
C. R. Mecanique 339 (2011) 96–103
Contents lists available at ScienceDirect

Comptes Rendus Mecanique

www.sciencedirect.com

High Performance Computing / Le Calcul Intensif

Parallel hierarchical hybrid linear solvers for emerging computing
platforms

Un solveur hybride linéaire parallèle hiérarchique pour les plateformes de calcul
émergentes

Emmanuel Agullo, Luc Giraud, Abdou Guermouche, Jean Roman ∗

HiePACS Project – INRIA Bordeaux Sud-Ouest, Joint INRIA–CERFACS Lab. on High Performance Computing, PRES de Bordeaux, 351, Cours de la Libération,
33405 Talence cedex, France

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 3 January 2011

Keywords:
Computer science
Hierarchical platform
Parallel architecture

Mots-clés :
Informatique, algorithmique
Plateforme hiérarchique
Architecture parallèle

The design of the extreme-scale platforms that are expected to become available in
the forthcoming decade will represent a convergence of technological trends and the
boundary conditions imposed by over half a century of algorithm and application software
development. These platforms will be hierarchical because they provide coarse grain
parallelism between nodes and fine grain parallelism within each node. They are also
expected to be very heterogeneous since multi-core chips and accelerators have completely
different architectures and potentials. It is clear that such a degree of complexity will
embody radical changes that will render obsolete the current software infrastructure for
large-scale scientific applications. In this paper, we illustrate a hierarchical algorithmic
approach for the implementation of an efficient parallel sparse linear solver that combines
direct and iterative methods. Such a hybrid approach exploits the advantages of both
numerical techniques and enables the use of several levels and grains of parallelism.
This combination express different levels of parallelism and permits an optimal trade-
off between numerical and parallel efficiency. Consequently, such a numerical technique
appears as a promising candidate for intensive simulations on future many-core parallel
platforms.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

La conception des plateformes d’échelle extrême qui devraient être disponibles dans la
décade à venir représenteront la convergence de tendances technologiques et définiront le
cadre imposé au développement des futurs algorithmes et applications scientifiques. Ces
plateformes seront hiérarchiques puisqu’elles disposeront d’un parallélisme à grain moyen
entre les nœuds de calcul et d’un autre à grain fin à l’intérieur des unités de calcul. Elles
seront également probablement très hétérogènes puisque leurs composantes multi-cœurs
et cartes accélératrices auront des architectures et des caractéristiques très différentes. Il
est clair qu’un tel degré de complexité nécessitera des changements radicaux qui rendront
obsolètes les infracstrcutures logicielles actuelles pour le calcul des grandes applications.
Dans cet article, nous illustrons une approche algorihmique hiérarchique pour la mise en
œuvre d’un solveur linéaire parallèle qui combine des méthodes itératives et directes. Une
telle approche hybride exploite les avantages des deux méthodes et permet l’utilisation

* Corresponding author.
E-mail address: jean.roman@inria.fr (J. Roman).
1631-0721/$ – see front matter © 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.crme.2010.11.005

http://dx.doi.org/10.1016/j.crme.2010.11.005
http://www.ScienceDirect.com/
http://www.sciencedirect.com
mailto:jean.roman@inria.fr
http://dx.doi.org/10.1016/j.crme.2010.11.005

E. Agullo et al. / C. R. Mecanique 339 (2011) 96–103 97
de plusieurs niveaux de parallélisme de grains différents. Cette combinaison autorise
un compromis optimal entre la performance parallèle et numérique de l’algorithme. En
conséquence, une telle approche numérique apparaît comme une candidate prometteuse
pour le calcul intensif sur les futures machines multi-cœurs.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. The parallel computing platforms: landscape and trends

The design of the extreme-scale platforms that are expected to become available in the forthcoming decade will repre-
sent a convergence of technological trends and the boundary conditions imposed by over half a century of algorithm and
application software development. Although the precise details of these new designs are not yet known, the main trend is
that future platforms are likely to be composed of a large number of accelerator-based multi-core nodes. These platforms
are hierarchical because they provide coarse grain parallelism between nodes and fine grain parallelism within each node.
They are also very heterogeneous since multi-core chips and accelerators have completely different architectures and poten-
tials. It is clear that such a degree of complexity will embody radical changes as compared to the today’s systems and that
these changes will render obsolete the current software infrastructure for large-scale scientific applications.

