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In this contribution we will describe in detail a Density Functional Theory method
based on a Daubechies wavelets basis set, named BigDFT. We will see that, thanks to
wavelet properties, this code shows high systematic convergence properties, very good
performances and an excellent efficiency for parallel calculations. BigDFT code operation
are also well-suited for GPU acceleration. We will discuss how the problematic of fruitfully
benefit of this new technology can be match with the needs of robustness and flexibility of
a complex code like BigDFT. This work may be of interest not only for expert in electronic
structure calculations, but may also provide feedback to the wider community of high
performance scientific computing.
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r é s u m é

Dans cet article nous allons décrire en détail BigDFT, une mise en oeuvre de la Théorie de
la Fonctionnelle de la Densité basée sur les ondelettes de Daubechies. Nous verrons que,
grâce aux propriétés des ondelettes, ce code présente une bonne convergence systématique,
de très bonnes performances et un excellent passage à l’échelle lors de calculs distribués.
Les opérations constituantes de BigDFT sont également bien adaptée aux accélérateurs de
type GPU. Nous analyserons comment bénéficier efficacement de cette nouvelle technologie
tout en respectant les contraintes de robustesse et de flexibilité d’un programme de la
complexité de BigDFT. Ce travail peut intéresser non seulement les experts en calcul
des structures électroniques, mais également constituer un retour d’expérience pour la
communauté plus large du calcul scientifique à hautes performances.
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1. Introduction

In the recent years, the development of efficient and reliable methods for studying matter at atomistic level has become
an asset for important advancements in a wide range of disciplines (material science, biology, chemistry, etc.). Both modern
technological evolution and the need for new conception of materials and nanoscaled devices require a deep understanding
of the properties of systems of many atoms from a fundamental viewpoint. To this aim, the support of computer simulation
can be of great importance. Indeed, via computer simulation scientists try to model systems with many degrees of freedom
by giving a set of “rules” of general validity (under some assumptions). Once these “rules” come from first-principles laws,
these simulation have the ambition to model system properties from a fundamental viewpoint. With such a tool, the prop-
erties of existing materials can be studied in depth, and new materials and molecules can be conceived, with potentially
enormous scientific and technological impact.

In this context, the advent of modern supercomputers represents an important resource in view of advancements in
this field. In other terms, the physical properties which can be analysed via such methods are tightly connected to the
computational power which can be exploited for calculation. It is thus important to provide reliable solutions to benefit
from the enhancements of computational power in order to use these tools in more challenging systems.

The Kohn–Sham (KS) formalism of the Density Functional Theory (DFT) approach [1] is the most widely used first-
principles method for investigating properties of atomistic systems. The increasing of the computational power of modern
supercomputers has further stimulated the interest of the community for electronic structure calculations of systems with
many electrons. Systems which were untractable only few years ago become now accessible with the advent of modern
machines. However, despite the approximate nature of the approach, the computational demand becomes huge already for
systems with few hundreds atoms. For the most common DFT codes, the number of computational operations scales cubi-
cally with respect to the number of atoms in the system. As a result, the computational overhead for treating systems with
large number of atoms now represents a serious limitation for the maximum size of the system considered. A high perfor-
mance computing (HPC) electronic structure program will make the analysis of more complex systems and environments
possible, thus opening a path towards new discoveries.

1.1. The importance of the basis set for HPC DFT codes

The computational machinery of DFT calculations has been widely developed in the last decade, giving rise to a plethora
of DFT codes. The usage of DFT calculation has thus become more and more common, and its domain of application com-
prises solid state physics, chemistry, materials science, biology and geology.

From a computational point of view, one of the most important characteristics of a DFT code is the set of basis functions
used for expressing the KS orbitals. The domain of applicability of a code is tightly connected to this choice. For example,
a non-localised basis set like plane waves is highly suitable for electronic structure calculations of periodic and/or homoge-
neous systems, while it is much less efficient in expanding localised information, which has a wider range of components in
the reciprocal space. For these reasons DFT codes based on plane waves are not convenient for simulating inhomogeneous
or isolated systems like molecules, due to the high memory requirements for such kind of simulations.

