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Graph partitioning is a technique used for solving many problems in scientific computing,
such as the decomposition of a mesh into domains so as to evenly balance the compute
load on the processors of a parallel architecture. Because of the ever increasing size of the
meshes to handle, partitioning tools themselves had to be parallelized. The parallel versions
of these software provide good results for and on several thousands of processors, but the
advent of architectures comprising more than a million processing elements raises new
problems. Not only do the partitioning results produced by these software have to take into
account the heterogeneity of these architectures, but also does the efficient execution of the
partitioning software on these architectures require much more sophisticated algorithms.
The purpose of this note is to present the challenges to overcome in order to reach these
goals.

© 2010 Published by Elsevier Masson SAS on behalf of Académie des sciences.

r é s u m é

Le partitionnement de graphes est une technique utilisée pour la résolution de nombreux
problèmes en calcul scientifique, tels que la décomposition d’un maillage en sous-domaines
pour répartir la charge de calcul sur les processeurs d’une architecture parallèle. La
taille des maillages à traiter augmentant sans cesse, les logiciels de partitionnement ont
eux-mêmes dû être parallélisés. Les versions parallèles de ces logiciels fournissent de
bons résultats sur et pour plusieurs milliers de processeurs, mais l’arrivée imminente
d’architectures hétérogènes comprenant plus d’un million d’unités de traitement pose de
nouveaux problèmes. Non seulement les résultats de partitionnement produits par ces
logiciels doivent-ils tenir compte de l’hétérogénéité de ces architectures, mais l’exécution
efficace du logiciel de partitionnement sur cette même architecture doit-elle nécessiter une
algorithmique bien plus sophistiquée. L’objet de cette note est de présenter les défis à
surmonter afin d’atteindre ces objectifs.

© 2010 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

Graph partitioning is an ubiquitous technique which has applications in many fields of computer science and engineering,
such as domain decomposition for parallel iterative linear system solvers, VLSI circuit layout, or image segmentation, among
others. It is used to help solving domain-dependent optimization problems modeled in terms of weighted or unweighted
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Fig. 1. The multilevel partitioning process, here in the case of bipartitioning. In the uncoarsening phase, the light and bold lines represent for each level the
prolonged partition obtained from the coarser graph, and the partition obtained after refinement, respectively.

graphs, where finding good solutions amounts to computing, eventually recursively in a divide-and-conquer framework,
small vertex or edge cuts that balance evenly the weights of the graph parts.

Save for very constrained subproblems, the computation of a balanced partition with minimal cut is NP-complete, even
in the bipartitioning case [1]. Consequently, for problems of sizes above several thousands of vertices, heuristics are the only
way to provide acceptable solutions in reasonable time.

Over the past decades, many methods have been proposed to compute graph partitions with small cut size: evolutionary
algorithms (comprising simulated annealing [2,3], genetic algorithms [4], ant colonies [5], greedy iterative algorithms [6,7]),
graph algorithms [8,9], geometry-based inertial methods [10], spectral methods [11], region growing [12], etc. While taking
their inspiration from radically different fields such as genetics or statistical physics, analogies between these methods
are numerous, as well as cross-fertilization in their implementations, so that it is sometimes difficult to categorize them
unambiguously. While some of them are specifically designed to minimize cut size, that is, the number of cut edges or
of separator vertices, others can handle more general cost functions, so as to provide partitions which represent trade offs
between multiple constraints.

1.1. The multilevel framework

Experience has shown that, for many graphs used in scientific computations, the best partition quality is achieved when
using a multilevel framework. This method, which derives from the multi-grid algorithms used in numerical physics, repeat-
edly reduces the size of the graph to partition by finding matings which collapse vertices and edges, computes an initial
partition for the coarsest graph obtained, and prolongs1 the result back to the original graph [11,13,14] (see Fig. 1).

Multilevel methods are most often combined with partition refinement methods, in order to smooth the prolonged
partitions at every level so that the granularity of the solution is the one of the original graphs and not the one of the
coarsest graphs.

In the sequential case, the most popular refinement heuristics in the literature are the local optimization algorithms of
Kernighan–Lin [15] (KL) and Fiduccia–Mattheyses [16] (FM), either on edge-based [13] or vertex-based [17] forms depending
on the nature of the desired separators. All of these algorithms base on successive moves of frontier vertices to decrease
the current value of the prescribed cost function. Vertices to be moved are chosen according to their gain value, that is, the
amount by which the current value of the cost function would be modified if the given vertex was moved to some other
part; vertices of negative gain values are consequently the most interesting to move. Moves which adversely affect the cost
function may be accepted, if they are further compensated by moves which result in an overall gain, therefore allowing
these algorithms to perform hill-climbing from local minima of the cost function.

