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The linear secondary stability of large-scale optimal streaks in turbulent Couette flow at
Reτ = 52 and Poiseulle flow at Reτ = 300 is investigated. The streaks are computed by
solving the nonlinear two-dimensional Reynolds-averaged Navier–Stokes equations using
an eddy-viscosity model. Optimal initial conditions leading the largest linear transient
growth are used, and as the amplitude of the initial vortices increases, the amplitude
of streaks gradually increases. Instabilities of the streaks appear when their amplitude
exceeds approximately 18% of the velocity difference between walls in turbulent Couette
flow and 21% of the centerline velocity in turbulent Poiseuille flow. When the amplitude
of the streaks is sufficiently large, the instabilities attain significant growth rates in a finite
range of streamwise wavenumbers that shows good agreement with the typical streamwise
wavenumbers of the large-scale motions in the outer region.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

L’instabilité linéaire secondaire des streaks à grande échelle est étudiée dans les écoule-
ments de Couette turbulent à Reτ = 52 et Poiseuille turbulent à Reτ = 300. Les streaks sont
calculés en résolvant les équations de Navier–Stokes moyennées selon Reynolds en utilisant
un modèle de viscosité turbulente. Les conditions initiales optimales, induisant la plus
grande croissance transitoire, sont utilisées; quand l’amplitude des tourbillons optimaux
initiaux est augmentée, l’amplitude des streaks augmente aussi. Les streaks deviennent
instables quand leur amplitude est supérieure à environ 18% de la différence de vitesse
entre les deux parois dans l’écoulement de Couette turbulent et 21% de la vitesse au
centre du canal dans l’écoulement de Poiseuille turbulent. Quand l’amplitude des streaks
est suffisamment élevée les instabilités atteignent des taux d’amplification significatifs dans
une bande de longueurs d’onde qui est en bon accord avec les longueurs d’onde typiques
observées dans les région externe.
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1. Introduction

Understanding the dynamics of coherent motions is a central issue in the research on wall-bounded turbulent flows.
In the near-wall region, streaks, i.e. spanwise alternating patterns of high- and low-momentum regions with mean spacing
about one hundred wall units, have been found as the most prominent feature [1]. These streaks sustain independently
of the turbulent motions in the outer region [2], and the corresponding process has been understood as a cycle involving
amplification of streaks by vortices, breakdown of the streaks via instability and the subsequent nonlinear process gener-
ating new vortices [3,4]. Streaky motions, however, have been also found in the outer region, and they carry a significant
fraction of turbulent kinetic energy and Reynolds stress [5,6]. The origin of these large-scale streaky motions is not clear
yet, but nonmodal stability theory has predicted that they can be significantly amplified by lift-up mechanism [7–9]. This
encouraging result suggests that a self-sustaining process similar to the buffer-layer cycle presumably exists in the outer re-
gion, as confirmed by recent results [10]. However, streaks maximally amplified are found to be uniform in the streamwise
direction, whereas the streaky motions observed in experiments have the finite streamwise wavelengths and meander with
vortex packets (also called large-scale motions) coherently aligned to them [5,6]. Currently, there is no sound explanation
for these features, and only recently it has been conjectured that the vortex packets may be related to the instability of
large-scale streaks [5]. The goal of the present study is to analyze the stability of large-scale streaks and to seek a relation-
ship between the streamwise wavelengths of the instability and the length-scales of the coherent structures in the outer
region. In order to theoretically track this issue, we consider an eddy-viscosity model for the organized waves [11] success-
fully used to study the transient growth of large-scale streaks [7–9], and conduct a secondary stability analysis of the most
amplified streaks in the turbulent Couette flow and in the turbulent Poiseulle flow.

2. Background

We consider the turbulent flow of an incompressible fluid with the density ρ and kinematic viscosity ν in a channel
with walls located at ±h. Here, the streamwise, wall-normal and spanwise directions are denoted as x, y and z respectively.
For Couette flow, the upper and the lower walls move in opposite directions with the same velocity U w . The Poiseulle flow
is driven by a constant pressure gradient across the channel and has centerline velocity Ucl . For both cases, the equation for
organized waves in perturbation form around the mean flow (Ui = (U (y, z),0,0)) is written as [11,7–9]
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Here, ui = (u, v, w) is the velocity of the organized wave and νT (y) ≡ ν +νt(y), where νt(y) is the turbulent eddy viscosity.
The streaky base flow is computed using a mean profile U (y) issued from DNS for the Couette flow as in [9] and the
Reynolds–Tiederman profile for the Poiseulle flow as in [8]. νT (y) is the total eddy viscosity in equilibrium with U (y)