A remarkable difference should be also made between codes which use systematic and non-systematic basis sets. A sys-
tematic basis set allows us to calculate the exact solution of the KS equations with arbitrarily high precision as the number
of basis functions is increased. In other terms, the numerical precision of the results is related to the number of basis func-
tions used to expand the KS orbitals. With such a basis set it is thus possible to obtain results that are free of errors related
to the choice of the basis, eliminating a source of uncertainty. A systematic basis set allows us thus to really calculate the
solution of a particular exchange correlation functional. On the other hand, an example of a non-systematic set is provided
by Gaussian type basis, for which over-completeness may be achieved before convergence. Such basis sets are more difficult
to use, since the basis set must be carefully tuned by hand by the user, which will sometimes require some preliminary
knowledge of the system under investigation. This is the most important weakness of this popular basis set.

Another property which has a role in the performances of a DFT code is the orthogonality of the basis set. The use of non-
orthogonal basis sets requires the calculation of the overlap matrix of the basis function and performing various operations
with this overlap matrix such as inverting the matrix. This makes methods based on non-orthogonal basis functions not
only more complicated but also slower.

In this contribution we will describe in detail a DFT method based on a Daubechies wavelets basis set [4]. This method
is implemented in a DFT code called BigDFT, distributed under GNU-GPL license and integrated in the ABINIT [2] software
package. A separate, standalone version of this code is also available and distributed under GNU-GPL license [3]. We will see
that, thanks to wavelet properties, this code shows high systematic convergence properties, very good performances and an
excellent efficiency for parallel calculations. BigDFT code operation are also well-suited for GPU acceleration. We will see in
the following how the problematic of fruitfully benefit of this new technology can be match with the needs of robustness
and flexibility of a complex code like BigDFT.

In the next few paragraphs we will discuss the importance of the properties of Daubechies wavelets in the context of
electronic structure calculations.
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Fig. 1. Daubechies scaling function φ and wavelet ψ of order 16. Both are different from zero only in the interval from −7 to 8.

2. Overview of the BigDFT code

We describe in this section how the wavefunctions are expressed in the Daubechies basis. Though a more complete
description can be found in [3], it is useful to revisit the principal points in view of a HPC implementation.

2.1. The basis set: Daubechies wavelets

There are two fundamental functions in Daubechies family, the scaling function φ(x) and the wavelet ψ(x), see Fig. 1. The
full basis set can be obtained from all translations by a certain grid spacing h of the scaling and wavelet functions centred
at the origin. Both functions are localised, with compact support. All the properties of these functions can be obtained from
the relations

φ(x) = √
2

m∑
j=1−m

h jφ(2x − j) (1)

ψ(x) = √
2

m∑
j=1−m

g jφ(2x − j)

which relate the basis functions on a grid with spacing h and another one with spacing h/2. h j and g j = (−1) jh− j+1 are
the elements of a filter that characterises the wavelet family, and m is the order of the family. From Eq. (1), every scaling
function and wavelet on a coarse grid of spacing h can be expressed as a linear combination of scaling functions at the finer
grid level h/2. For this reason, wavelet functions complete the information which is lacking for refining the resolution level.
In our implementation we use only two resolution levels, namely one level of adaptivity. We can thus classify the coarse
and the fine degrees of freedom by the information expanded by the scaling and the wavelet functions respectively.