1.2. The need for parallelism

Based on the multilevel framework, several successful general-purpose sequential tools for graph partitioning have been
developed in the past decades, such as Chaco [18], MeTiS [19], Jostle [20] and our own project, Scotch [21]. However,
because problem sizes keep increasing, large problems graphs cannot fit in the memory of sequential computers, and cost
too much to partition, leading to the development of parallel graph partitioning tools such as ParMeTiS or Jostle. The
PT-Scotch project (for “Parallel Threaded Scotch”), currently carried out within the Bacchus team of INRIA Bordeaux –
Sud-Ouest, is yet another attempt to address this problem.

1 While a projection is an application to a space of lower dimension, a prolongation refers to an application to a space of higher dimension.
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In order to anticipate the expected growth rate of problem and machine sizes, our initial design goal for PT-Scotch

was to be able to partition graphs of above one billion vertices, distributed over a thousand processors. This goal has been
successfully achieved by mid-2010, with revision 5.1.10 of PT-Scotch being able to partition a graph over 2.4 billion vertices,
distributed across 2048 processors of the platine machine located at the French CCRT computer center.

The advent of massively parallel NUMA2 and heterogeneous3 machines represents a new challenge for graph partitioning
software designers, because partitioning tools will have to be scalable up to hundred thousand of processing elements. The
purpose of this paper is to present the key issues that are currently tackled within the Scotch project for the development
of highly scalable parallel graph partitioning algorithms suitable for these new architectures.

2. Three main challenges

The advent of massively parallel, heterogeneous machines impacts the design of the software to be executed on these
machines, both for applications and for service tools.

For the Scotch project, it results in three interwoven challenges, which we are going to discuss below. These challenges
are a consequence of our new roadmap, which consists in being able to handle graphs of a trillion vertices distributed across
a million processing elements. While, in our previous roadmap, scalability was mostly a matter of handling graphs with a
large number of vertices, implying the definition of suitable data structures, the new roadmap focuses on the ability to run
efficiently on a large number of processing elements, implying the definition of suitable algorithms.

The figures of our first roadmap were coined because it amounted to storing about one million vertices per processing
element, which matched the memory capacity of the latter. We reiterated this assumption in our second roadmap, because
we assume that the continuous increase in the number of processing elements will tend to match the continuous increase
in overall memory capacity of the machines, so that the amount of memory per processing element will remain constant.
Consequently, the critical algorithmic issue in the years to come will be the need to hide the latency of a larger amount
of communication, which are likely to involve a larger fraction of the local data borne by the processing elements, without
any possibility to increase the size of the local data. Moreover, latency is likely to increase because of the increasing het-
erogeneity of the machines, making synchronous algorithms more prone to communication bottlenecks and stalling. These
three challenges of scalability, heterogeneity and asynchronicity have to be addressed concurrently.

2.1. The challenge of scalability

Even without taking into account architectural concerns, which will add new constraints, our data structures and algo-
rithms must be able to scale up to the sizes prescribed in our new roadmap. After recalling the design choices that we did
in the context of our first roadmap, we will discuss some issues related to the algorithms.

2.1.1. Design choices
In order to reach our first goal, some early design decisions have been taken, which condition the ability of the software

to handle some types of graphs. In particular, we assumed that distributed graphs are of reasonably small degree, that
is, that graph adjacency matrices have sparse rows and columns. Unlike more robust approaches [22], we presumed that
vertex adjacencies can be stored locally on every process, without incurring too much memory imbalance or even memory
shortage.

Also, we wanted our software to run on any number of processes p, and produce any number of parts k, to avoid
limitations which existed in other packages. For instance, ParMeTiS can compute orderings only on a number of processes
which is a power of two (k = 2i ), and Jostle produces only as many domains as the number of processes it is running on
(k = p).

In order for parallel partitioning algorithms to be able to scale on an arbitrary number of processing elements, graph
data must never be duplicated, across all of the processing elements, more than a (small) factor of the vertex and edge set
sizes |V | and |E|. The distributed graph structure which we implemented, and which we describe below, fulfills this goal.
Also, all of our algorithms should never use data structures that are super-linear in k, p and/or |V |. For instance, in the case
of graph repartitioning, where the number of vertices to be moved between every pair of parts has to be determined so
as to rebalance graph parts while minimizing data transfers, centralized flow matrices must never be used (it is a known
problem that the current version of ParMeTiS builds such an array of size p2).