Such evolutions have been observed in the past at a lower scale. Dense linear algebra libraries have always been in the
vanguard of High Performance Computing (HPC) trends. Therefore, one way to motivate our plan to design new numerical
methods for solving large sparse linear systems of equations on large-scale emerging machines is to first point to the
example of the evolution of dense linear algebra numerical methods and software in the last decades.

In the early seventies, the need to provide a standard API for applications relying on dense linear algebra kernels led
to the release of the LINPACK library. The factorizations were performed as a sequence of column factorizations followed
by updates of the trailing submatrix that performed extremely well on the HPC computers at that time that were vector
machines. When the complexity of hardware architectures grew in the eighties, with the intensive use of cache memory,
the update corresponding to a single column factorization was no longer efficient. Instead, column blocks (so-called panels)
were factorized all at once leading to a much more efficient update of the trailing submatrix thanks to a better data locality
of the data reused in cache. Furthermore, the model of a monolithic library embedding all dense linear algebra routines
became unsustainable. These routines were indeed split into two subsets associated with two different layers of abstraction.
The Basic Linear Algebra Subroutines (BLAS) were simple enough routines (such as the BLAS-3 matrix multiplication) so that
they could be highly tuned by vendors at a limited cost on each platform they delivered. The second set of routines were
higher level routines (such as factorizations) were fully redesigned to rely on the BLAS in order to achieve high performance.
In the nineties, the emergence of distributed memory clusters as mainstream platforms led the software community to
design new parallel algorithms to cope with the new characteristics of the computers. To achieve an efficient load balancing,
the matrix was split in submatrices that were processed by different processors according to a two-dimensional cyclic grid.
A new communication layer, the Basic Linear Algebra Communication Subroutines (BLACS), enabled to design a portable
library for distributed memory machines, so-called Scalable Lapack (ScaLAPACK).

The new paradigm of platforms composed of a large number of accelerator-based multi-core nodes is probably a hard-
ware revolution of broader impact than all the above evolutions that the HPC software community has to face. Again,
the dense linear algebra community pioneered to tackle this challenge. Indeed, new algorithms providing a finer granular-
ity of the tasks, enabling more dynamicity and ensuring further locality. For instance, so-called tile algorithms [1,2] and
communication-avoiding algorithms [3] strongly improved the performance of dense factorizations. To ensure performance
portability that is required to accommodate with the high pace currently followed by the evolution of parallel architectures,
they designed libraries that are further modular. In particular, a new layer, the runtime system, is used to permit to do
dynamically what can hardly be done statically anymore [4,5].

In the rest of the paper, we now address the problem of solving a large sparse linear system, which is often one of the
most important computational step of large-scale numerical simulations. We propose a method that seems to be a secure
path for achieving high performance on the forthcoming peta/exascale computers. Our numerical method is hierarchical
(two coarse levels of parallelism, but possibly more at finer grain) and relies on existing building blocks that can take
advantage of complex nodes (as in the methodology described above in the case of dense linear algebra).

2. A methodological approach: a case study in sparse linear algebra

2.1. Introduction

Solving large sparse linear systems Ax = b, where A is a given matrix, b is a given vector, and x is an unknown
vector to be computed, appears often in the inner-most loops of intensive simulation codes. It is consequently the most
time-consuming computation in many large-scale computer simulations in science and engineering, such as computational
incompressible fluid dynamics, structural analysis, wave propagation, and design of new materials in nanoscience, to name
a few. Over the past decade or so, several teams have been developing innovative numerical algorithms to exploit advanced
high performance, large-scale parallel computers to solve these equations efficiently. There are two basic approaches for

98 E. Agullo et al. / C. R. Mecanique 339 (2011) 96–103
solving linear systems of equations: direct methods and iterative methods. Those two large classes of methods have some-
how opposite features with respect to their numerical and parallel implementation efficiencies.

Direct methods are based on the Gaussian elimination that is probably among the oldest method for solving linear sys-
tems. Tremendous effort has been devoted to the design of sparse Gaussian eliminations that efficiently exploit the sparsity
of the matrices. These methods indeed aim at exhibiting dense submatrices that can then be processed with computational
intensive standard dense linear algebra kernels such as BLAS, LAPACK and ScaLAPACK. Sparse direct solvers have been for
years the methods of choice for solving linear systems of equations because of their reliable numerical behavior [6]. There
are on-going efforts in further improving existing parallel packages. However, it is admitted that such approaches are in-
trinsically not scalable in terms of computational complexity or memory for large problems such as those arising from
the discretization of large three-dimensional partial differential equations (PDEs). Furthermore, the linear systems involved
in the numerical simulation of complex phenomena result from some modeling and discretization which contains some
uncertainties and approximation errors. Consequently, the highly accurate but costly solution provided by stable Gaussian
eliminations might not be mandatory.