For a three-dimensional description, the simplest basis set is obtained by a tensor product of one-dimensional basis
functions. For a two resolution level description, in each grid point the coarse degrees of freedom are expanded by a single
three-dimensional function φ0

i1,i2,i3
(r), while the fine degrees of freedom can be expressed by adding other seven basis

functions, φν
j1, j2, j3

(r), which include tensor products with one-dimensional wavelet functions.
A wavefunction Ψ (r) can thus be expanded in this basis:

Ψ (r) =
∑

i1,i2,i3

c0
i1,i2,i3

φ0
i1,i2,i3

(r) +
∑

j1, j2, j3

7∑
ν=1

cν
j1, j2, j3

φν
j1, j2, j3

(r) (2)

The sum over i1, i2, i3 runs over all the grid points contained in the low resolution region and the sum over j1, j2, j3
over all the points contained in the (generally smaller) high resolution region. Such points belong to a uniform mesh of grid
spacing h. Each wavefunction is then associated to a set of coefficients {cμ

j1, j2, j3
}, μ = 0, . . . ,7. The wavefunctions are stored

in a compressed form where only the non-zero scaling function and wavelets coefficients are stored. The basis set being
orthogonal, several operations such as scalar products among different orbitals and between orbitals and the projectors of
the non-local pseudopotential can directly be done in this compressed form.

The wavefunction can be also expanded in the pure fine scaling function representation (a basis set which contains only
scaling functions φi′ ,i′ ,i′ centred on a finer grid of spacing h′ = h/2):
1 2 3
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Ψ (r) =
∑

i′1,i′2,i′3

si′1,i′2,i′3φi′1,i′2,i′3(r) (3)

The transformation between a mixed coarse scaling function/wavelet representation and a pure fine scaling function repre-
sentation is done by the fast wavelet transformation [8] which is a three-dimensional, separable convolution, that can be
obtained from the filters h j and g j of Eq. (1).

In the following sections we will illustrate the main operations which must be performed in the context of a DFT
calculation.

2.2. The Kohn–Sham formalism

In the KS formulation of DFT, the KS wavefunctions |Ψi〉 are eigenfunctions of the KS hamiltonian, with pseudopotential
V psp:

(
−1

2
∇2 + V KS[ρ] + V psp

)
|Ψi〉 = εi|Ψi〉 (4)

The KS potential V KS[ρ] is a functional the electronic density of the system:

ρ(r) =
Norbitals∑

i=1

n(i)
occ

∣∣Ψi(r)
∣∣2

(5)

where n(i)
occ is the occupation of orbital i.

The KS potential V KS[ρ] = V H [ρ] + V xc[ρ] + V ext contains the Hartree potential V H , solution of the Poisson’s equation
∇2 V H = −4πρ , the exchange-correlation potential V xc and the external ionic potential V ext acting on the electrons. In
BigDFT code the pseudopotential term V psp is of the form of norm-conserving GTH-HGH pseudopotentials [5–7], which
have a local and a non-local term, V psp = V local + V non-local. The KS hamiltonian can then be written as the action of three
operators on the wavefunction:

(
−1

2
∇2 + V L + V non-local

)
|Ψi〉 = εi |Ψi〉 (6)

where V L = V H + V xc + V ext + V local is a real-space based (local) potential, and V nonlocal comes from the pseudopotentials.
As usual in a KS DFT calculation, the application of the hamiltonian is a part of a self-consistent cycle, needed for

minimising the total energy. In addition to the usual orthogonalisation routine, in which scalar products 〈Ψi |Ψ j〉 should be
calculated, another operation which is performed on wavefunctions in BigDFT code is the preconditioning. This is calculated
by solving the Helmholtz equation

(
−1

2
∇2 − εi

)
|g̃i〉 = |gi〉 (7)

where |gi〉 is the gradient of the total energy with respect to the wavefunction |Ψi〉, of energy εi . The preconditioned
gradient |g̃i〉 is found by solving Eq. (7) by a preconditioned conjugate gradient method.