In terms of execution architecture, we considered a distributed memory model, since upcoming, very large machines are
not likely to ever implement efficiently a shared-memory paradigm, were it be NUMA. The distributed memory paradigm
has a strong impact on algorithms, because mutual exclusion and locking issues, which are implicitly resolved by doing
memory accesses in the sequential case, have to be reformulated in terms of undeterministic, latency-inducing, message
exchanges.

2 Non-Uniform Memory Access. These machines are categorized by the fact that, while their memory can be accessed from all of their processing elements,
the cost of access may differ depending on the location of the memory with respect to the processing element which makes the request.

3 Heterogeneous machines are even more generic than NUMA ones, as they can also consist in clusters of machines of different kinds and compute
powers, linked by networks of different bandwidths and latencies, e.g. a grid computer system.
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According to the above assumptions, in our PT-Scotch software, like in other packages, distributed graphs are repre-
sented by means of adjacency lists [23]. Vertices are distributed across processes along with their adjacency lists and with
some duplicated global data. Since many algorithms require that local data be attached to every vertex, and since using
extensively global indices would be too expensive in our opinion, all vertices owned by some process are also assigned
local indices, suitable for the indexing of compact local data arrays. This local indexing is extended so as to encompass all
non-local vertices which are neighbors of local vertices, which are referred to as ghost vertices. Since only local vertices are
processed by the distributed algorithms, the adjacency of ghost vertices is never stored on the processes, which guarantees
the scalability of the data structure as no process will store information of a size larger than its number of local outgoing
arcs.

2.1.2. Algorithmic scalability
It is common knowledge in the parallel computing community that the best parallel algorithm to solve a given problem

is most often not the parallel transposition of the best sequential algorithm for this purpose. Graph partitioning algorithms
by no means escape this rule. In particular, the FM and KL state-of-the-art sequential methods for local optimization, which
are iterative by nature, bear strong sequentiality constraints which prevent their direct transposition into scalable parallel
formulations.

This is why several of our contributions specially targeted the conception of highly scalable algorithms for the two critical
issues of the multilevel framework: graph coarsening, and the optimization of prolonged partitions during the uncoarsening
phase. Regarding graph coarsening, we proposed a probabilistic matching algorithm that does not incur any bias with
respect to initial graph data distribution [24], and converges in a small number of iterations, as only 5 rounds of collective
communication are required in practice to match more than 80% of the vertices. Regarding the optimization of prolonged
partitions, we decided to turn to global optimization algorithms, such as diffusion-based algorithms [25], which are much
more suitable for parallelization than local optimization algorithms. Yet, as these algorithms would have been much too
expensive when applied to the finer graphs, we proposed to reduce problem space to a small band of vertices around the
prolonged separators [26].

The idea of diffusion-based algorithms is to model the graph to partition as a set of barrels linked by pipes. Liquids are
flowed in from the centers of each of the domains, and create fronts when they meet, tending to minimize the surface
tension energy in the domain interfaces. This why such algorithms are also referred to as “bubble-growing” algorithms.

While our data structures are likely to scale nicely up to the fulfillment of the goal of our second roadmap, and while
our probabilistic coarsening algorithm is independent of graph size and of data distribution, the current version of our
diffusion-based optimization algorithm is susceptible to coarsening and rounding artifacts, so that the produced domains
become too imbalanced when too many parts, having only a few vertices per part, are sought for. Moreover, this algorithm
is not suitable for creating domains for heterogeneous architectures, since the diffusion process cannot account for the fact
that neighbors may belong to domains which are more expensive to reach than others. This would require to dynamically
change the weights of the edges, depending on the domains to which their end vertices are currently assigned, which has
no meaning in terms of physical analogy. Suitable algorithms have therefore to be designed, as we are going to see in the
next section.

2.2. The challenge of heterogeneity

The problem of assigning the communicating processes of a parallel program onto the processing elements of some
computer system is referred to as mapping in the literature. In the SPMD4 context described above, it is equivalent to the
distribution across processors of the data structures of parallel programs; in this case, all pieces of data assigned to some
processor are handled by a single process located on this processor. This is for instance the case when computing domain
decompositions of large meshes, so that each of their domains is handled by a different processing element. In this context,
we will talk about processes rather than about processors or processing elements to represent the entities across which data
will be distributed.

The parallel program to be mapped onto the target architecture is modeled by a valuated unoriented graph, called source
graph or process graph, the vertices of which represent the processes of the parallel program, and the edges of which
represent the communication channels between communicating processes or data dependencies. The target machine onto
which the parallel program is mapped, is also modeled by a valuated unoriented graph, called target graph or architecture
graph. The partitioning problem can therefore be seen as a subproblem of the mapping problem, where all processing
elements are identical and all equally interconnected, that is, the target graph is a complete graph with identical edge
weights.