Iterative methods, on the other hand, generate sequences of approximations to the solution either through fixed point
schemes or via search in Krylov subspaces [7]. The best known representatives of these latter numerical techniques are the
conjugate gradient [8] and the GMRES [9] methods. These methods have the advantage that the memory requirements are
small. Also, they tend to be easier to parallelize than direct methods. However, the main problem with this class of methods
is the rate of convergence, which depends on the properties of the matrix. Very effective techniques have been designed
for classes of problems such as the multigrid methods [10], that are well suited for specific problem such as those arising
from the discretization of elliptic PDEs. The essence of the multigrid approaches is to hierarchically reduce the size of the
problem via coarsening mechanisms and solving recursively a correction equation on a sequence of embedded problems.
This efficient numerical mechanism based on coarsening techniques leads to a reduce amount of computation when it
goes sequentially down the hierarchy which limits the possible parallelism on large scale platforms. Some attempts have
been made to develop additive variants to express reasonable amount of parallelism by enabling independent treatment
between the different levels of the hierarchy of problems. However, these schemes have encountered a limited success on
a few academic problems and their generalization to general linear systems remains an open question. Another trend to
preserve a good trade-off between numerical efficiency and large amount of parallelism consists in the so-called aggressive
coarsening that attempts to limit the number of levels in the hierarchy. We refer to [11, Chapter 10] and the references
therein for a recent survey. One way to improve the convergence rate of Krylov subspace solver is through preconditioning
and fixed point iteration schemes are often used as preconditioner. In many computational science areas, highly accurate
solutions are not required as long as the quality of the computed solution can be assessed against measurements or data
uncertainties. In such a framework, the iterative schemes play a central role as they might be stopped as soon as an accurate
enough solution is found. In our work, we consider stopping criteria based on the backward error analysis [12–14].

Our approach to high-performance, scalable solution of large sparse linear systems in parallel scientific computing is to
combine direct and iterative methods. Such a hybrid approach exploits the advantages of both direct and iterative methods.
The iterative component allows us to use a small amount of memory and provides a natural way for parallelization. The
direct part provides its favorable numerical properties. Furthermore, this combination enables us to exploit naturally several
levels of parallelism that logically match the hardware feature of emerging many-core platforms as stated in Section 1. In
particular, we can use parallel multi-threaded sparse direct solvers within the many-core nodes of the machine and message
passing among the nodes to implement the gluing parallel iterative scheme.

The general underlying ideas are not new. They have been used to design domain decomposition techniques for the
numerical solution of PDEs [15–17]. Domain decomposition refers to the splitting of the computational domain into sub-
domains with or without overlap. The splitting strategies are generally governed by various constraints/objectives but the
main one is to enhance parallelism. The numerical properties of the PDEs to be solved are usually extensively exploited at
the continuous or discrete levels to design the numerical algorithms. Consequently, the resulting specialized technique will
only work for the class of linear systems associated with the targeted PDEs. In our work, we develop domain decomposition
techniques for general unstructured linear systems. More precisely, we consider numerical techniques based on a non-
overlapping decomposition of the graph associated with the sparse matrices. The vertex separator, constructed using graph
partitioning [18,19], defines the interface variables that will be solved iteratively using a Schur complement approach,
while the variables associated with the interior sub-graphs will be handled by a sparse direct solver. Although the Schur
complement system is usually more tractable than the original problem by an iterative technique, preconditioning treatment
is still required. For that purpose, we developed parallel preconditioners and designed a hierarchical parallel implementation.
Linear systems with a few tens of millions unknowns have been solved on a few thousand of processors using our designed
software prototypes. We designed novel algorithms that greatly improve our solvers scalability, especially in exploiting the
emerging advances of petascale many-core computers.

2.2. Parallel hierarchical implementation

In this section, methods based on non-overlapping regions are described. Such domain decomposition algorithms are
often referred to as substructuring schemes. This terminology comes from the structural mechanics discipline where non-
overlapping ideas were first developed. The structural analysis finite element community has been heavily involved in the

E. Agullo et al. / C. R. Mecanique 339 (2011) 96–103 99
design and development of these techniques. Not only is their definition fairly natural in a finite element framework but
their implementation can preserve data structures and concepts already present in large engineering software packages.