2.3. The kinetic operator

The matrix elements of the kinetic energy operator on the basis functions can be calculated analytically [9,3]. For the
pure fine scaling function representation described in Eq. (3), the result of the application of the kinetic energy operator
on this wavefunction, has the expansion coefficients ŝi′1,i′2,i′3 , which are related to the original coefficients si′1,i′2,i′3 by a
convolution

ŝi′1,i′2,i′3 = 1

2

∑
j′1, j′2, j′3

Ki′1− j′1,i′2− j′2,i′3− j′3 s j′1, j′2, j′3 (8)

where

Ki1,i2,i3 = Ti1δi2δi3 + δi1 Ti2δi3 + δi1δi2 Ti3 (9)

and Ti are the filters of the one-dimensional second derivative in Daubechies scaling functions basis, which can be computed
analytically.
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2.4. Application of the local potential

The potential V L is defined in real space, in particular on the points of the finer grid of spacing h′ . The application of
the local potential in Daubechies basis consists of the basis decomposition of the function product V L(r)Ψ (r). As explained
in [10,3], the simple evaluation of this product in terms of the point values of the basis functions is not precise enough.
A better result may be achieved by performing a transformation to the wavefunction coefficients, which allows to calculate
the values of the wavefunctions on the fine grid, via a smoothed version of the basis functions. This is the so-called “magic
filter” transformation, which can be expressed as follows:

Ψ (ri′1,i′2,i′3) =
∑

j′1, j′2, j′3

ωi′1− j′1ωi′2− j′2ωi′3− j′3 s j′1, j′2, j′3 (10)

and allows to express with better accuracy the potential application. In other terms, the point values of a given wavefunc-
tion |Ψ 〉 are expressed as if Ψ (r) would be the smoothest function which has the same Daubechies expansion coefficients
of |Ψ 〉. This procedure guarantees the highest precision (O(h16) in the potential energy) and can be computationally ex-
pressed by a three-dimensional separable convolution in terms of the filters ωi . After application of the local potential
(pointwise product), a transposed magic filter transformation can be applied to obtain Daubechies expansion coefficients
of V L |Ψ 〉.

2.5. Local density calculation

The density of the electronic system is derived from the square of the point values of the wavefunctions (see Eq. (5)).
As described is Section 2.4, a convenient way to express the point values of the wavefunctions is to apply the magic filter
transformation to the wavefunctions expressed in Daubechies basis. The operations needed for calculating the local density
would then be identical to the operation needed to evaluated the real-point values of the wavefunctions.

2.6. Other operations for hamiltonian application

The local potential V L can be obtained from the local density ρ by solving the Poisson’s equation and by calculating the
exchange-correlation potential V xc[ρ]. These operations are performed via a Poisson solver based on interpolating scaling
functions [11], which is a basis set tightly connected with Daubechies functions, optimal for electrostatic problems, and
which allows for mixed boundary conditions. A description of this Poisson solver can be found in Refs. [12,13].

The complete hamiltonian contains also the non-local part of the pseudopotential which, thanks to the orthogonality of
Daubechies wavelets, can directly be applied in the compressed form. The schematic of all these operations is depicted in
Fig. 2.

2.7. The code structure: preliminary CPU investigation

Applying the hamiltonian operator on the KS wavefunction is only one of the operations which are performed in the
BigDFT code. During the self-consistent cycle, wavefunctions have to be updated and orthogonalised. Since all the basis
functions are orthogonal with each other, the overlap matrices have to be calculated via suitable calls to BLAS routines, and
then processed with LAPACK subprograms.

An optimisation iteration of a KS wavefunction is organised as follows:

(I) local hamiltonian, construction and application,
(II) non-local hamiltonian,

(III) overlap matrix,
(IV) preconditioning,
(V) wavefunction update,

(VI) orthogonalisation (Cholesky factorisation).

The steps I and II have been described in Fig. 2. The preconditioner (step IV) can also be expressed via a kinetic convolution,
as described above. Steps III, V and VI are performed via BLAS/LAPACK calls. In the current hybrid implementation, we can
execute on the GPU the steps I and IV and also all BLAS routines performed in steps III (DGEMM), V and VI (DSYRK,
DTRMM). The step IV is performed via a call to the DPOTRF LAPACK routine.