and the solutions are assumed uniform in the streamwise direction. Once the streaky base flow us(y, z) is computed, the
secondary base flow is defined as Ub(y, z) ≡ U (y) + us(y, z). The stability of Ub(y, z) is then studied by linearizing (1)
with the secondary perturbations u′

i(x, y, z, t). Under the assumption that the base flow Ub(y, z) is periodic in the spanwise
direction, the Floquet theory allows the linearized equation to have the following normal-mode solution:

u′
i(x, y, z, t) = eiαx−iωt

∞∑
n=−∞

ûn
i (y)ei(n+ε)β0z + c.c. (2)

where α is the streamwise wavenumber, ω the complex frequency, β0 the spanwise wavenumber related to the fundamental
period of the base flow, and 0 � ε � 1/2 is the detuning parameter. According to the values of ε , the solutions (2) are
classified into ‘fundamental’ (ε = 0) and ‘subharmonic’ (ε = 1/2) modes. Also, the modes with even and odd symmetries
about base flows are called ‘sinuous’ and ‘varicose’ respectively. For further details on the classification of the modes, the
readers are referred to [12]. In the present study, we focus only on the fundamental sinuous mode, found as the most
unstable one for all the cases considered.

Eq. (1) is discretized using Chebyshev polynomials and Fourier series in the wall-normal and spanwise directions re-
spectively. The time integration used to compute Ub(y, z) is conducted using the Runge–Kutta third-order method. For the
Floquet analysis, the same spatial discretization is applied to the linear operators. The resulting numerical eigenvalue prob-
lem is then solved using the implicitly restarted Arnoldi method (for further details, see [12]). All the computations here
are carried out with N y × Nz = 65 × 32.

3. Results

We consider a turbulent Couette flow at Reτ = 52 and a Poiseulle flow at Reτ = 300. The computation of the streaky
base flows is carried out by using the optimal initial conditions, that consist of pairs of the counter-rotating streamwise
vortices computed in [8,9] (see also Fig. 2). The spanwise spacing is chosen as λz = 4h (β0h = π/2), which is very near
the optimal value [8,9]. The spanwise size of computational box is set to as Lz = λz , so that a single pair of optimal initial
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Fig. 1. Evolution of the streak amplitude in time: (a) Couette flow with Av = 0.08,0.11,0.12,0.16; (b) Poiseulle flow with Av = 0.06,0.078,0.09,0.1. Here,
• denotes the maximum of As at t = tmax.

Fig. 2. Cross-stream (y–z) view of streaky base flow extracted at t = tmax and optimal initial vortices: (a) Couette flow with As = 26% and (b) Poiseulle flow
with As = 25%. Here, the solid and dashed contour lines respectively denote positive and negative parts of the streaky base flow with the increment 0.1 of
its maximum, and the vectors represent the initial vortices.

Fig. 3. Growth rate of fundamental sinuous mode with the streamwise wavenumber α for streaky base flows corresponding to • in Fig. 1: (a) Couette flow
with As = 13,18,20,26%; (b) Poiseulle flow with As = 18,21,23,25%. Here, � indicates the location of maximum ωi of the largest amplitude of streaks
considered.

vortices is driven. The amplitude of the initial vortices is defined as Av = [(2/V )
∫

V (u2 + v2 + w2)dV ]1/2. The amplitude of
the streaks induced by these vortices is defined [14] as

As = [maxy,z �U (y, z) − miny,z �U (y, z)]
2 Uref

(3)

where �U (y, z) ≡ us(y, z). Here, Uref = 2U w and Uref = Ucl for Couette and Poiseulle flows respectively.
Fig. 1 shows the temporal evolution of the streak amplitude for several amplitudes Av of the optimal initial vortices.

Both Couette and Poiseulle flows exhibit large transient amplifications of the streaks through the coherent lift-up effect.
As Av increases, the amplitude of the streaks also increases. However, the ratio of the amplification slightly decays with
increasing Av , and the time for As to reach its maximum (tmax) also becomes shorter. Typical cross-stream views of the
initial vortices and streaks at t = tmax are reported in Fig. 2. It is seen that the low-momentum regions where the fluid
is ejected from the wall by the vortices ((y > 0, z � ±2h) and (y < 0, z � 0) in Fig. 2) are narrow and intense, and this
tendency generally becomes stronger for larger streak amplitudes.