Let us now further describe this technique and let Ax = b be the linear problem. For the sake of simplicity, we assume
that A is symmetric in pattern and we denote G = {V , E} the adjacency graph associated with A. In this graph, each vertex
is associated with a row or column of the matrix A and it exists an edge between the vertices i and j if the entry ai, j is
non-zero.

We assume that the graph G is partitioned into N non-overlapping sub-graphs G1, . . . , G N with boundaries Γ1, . . . ,ΓN .
The governing idea behind substructuring or Schur complement methods is to split the unknowns in two subsets. This
induces the following block reordered linear system:(

AII AIΓ

AΓ I AΓ Γ

)(
xI

xΓ

)
=

(
bI

bΓ

)
(1)

where xΓ contains all unknowns associated with sub-graph interfaces and xI contains the remaining unknowns associated
with sub-graph interiors. Because the interior points are only connected to either interior points in the same sub-graph or
with points on the boundary of the sub-graphs, the matrix AII has a block diagonal structure, where each diagonal block
corresponds to one sub-graph. Eliminating xI from the second block row of Eq. (1) leads to the reduced system

S xΓ = f (2)

where

S = AΓ Γ − AΓ I A−1
II AIΓ and f = bΓ − AΓ I A−1

II bI (3)

The matrix S is referred to as the Schur complement matrix. This reformulation leads to a general strategy for solving (1).
Specifically, an iterative method can be applied to (2). Once xΓ is known, xI can be computed with one additional solve on
the sub-graph interiors.

Let Γ denote the entire interface defined by Γ = ⋃
Γi ; we notice that if two sub-graphs Gi and G j share an interface

then Γi ∩ Γ j �= ∅. As interior unknowns are no longer considered, new restriction operators must be defined as follows. Let
RΓi : Γ → Γi be the canonical point-wise restriction which maps full vectors defined on Γ into vectors defined on Γi . Thus,
in the case of many sub-graphs, the fully assembled global Schur S is obtained by summing the contributions over the
sub-graphs. The global Schur complement matrix (3) can be written as the sum of elementary matrices

S =
N∑

i=1

RT
Γi

Si RΓi (4)

where

Si = AΓiΓi − AΓi Ii A−1
Ii Ii

AIiΓi (5)

is a local Schur complement associated with Gi . It can be defined in terms of sub-matrices from the local matrix Ai defined
by

Ai =
(

AIi Ii AIiΓi

AΓi Ii AΓiΓi

)
(6)

While the Schur complement system is significantly better conditioned than the original matrix A, it is important to
consider further preconditioning when employing a Krylov method. It is well known, for example, that κ(A) = O(h−2)

when A corresponds to a standard discretization (e.g. piecewise linear finite elements) of the Laplace operator on a mesh
with spacing h between the grid points. Using two non-overlapping sub-graphs effectively reduces the condition number
of the Schur complement matrix to κ(S) = O(h−1). While improved, preconditioning can significantly lower this condition
number further.

We introduce the general form of the preconditioner considered in this work. The preconditioner presented below was
originally proposed in [20] in two dimensions and successfully applied to large three-dimensional problems and real life
applications in [21,22]. To describe this preconditioner we define the local assembled Schur complement, S̄i = RΓi S RT

Γi
,

that corresponds to the restriction of the Schur complement to the interface Γi . This local assembled preconditioner can be
built from the local Schur complements Si by assembling their diagonal blocks.

With these notations the preconditioner reads

Md =
N∑

i=1

RT
Γi

S̄ −1
i RΓi (7)

If we considered a planar graph partitioned into horizontal strips (1D decomposition), the resulting Schur complement
matrix has a block tridiagonal structure as depicted in (8)

100 E. Agullo et al. / C. R. Mecanique 339 (2011) 96–103
⎛
⎜⎜⎜⎜⎜⎜⎝

. . .