3. Parallelisation

Two data distribution schemes are used in the parallel version of our program. In the orbital distribution scheme, each
processor works on one or a few orbitals for which it holds all its scaling function and wavelet coefficients. In the coeffi-
cient distribution scheme (see Fig. 3) each processor holds a certain subset of the coefficients of all the orbitals. Most of
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Fig. 2. Schematic of the application of the hamiltonian in the BigDFT formalism. The operator H = − 1
2 ∇2 + V + V nl is applied on the wavefunction |ψ〉. The

local potential V is derived from charge density ρ , which is built from the wavefunctions. In the BigDFT basis, most of the operations which are needed
can be expressed via the action of 3d convolutions.

Fig. 3. Orbital (left) and coefficient (right) distribution schemes.

the operations such as applying the hamiltonian on the orbitals, and the preconditioning is done in the orbital distribution
scheme. This has the advantage that we do not have to parallelise these routines and we therefore achieve almost perfect
parallel speedup. The calculation of the Lagrange multipliers that enforce the orthogonality constraints onto the gradient as
well as the orthogonalisation of the orbitals is done in the coefficient distribution scheme (Fig. 3). For the orthogonalisation
we have to calculate the matrix 〈Ψ j |Ψi〉 and for the Lagrange multipliers the matrix 〈Ψ j |H|Ψi〉. So each matrix element is
a scalar product and each processor is calculating the contribution to this scalar product from the coefficients it is holding.
A global reduction sum is then used to sum the contributions to obtain the correct matrix. Such sums can easily be per-
formed with the very well optimised BLAS-LAPACK libraries. Switch back and forth between the orbital distribution scheme
and the coefficient distribution scheme is done by the MPI global transposition routine MPI_ALLTOALL(V). For parallel com-
puters where the cross sectional bandwidth [14] scales well with the number of processors this global transposition does
not require a lot of CPU time. The most time consuming communication is the global reduction sum required to obtain the
total charge distribution from the partial charge distribution of the individual orbital.
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Table 1
Computational time in seconds for a single minimisation iteration for different runs of a 44-atoms cinchonidine molecule. The values for different cutoff
energies Ec for the plane waves run are shown. The input parameters for the wavelet run are chosen such as to obtain the same absolute precision of the
plane wave calculations. The plane wave runs are performed with the ABINIT code, which uses iterative diagonalisation and with CPMD code [15] in direct
minimisation. These timings are taken for a serial run on a 2.4 GHz AMD Opteron CPU.

Ec (Ha) ABINIT (s) CPMD (s) Abs. precision Wavelets (s)

40 403 173 3.7 × 10−1 30
50 570 207 1.6 × 10−1 45
75 1123 422 2.5 × 10−2 94
90 1659 538 9.3 × 10−3 129

145 4109 2 × 10−4 474

Fig. 4. Efficiency of the parallel implementation of the code for several runs with different number of atoms. The number close to each point indicates the
number of orbitals treated by each processors, in the orbital distribution scheme.

3.1. OpenMP parallelisation

In the parallelisation scheme of the BigDFT code another level of parallelisation was added via OpenMP directive. In par-
ticular, all the convolutions and the linear algebra part can be executed in multi-threaded mode. This add further flexibility
on the parallelisation scheme. At present, several strategies are under analysis for systems with different sizes to understand
the best repartition of the data between nodes such as to minimise the computational overhead.

4. BigDFT performances. Optimisation strategies

We have evaluated the amount of time spent for a given operation on a typical run. To do this we have profiled the
different sections of the BigDFT code for a parallel calculation. In Fig. 10 below we show the percent of time which is
dedicated to any of the above described operation, for runs with different architectures.

