforward following the same arguments.
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