Sk,k Sk,k+1
Sk+1,k Sk+1,k+1 Sk+1,k+2

Sk+1,k+2 Sk+2,k+2

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

(8)

For that particular structure of S the submatrices in boxes correspond to the S̄i . Such diagonal blocks, that overlap, are
similar to the classical block overlap of the Schwarz method when writing in a matrix form for 1D decomposition. Similar
ideas have been developed in a pure algebraic context in earlier papers [23,24] for the solution of general sparse linear
systems. Because of this link, the preconditioner defined by (7) is referred to as algebraic additive Schwarz for the Schur
complement. One advantage of using the assembled local Schur complements instead of the local Schur complements (like
in the Neumann–Neumann [25,26]) is that in the SPD case the assembled Schur complements cannot be singular (as S is
SPD [20]).

The original idea of non-overlapping domain decomposition method consists into subdividing the graph into sub-graphs
that are individually mapped to one processor. With this data distribution, each processor Pi can concurrently partially fac-
torize it to compute its local Schur complement Si . This is the first computational phase that is performed concurrently and
independently by all the processors. The second step corresponds to the construction of the preconditioner. Each processor
communicates with its neighbors (in the graph partitioning sense) to assemble its local Schur complement S̄i and performs
its factorization. This step only requires a few point-to-point communications. Finally, the last step is the iterative solution
of the interface problem (2). For that purpose, parallel matrix-vector product involving S , the preconditioner M� and dot-
product calculation must be performed. For the matrix-vector product each processor Pi performs its local matrix-vector
product involving its local Schur complement and communicates with its neighbors to assemble the computed vector to
comply with Eq. (4). Because the preconditioner (7) has a similar form as the Schur complement (4), its parallel applica-
tion to a vector is implemented similarly. Finally, the dot products are performed as follows: each processor Pi performs
its local dot-product and a global reduction is used to assemble the result. In this way, the hybrid implementation can be
summarized by the above main three phases.

Classical parallel implementations (1-level parallel) of such a hybrid scheme assign one sub-graph per processor. We
believe that applying only this paradigm to very large applications has some drawbacks and limitations. For many applica-
tions, increasing the number of sub-graphs leads to increasing the number of iterations to converge. If no efficient numerical
mechanism, such as coarse space correction for elliptic problems [27,15], is available the convergence rate might be signifi-
cantly deteriorated and the solution process becomes ineffective. In order to alleviate the numerical growth of the iterations,
when the number of sub-graphs is increased to feed each processor, we might keep the number of sub-graphs small while
handling each sub-graph by more than one processor introducing 2-levels of parallelism. Such an implementation enables us
to exploit the natural parallelism in the computation on the sub-graphs but also parallelism within the treatment of each
sub-graph. A natural implementation that complies with the hardware features of forthcoming many-core cluster exploits
message passing to handle the parallelism between the sub-graphs and multi-threading on a many-core node for the calcu-
lation associated to each sub-graph. This latter computation mainly requires to used a multi-threaded sparse direct solver
such as [28,29]. The other numerical kernel can be implemented using multi-threaded BLAS or LAPACK such as those avail-
able in PLASMA [30] or in MAGMA [31] for computation on heterogeneous computing nodes composed by CPU and GPU.
This multi-level parallelism capability is more particularly well suited to the hierarchical structure of peta/exaflop computers
and is the main point of our algorithmic hierarchical approach.

2.3. Numerical and parallel performance

The construction of the proposed local preconditioners can be computationally expensive because the dense matrices Si
should be factorized. We intend to reduce the storage and the computational cost to form and apply the preconditioner by
using sparse approximation of S̄i in Md following the strategy described by (9). The approximation Ŝi can be constructed
by dropping the elements of S̄ i that are smaller than a given threshold. More precisely, the following symmetric dropping
formula can be applied:

ŝ� j =
{

0, if |s̄� j | � ξ(|s̄��| + |s̄ j j |)
s̄� j, otherwise

(9)

where s̄� j denotes the entries of S̄i . The resulting preconditioner based on these sparse approximations reads

Msp =
N∑

i=1

RT
Γi

Ŝ −1
i RΓi

We notice that such a dropping strategy preserves the symmetry in the symmetric case but it requires to first assemble S̄ i
before sparsifying it.

E. Agullo et al. / C. R. Mecanique 339 (2011) 96–103 101
Fig. 1. Number of preconditioned conjugate gradient iterations when the global problem size varies from 2.7 million (27 cores) up to 75 million (1728
cores).