The Floquet stability analysis is performed for the fundamental modes using the streaky base flows extracted at t = tmax.
Fig. 3 shows the growth rate ωi of sinuous modes versus the streamwise wavenumber α for several As . Both Couette and
Poiseulle flows are stable for sufficiently low amplitudes of the streaks (ωi < 0). As the amplitude of streak As increases,
the growth rate gradually increases. Then instability begins to appear (ωi > 0) when As reaches the value: As,c = 18%
at αch = 0.3 for Couette flow (Fig. 3a) and As,c = 21% at αch = 1.2 for Poiseulle flow (Fig. 3b). When As > As,c , a finite
interval of the streamwise wavenumbers is unstable with maximum growth at αmaxh � 0.6 in Couette flow (Fig. 3a) and
αmaxh � 1.4 in Poiseulle flow (Fig. 3b). We have verified that varicose modes are less unstable than sinuous modes in this
range of Av –As .

Fig. 4 shows the spanwise velocity component w of the streak-instability eigenfunction and the line where the mean
velocity is the same as the phase speed cr of instability wave (cr = 0 in Couette flow while cr = 0.87Ucl in Poiseulle flow).
The w-component of the eigenfunction is concentrated in the lifted low-momentum region for both Couette and Poiseulle
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Fig. 4. Cross-stream (y–z) view of the absolute value of the spanwise velocity eigenfunction corresponding to � in Fig. 3: (a) Couette flow; (b) Poiseulle
flow. Here, the contour is normalized by its maximum and the thick dashed line denotes the velocity of streaky base flow which is the same with the
phase speed of the streak instability.

flows. In Couette flow the amplitude of the eigenfunction is appreciable even close to the opposite wall, whereas in Poiseulle
flow it is mainly concentrated on the center of the channel, which is reminiscent of the unstable modes found in the laminar
case.

4. Discussion

We have investigated the instability of finite amplitude streaks in the framework of an eddy viscosity of turbulent
Couette and Poiseulle flows. The nature of the streak instability we find bears same similarity the one observed in the
laminar flows: the instability appears for the high amplitude streaks and it is dominated by the fundamental sinuous mode.
An interesting point is that the critical streak amplitudes in the present model are lower than those in laminar flows:
for example, our own computations in laminar Couette and Poiseulle flows at Reh = 500 give As,c � 23% and As,c � 28%
respectively (see also [13]), whereas for the turbulent Couette and Poiseulle flows it is found As,c � 18% and As,c � 21%
respectively at Reτ = 52 and Reτ = 300. However, this does not mean that the streak instability in turbulent flows can be
more easily triggered than in laminar flows because as the optimal turbulent transient growth is smaller than the laminar
one [8,9], initial vortices in turbulent flows should be more energetic to drive streak instability than those in laminar flows.
For example, in the laminar Poiseulle flow, Av,c ∼ O (10−3) is required to trigger streak instability [13], but the amplitude
of initial vortices in the present model of Poiseulle flow is almost two order of magnitude larger (i.e. Av,c � 0.08).

In the outer region of the turbulent Poiseulle flow, the streamwise length scale of the large-scale motions has been
associated with the peak near the high wavenumber boundary of the α−1 regime in the spectra of the outer region at αh =
1 ∼ 2 (λx = 3.1 ∼ 6.3h), and that is clearly visible for 0 < |y| < 0.6h [15,16]. The range of unstable streamwise wavenumbers
in the present study is also obtained at αh = 0.8 ∼ 1.8 (λx = 3.5 ∼ 7.9h; see Fig. 3b), showing good agreement with the
location of the peak in the streamwise spectra. Moreover, the eigenfunctions obtained here have significant values in 0 <

|y| < 0.6h, also comparable to the spectra. For the turbulent Couette flow, the streamwise wavenumber having the maximum
growth rate (αh � 0.6; λx � 10.5h; see Fig. 3a) also corresponds well to the location of the peak in the streamwise spectra at
the channel center (αh � 0.63; λx � 10h) [17]. This good correlation in the length-scale comparison implies that the large-
scale motion could be formed by instability of much longer streaky motions in the outer region. However, as the Reynolds
numbers considered here are fairly low, this conclusion remains to be confirmed at larger Re. Also, alternative scenario
based on the secondary transient growth as in [18] may also be relevant, and is currently under active investigation.
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