4.1. Performance results

We have applied our method on different molecular systems in order to test its performances. As expected, the localisa-
tion of the basis set allows us to reduce considerably the number of degrees of freedom (i.e. the number of basis function
which must be used) to attain a given absolute precision with respect to a plane-wave code. This fact reduces the memory
requirements and the number of floating point operations.

The parallelisation scheme of the code is tested and has given the efficiency detailed in Fig. 4. The overall efficiency is
always higher than 88%, also for large systems with a big number of processors.

It is also interesting to see which is the computational share of the different sections of the code with respect to
the total execution time. Figs. 5 and 10 represent the percentage of the computational time for the different section of
the code. The code operations were regrouped following their nature: the linear algebra operations (scalar products and
orthogonalisation), the convolution-based routines (density construction and local hamiltonian application), and the rest of
the operations (Poisson solver, non-local potential application). All the categories may benefit from MPI parallelisation, and
some of them (linear algebra and convolutions operation) also from the lower level OpenMP parallelisation.
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Fig. 5. Performance of a run of the BigDFT code for a 64 atoms ZnO system. Different acceleration strategies are compared with respect to the time spent
for a sequential pure CPU run. Two different platforms were used for this test; in the first run (top panel), a Nehalem quad-core is related to a Tesla S1070
GPU (CUDA 3.0 driver, with OpenCL support). In the second run (bottom panel), a Nehalem processor is associated to a Fermi S2070 card, with CUDA 3.2.

While for relatively small systems the most time-dominating part of the code is related to the convolutions and Poisson
solver operations, for large systems the most expensive section is by far the calculation of the linear algebra operations.
The operations performed in this section scales cubically with respect to the number of atoms. Apart from the Cholesky
factorisation, which has a scaling of O(n3

orb), where norb is the number of orbitals, the cubic terms are of the form

O
(
n · n2 )

(11)
orb
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where n is the number of degrees of freedom, i.e. the number of scaling function and wavelet expansion coefficients. Both
the calculation of the overlap matrices and the orthogonality transformation of the orbitals lead to this scaling. For a code
based on a systematic basis set, the number of the coefficients n is typically much bigger than the number of orbitals. For
this reason, the optimisation of the operations which depend of the number of coefficients is of primary importance to
reduce the computational overhead.

4.2. Convolutions optimisation

Convolutions are among the basic processing blocks of BigDFT. Special care has to be taken regarding their performances.
The CPU convolutions of BigDFT have thus been thoroughly optimised. The convolutions can be expressed with three nested
loops.

Despite their simplicity, optimising convolutions is a tedious work. The unusual memory access patterns combined with
the transposition of the result defeat the compiler optimiser. For instance, an unoptimised Magic Filter convolution on an
Intel(R) Xeon(R) CPU X5550 @ 2.67 GHz yields 0.55 GFLOPS which barely represents 5% of peak performances (10.7 GFLOPS).

A first optimisation pass has been applied on the Fortran code directly. Unrolling the outer loop allows reuse of the filter
value and index calculations for outer elements. Using standard optimisation, tis code runs at 2.4 GFLOPS, which repre-
sents 22% of peak performances. But this code can also be compiled using automatic vectorisation and reaches 3.4 GFLOPS
corresponding to 32% of peak performances.

Optimisations granted an acceleration of a factor 6. Nonetheless, this result is unsatisfactory regarding peak attainable
performances. The code was thus hand-tuned in order to make better use of the available vector engine. Several dozens of
memory access patterns and vectorising schemes were designed and tested in order to find the most efficient. The resulting
Magic Filter convolution runs at 7.7 GFLOPS yielding 72% of peak performances. This convolution is 13 times faster than the
unoptimised one.

This optimisation process is difficult and tedious, but the regularity in tested patterns may allow automated pattern
generation and algorithm tuning. If this proves successful every convolution of BigDFT will be optimised accordingly in the
future.