Motivated by accuracy reasons, many large-scale scientific applications and industrial numerical simulation codes are
fully implemented in 64-bit floating-point arithmetic. On the other hand, many recent processor architectures exhibit 32-bit
computational power that is significantly higher than that for 64-bit. We might legitimately ask whether all the calculation
should be performed in 64-bit or if some pieces could be carried out in 32-bit. This leads to the design of mixed-precision
algorithms. Particular care is necessary when choosing the part to be computed in 32-bit arithmetic so that the introduced
rounding error or the accumulation of these rounding errors does not produce a meaningless solution. We propose to take
advantage of the 32-bit speed and memory benefit and build some part of the code in 32-bit arithmetic. Our goal is to
use costly 64-bit arithmetic only where necessary to preserve accuracy. We consider here a simple approach of performing
all the steps of the Krylov subspace methods except the preconditioning in 64-bit. In this respect, it is important to note
that the preconditioner only attempts to approximate the inverse of the matrix S so introducing a slight perturbation by
performing this step in low precision might not affect dramatically the convergence rate of the iterative scheme. In our
mixed-precision implementation only the preconditioned residual is computed using 32-bit arithmetic. The consequence
of this strategy [32,33] is that the Gaussian elimination (factorization) of the local assembled Schur complement (used as
preconditioner), and the forward and the backward substitutions to compute the preconditioned residual, are performed in
32-bit while the rest of the algorithm is implemented in 64-bit. When the local assembled Schur complement is dense, cut-
ting the size of this matrix in half has a considerable effect in terms of memory space. Another benefit is in the total amount
of communication that is required to assemble the preconditioner. As for the memory required to store the preconditioner,
the size of the exchanged messages is also half that for 64-bit. Consequently, if the network latency is neglected, the overall
time to build the preconditioner for the 32-bit implementation should be half that for the 64-bit implementation.

In Fig. 1 (Fig. 2) we first report on the weak scalability of our solver in term of iteration count (resp. parallel elapsed
time). We solve linear systems resulting from the discretization of a 3D heterogeneous diffusion problem define in a cube;
the size of the sub-graph (i.e., number of vertices/unknowns) is kept constant when the number of sub-graphs is varied.
In these experiments we solve a 2.7 million unknown problem on 27 cores all the way up to a 75 million problem on
1728 cores. For those experiments, the two-level parallel implementation is not used.

None of the preconditioners implements any coarse spatial component to account for the global coupling of the elliptic
PDEs, hence they do not scale perfectly when the number of sub-graphs is increased. However, the scalability is not that
bad and clearly much better than that observed on two-dimensional examples [20]. The number of iterations is multiplied
by about two to three when going from 27 to 1728 cores (i.e., multiplying by about 64 the number of processors).

From a computational view point the behavior is slightly different as the global cost of the computation is not completely
governed by the iterative part. The initialization phase, i.e., factorization of the local problem and setup of the preconditioner,
involve direct numerical kernels whose cost is almost constant for all the runs. Consequently the global elapsed time is only
multiplied by 1.5 while the size of the problem solved is multiplied by 64. An ideally scalable solver would have a constant
elapsed time. Those experiments illustrate the numerical robustness of our hybrid solver that can be further enhanced by
exploiting multiple levels of parallelism.

102 E. Agullo et al. / C. R. Mecanique 339 (2011) 96–103
Fig. 2. Parallel elapsed time when the global problem size varies from 2.7 million (27 cores) up to 75 million (1728 cores).

Table 1
Numerical performance and advantage of the 2-level parallel method compared to the standard 1-level parallel method for a 3D structural mechanics problem.

total processors Algo # sub-graphs # processors/sub-graph # iter Iterative loop time

Fuselage 1 million elements with 6.5 × 106 dof
16 processors 1-level parallel 16 1 147 77.9

2-level parallel 8 2 98 51.4

32 processors 1-level parallel 32 1 176 58.1
2-level parallel 16 2 147 44.8
2-level parallel 8 4 98 32.5

64 processors 1-level parallel 64 1 226 54.2
2-level parallel 32 2 176 40.1
2-level parallel 16 4 147 31.3
2-level parallel 8 8 98 27.4

In order to illustrate the benefit of using the 2-level parallel implementation we consider a linear system arising from
a structural mechanics simulation. It corresponds to the discretization of a section of the fuselage of an aircraft where
unstructured Midlinn shell elements are used. The linear systems is of size 6.5 millions. We display in Table 1, the measured
performance of the 2-level parallel implementation on an 8-way multi-core IBM SMP cluster. For a fixed number of cores
we vary the number of sub-graphs and the number of cores allocated to each sub-graph. It can be seen that the lower the
number of sub-graphs, the faster the convergence and the smaller the solution time.