The a priori computation of efficient mappings requires some knowledge on the dynamic behavior of the target machine
with respect to the programs which are run on it. This knowledge is synthesized in a cost function, the nature of which
determines the characteristics of the desired mappings. One of the most widely used cost functions for communication min-
imization is the sum, for all edges of the source graph to be mapped onto the target graph modeling the target architecture,

4 Single Process, Multiple Data. This is a programming paradigm in which all processing elements of some parallel machine run the very same code, the
behavior of the latter being conditioned by the data which have been loaded onto it.
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Fig. 2. Impact of the order in which sequential recursive bipartitioning tasks are processed within the same level when mapping the 2D rectangular graph
bump onto a 2 × 4 grid architecture. When bipartitioning tasks are processed as in figure (b), if parts computed by tasks 1 and 3 are not assigned in the
same way, task 4 will be forced to produce two “twisted” parts so as to minimize overall edge dilation in figure (c). When tasks are processed in judicious
order, jointed frontiers can be produced, as in figure (d).

of their dilation5 multiplied by their weight [13,27]. In the case of plain graph partitioning, where all edge dilations are
equal to 1, this metric simplifies into the sum of the weights of all cut edges. This function is widely used, because it is
easy to compute and because its minimization favors the mapping of intensively intercommunicating processes onto nearby
processors [27,28].

In the last decades, when advances in computer architectures allowed vendors to build parallel architectures comprising
up to several hundreds of processing elements and that still exhibited a quasi-UMA behavior, the domain decomposition
problem could be efficiently solved by means of regular graph partitioning tools. With the advent of much more heteroge-
neous target architectures, either hierarchical NUMA (cores tightly interconnected within processor chips, the latter being
clustered on shared-memory boards, which are stacked into cabinets, interconnected with high-speed links) or loosely-
interconnected grids, it becomes more and more important to take topology into account when splitting process graphs.

The sequential Scotch software possesses static mapping capabilities since its inception. It bases on an algorithm called
“dual recursive bipartitioning” [27], which proceeds by recursive allocation of subsets of processes to subsets of processors.
Yet, this algorithm cannot be transposed in parallel, because in order for a recursive bipartitioning task to maximize local
communication, it must have knowledge of the outcome of its already computed neighboring bipartitioning tasks. While
careful ordering of the bipartitioning tasks can lead to good results in the sequential case, as evidenced in Fig. 2, this is not
possible at all in the parallel case, because all tasks at the same recursion level are supposed to run in parallel on distinct
processes.

A solution to this is to adapt our parallel multilevel framework so as to compute a sequential static mapping of the
coarsest graph, and use a parallel local optimization algorithm that allows for such complex cost functions. As seen before,
diffusion-based algorithms cannot easily be adapted. This is why we have also experimented with genetic algorithms, but
they are way too expensive, even on reduced problem spaces. New algorithms have to be investigated.

2.3. The challenge of asynchronicity

Yet, large heterogeneous machines may also pose a synchronicity problem. Most algorithms that we presented here
make use of halo exchanges, that is, some form of all-to-all communication between neighbor vertices borne by different
processes, as well as of parallel reduction, to inform all processes of the result of a distributed computation (e.g. the global
sum of distributed values, etc.). With the advent of machines having several hundred thousands of processing elements,
and in spite of the continuous improvement of communication subsystems, the demand for more asynchronicity in parallel
algorithms is likely to increase. In this respect, genetic algorithms may be good candidates, as computations can take place
asynchronously within independent sub-populations, called demes, with some “champions” being asynchronously exchanged
between neighboring demes, much like what happens on Earth. When enough demes exist, convergence to a good local
optimum is likely to be achieved, even if some demes may lag behind in terms of number of generations. Yet, as said

5 The dilation of a source graph edge is the length of the shortest path, within the target graph, linking the two target graph vertices onto which are
placed the two source graph vertices which are the ends of the considered edge.
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above, genetic algorithms are too expensive, so that new algorithms have also to be investigated in this respect. The study
of parallel asynchronous graph partitioning algorithms is therefore, in our opinion, to become an active way of research in
the years to come.

3. Conclusion

Traditional parallel programming techniques, based on message-passing and synchronous algorithms, have allowed us to
create a parallel graph partitioning software able to partition graphs of more than a billion vertices on a thousand processing
elements.

However, the design of parallel graph partitioning software for the heterogeneous, massively parallel architectures to
come requires the tackling and solving of three interwoven challenges, namely scalability, heterogeneity and asynchronic-
ity. In the context of the proved multilevel framework, new coarsening and partition refinement algorithms have to be
developed, which is the subject of our current and future research for the years to come.
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