5. GPU acceleration

In the past few years, the possibility of using Graphic Processing Units (GPU) for scientific calculations has raised a lot
of interest. A technology initially developed for home PC hardware has rapidly evolved in the direction of programmable
parallel streaming processor. The features of these devices, in particular the very low price performance ratio, together
with the relatively low energy consumption, make them actractive platforms for intensive scientific computations. A lot of
scientific applications have been recently ported on GPU, including for example molecular dynamics [16], quantum Monte-
Carlo [17], Finite Element Methods [18].

The operation of the BigDFT code are well suited for GPU acceleration. Indeed, on one hand the computational nature
of 3D separable convolutions may allow to write efficient routines which may benefit of GPU computational power. On the
other hand, the parallelisation scheme of BigDFT code is optimal in this sense: GPU can be used without affecting the nature
of the communications between the different MPI process.

In the following sections, after a brief overview of a typical GPU architecture, we will discuss the effect of GPU porting
of some code sections on the overall code performances.

5.1. GPU architecture

The GPUs (Graphics Processing Units) were initially devoted to computer games, where a set of processors was used to
render, in parallel, a part of the graphical scene. Today, GPUs are very general since they can render a graphical scene but
also perform general purpose computations (GPGPU: General-Purpose computation on Graphics Processing Units).

The GPUs can be viewed as a co-processor controlled exclusively by the CPU (Fig. 6), where GPU and CPU can run asyn-
chronously that allow concurrent execution and memory transfer. One GPU cannot be used alone and must be connected to
the CPU. For now, the only way to use a GPU is to connect it through the PCI-express bus which has a theoretical bandwidth
of 8 GB/s. Both ATI/AMD [19] and NVIDIA [20] provides GPU designed to be used for GPUGPU. We focus in this section on
NVIDIA GPU.

GPUs are multicore processors, but the contrary to CPU multicore, GPU have very simple processors with limited cache
memory. These characteristics allow to put on one chip thousands of processors in order to get high calculation power.
The most common GPUs used in high performance computing are based on the NVIDIA GT200 architecture consisting of
a global memory (up to 4 GB) associated with a set of multiprocessors containing height processors. The most powerful
NVIDIA GPU based on the GT200 architecture is called C1060 and holds 4 GB of memory and 32 multiprocessors, thus 240
cores (32 × 8). The theoretical peak performance achieved for this GPUs is near to the teraflop for single precision and close
to 80 GFLOP for double precision computations

Recently, NVIDIA has released a new generation of GPU based on the so-called FERMI architecture. The double precision
performance has improved dramatically: now there is only a factor two between double and single precision performance.
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Fig. 6. A GPU associated with a CPU.

The C2070 card is, for now, the fastest GPU based on the FERMI architecture and consists of 6 GB of memory with 512
processors for a theoretical peak performance near to the teraflop for single precision and close to 500 GFLOPS for double
precision computations.

5.2. Programming on GPU: OpenCL language

A major issue which concern GPU programming is that the programming paradigms are sensitive to the different archi-
tectures. In other terms, a code should be reprogrammed to run on a different GPU. Different vendors are about to provide
a programming language suitable to the architecture they can provide in the market, and CUDA programming language of
NVidia [20] is undoubtedly the most advanced in terms of functionalities and maturity.

Our development of GPU acceleration have been done in this language. When the OpenCL specification came out, and we
ported our code in this language. The OpenCL BigDFT code is more optimised and complete than the older CUDA version.
OpenCL is an open standard defined by the Khronos Group [21]. It is aimed at cross-platform parallel computing. Among
the several types of devices defined by the OpenCL standard, the GPU one corresponds to modern Graphical Processing
Units. These accelerators present a high performance over cost ratio, and a similarly high performance over power con-
sumption ration. These accelerators have become increasingly available in computing clusters, and thus are target of choice
for numerical experimenters.