The numerical attractive features of the 2-level parallel approach is that increasing the number of processors to speedup
the solution of large linear systems does not imply increasing the number of iterations to converge as it is often the case
with the 1-level parallel approach. This strategy is very attractive in the case where we have a system with many right hand
side to solve. In this case it is better to keep the number of iterations as small as possible.

The parallel implementations of the numerical kernels involved in the iterative loop is efficient enough to speedup
the solution time. When we have 32 processors, standard (1-level parallel) implementation partitions the global graph into
32 sub-graphs; it requires 176 iterations to convergence and get the solution in 58.1 seconds. With the 2-level parallel
implementation, either 16 or 8 sub-graphs can be used. The 16 sub-graph partition requires 147 iterations performed in
44.8 seconds and the 8 sub-graph calculation needs 98 iterations performed in 32.5 seconds. This example illustrates the
advantage of the 2-level parallel implementation from a numerical viewpoint.

3. Concluding remarks

In this paper, we illustrate a hierarchical algorithmic approach for the implementation of an efficient parallel hybrid
sparse solver. The main goal of the design of 2-levels parallelism algorithm is the efficient use of parallel modern computers
in offering an optimal trade-off between numerical and parallel efficiency. The combination of the two levels of parallelism

E. Agullo et al. / C. R. Mecanique 339 (2011) 96–103 103
enables an optimal usage of the computing resources while preserving attractive numerical performance. Consequently, such
a numerical technique appears as a promising candidate for intensive simulations on future many-core parallel platforms.

References

[1] A. Buttari, J. Langou, J. Kurzak, J.J. Dongarra, A class of parallel tiled linear algebra algorithms for multicore architectures, Parallel Comput. Syst. Appl. 35
(2009) 38–53.

[2] E. Chan, E.S. Quintana-Orti, G. Gregorio Quintana-Orti, R. van de Geijn, Supermatrix out-of-order scheduling of matrix operations for SMP and multi-
core architectures, in: Nineteenth Annual ACM Symposium on Parallel Algorithms and Architectures SPAA’07, June 2007, pp. 116–125.

[3] J. Demmel, L. Grigori, M. Hoemmen, J. Langou, Communication-optimal parallel and sequential QR and LU factorizations, LAPACK Working Note 204,
August 2008.

[4] E. Agullo, C. Augonnet, J. Dongarra, H. Ltaief, R. Namyst, S. Thibault, S. Tomov, Faster, cheaper, better – a hybridization methodology to develop linear
algebra software for GPUs, Technical Report 230, LAPACK Working Note, September 2010.

[5] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, H. Haidar, T. Herault, J. Kurzak, J. Langou, P. Lemarinier, H. Ltaief, P. Luszczek, A. YarKhan, J. Dongarra,
Distributed-memory task execution and dependence tracking within DAGuE and the DPLASMA project, Technical Report 232, LAPACK Working Note,
September 2010.

[6] N.J. Higham, Accuracy and Stability of Numerical Algorithms, second ed., Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2002.
[7] Y. Saad, Iterative Methods for Sparse Linear Systems, second ed., SIAM, Philadelphia, 2003.
[8] M.R. Hestenes, E. Stiefel, Methods of conjugate gradients for solving linear system, J. Res. Nat. Bur. Stds. B 49 (1952) 409–436.
[9] Y. Saad, M.H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comp. 7 (1986)

856–869.
[10] W. Hackbusch, Multigrid Methods and Applications, Springer-Verlag, Berlin, 1985.
[11] M.A. Heroux, P. Raghavan, H.D. Simon, Parallel Processing for Scientific Computing, Society for Industrial and Applied Mathematics, Philadelphia, PA,

USA, 2006.
[12] R. Barrett, M. Berry, T.F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, H. Van der Vorst, Templates for the Solution of Linear

Systems: Building Blocks for Iterative Methods, second ed., SIAM, Philadelphia, PA, 1994.
[13] J. Drkošová, M. Rozložník, Z. Strakoš, A. Greenbaum, Numerical stability of the GMRES method, BIT 35 (1995) 309–330.
[14] A. Greenbaum, Iterative Methods for Solving Linear Systems, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1997.
[15] B.F. Smith, P. Bjørstad, W. Gropp, Domain Decomposition, Parallel Multilevel Methods for Elliptic Partial Differential Equations, first ed., Cambridge

University Press, New York, 1996.
[16] A. Quarteroni, A. Valli, Domain Decomposition Methods for Partial Differential Equations, Numerical Mathematics and Scientific Computation, Oxford

Science Publications, Oxford, 1999.
[17] T. Mathew, Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations, Springer Lecture Notes in Computational

Science and Engineering, Springer, 2008.
[18] G. Karypis, V. Kumar, MeTiS – Unstructured graph partitioning and sparse matrix ordering system, version 2.0, University of Minnesota, June 1995.
[19] C. Chevalier, F. Pellegrini, PT-SCOTCH: a tool for efficient parallel graph ordering, Parallel Comput. 34 (6–8) (2008).
[20] L.M. Carvalho, L. Giraud, G. Meurant, Local preconditioners for two-level non-overlapping domain decomposition methods, Numer. Linear Algebra

Appl. 8 (4) (2001) 207–227.
[21] L. Giraud, A. Haidar, L.T. Watson, Parallel scalability study of hybrid preconditioners in three dimensions, Parallel Comput. 34 (2008) 363–379.
[22] A. Haidar, On the parallel scalability of hybrid solvers for large 3D problems, PhD dissertation, INPT, June 2008. TH/PA/08/57.
[23] X.-C. Cai, Y. Saad, Overlapping domain decomposition algorithms for general sparse matrices, Numer. Linear Algebra Appl. 3 (1996) 221–237.
[24] G. Radicati, Y. Robert, Parallel conjugate gradient-like algorithms for solving nonsymmetric linear systems on a vector multiprocessor, Parallel Com-

put. 11 (1989) 223–239.
[25] J.-F. Bourgat, R. Glowinski, P. Le Tallec, M. Vidrascu, Variational formulation and algorithm for trace operator in domain decomposition calculations, in:

Tony Chan, Roland Glowinski, Jacques Périaux, Olof Widlund (Eds.), Domain Decomposition Methods, SIAM, Philadelphia, PA, 1989, pp. 3–16.
[26] Y.-H. De Roeck, P. Le Tallec, Analysis and test of a local domain decomposition preconditioner, in: Roland Glowinski, Yuri Kuznetsov, Gérard Meurant,

Jacques Périaux, Olof Widlund (Eds.), Fourth International Symposium on Domain Decomposition Methods for Partial Differential Equations, SIAM,
Philadelphia, PA, 1991, pp. 112–128.

[27] P.E. Bjørstad, O.B. Widlund, Iterative methods for the solution of elliptic problems on regions partitioned into substructures, SIAM J. Numer. Anal. 23 (6)
(1986) 1093–1120.

[28] P. Hénon, P. Ramet, J. Roman, PaStiX: A high-performance parallel direct solver for sparse symmetric definite systems, Parallel Comput. 28 (2) (January
2002) 301–321.

[29] J.W. Demmel, J.R. Gilbert, X.S. Li, An asynchronous parallel supernodal algorithm for sparse Gaussian elimination, SIAM J. Matrix Anal. Appl. 20 (4)
(1999) 915–952.

[30] PLASMA users’ guide, parallel linear algebra software for multicore architectures, version 2.0, http://icl.cs.utk.edu/plasma, November 2009.
[31] S. Tomov, R. Nath, P. Du, J. Dongarra, MAGMA, version 0.2, user guide, http://icl.cs.utk.edu/magma, November 2009.
[32] J. Kurzak, J. Dongarra, Implementation of the mixed-precision high performance LINPACK benchmark on the CELL processor, Technical Report LAPACK

Working Note #177 UT-CS-06-580, University of Tennessee Computer Science, September 2006.
[33] J. Langou, J. Langou, P. Luszczek, J. Kurzak, A. Buttari, J. Dongarra, Exploiting the performance of 32 bit floating point arithmetic in obtaining 64 bit

accuracy, Technical Report LAPACK Working Note #175 UT-CS-06-574, University of Tennessee Computer Science, April 2006.

http://icl.cs.utk.edu/plasma
http://icl.cs.utk.edu/magma

	Parallel hierarchical hybrid linear solvers for emerging computing platforms
	The parallel computing platforms: landscape and trends
	A methodological approach: a case study in sparse linear algebra
	Introduction
	Parallel hierarchical implementation
	Numerical and parallel performance

	Concluding remarks
	References