The GPU device in OpenCL is made of several address spaces and a set of multiprocessors. In order to be cross-platform,
OpenCL describes the work to be done in term of work-groups that are composed of work-items, and is aimed at data par-
allel tasks. When executing an OpenCL function (called kernel), work-items execute the same code. The difference between
work-items from different work-groups is the visibility of address spaces. The four address spaces are global, local, private
and constant. Each of these address spaces corresponds to a specific usage and has distinct characteristics. The global address
space is shared among every work-group. This address space is usually large as it corresponds to the device on-board RAM.
Accessing this address space is expensive, as latency is high, and should be done linearly rather than randomly as contiguous
accesses can be coalesced into a single access. Synchronisation using global memory can be done through the use of atomic
operations but is expansive and should be avoided. The local address space is shared among all work-items of a work group.
Local memory is very fast (compared to global), and is organised in banks. Read an writes to local memory are simultaneous
as long as they are done in different banks. Read are also simultaneous if work-items read from the same address. Multi-
processors have a reduced amount of shared memory, so it should be used wisely. Access to private memory is restricted
to one work-item, and is used for local variables and parameters. Constant memory is visible by all work-groups, and is
optimised for simultaneous reading from all work-items. Content of constant memory cannot be modified past initialisation.

5.3. Evaluation of benefits: performance with complex codes

We have seen that the operations which have to be explicitly ported on GPUs is a set of separable three-dimensional
convolutions. From the GPU parallelism point of view, there is a set of different independent one-dimensional convolutions
to be computed. Details of the implementation can be found in [3].

For a code with the complexity of BigDFT, the evaluation of the benefits of using a GPU-accelerated code must be
performed at three different levels:

• Firstly, one has to evaluate the effective speedup provided by the GPU kernels with respect to the corresponding CPU
routines which perform the same operations. This is the “bare” speedup, which of course, for a given implementation,
depends of the computational power which the device can provide us. For the BigDFT code, these results are obtained
by analysing the performances of the GPU kernels which performs the convolutions and the linear algebra (BLAS)
operations, as provided by the CUBLAS library. Such results can be found in Fig. 8.
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Fig. 7. Schematic of the organisation of a hybrid supercomputer: GPU act as a coprocessor. The access to the network of GPU should be mediated by the
CPU.

• At the second level, the “complete” speedup has to be evaluated; the performances of the whole hybrid CPU/GPU code
should be analysed with respect to the pure CPU executions. Clearly, this result depends of the actual importance of the
ported routines in the context of the whole code (i.e. following the Amdahl’s law). This is the first reliable result of the
actual performance enhancements of the GPU porting of the code. For a hybrid code which originates from a monocore
CPU program, this is the last level of evaluation.

• For a parallel code, there is still another step which has to be evaluated. This is the behaviour of the hybrid code in a
parallel (or massively parallel) environment. Indeed, for parallel runs the picture is complicated by two things. The first
one is the management of the extra level of communication which is introduced by the PCI-express bus, which may
interact negatively with the underlying code communication scheduling (MPI or OpenMP par example), see Fig. 7. The
second is the behaviour of the code for a number of GPU devices which is lower than the number of CPU processes
which are running. In this case the GPU resource is not homogeneously distributed and the management of this fact
adds an extra level of complexity. The evaluation of the code at this stage contributes at the “user level” speedup, which
is the actual time-to-solution speedup.

5.4. GPU convolution routines and CUBLAS linear algebra

We have evaluated the performances of the GPU port of the 1D convolutions needed for the wavelet implementation of
the local hamiltonian operators, and their three-dimensional counterpart. For these evaluations, we used a computer with
an Intel Xeon Processor X5472 (3 GHz) and a NVidia Tesla S1070 card. The CPU version of BigDFT is deeply optimised with
optimal loop unrolling and compiler options. The GPU code is compiled with the Intel Fortran Compiler (10.1.011) and the
most aggressive compiler options (-O2 -xT). With these options the magic filter convolutions run at about 3.4 GFLOPS,
similarly as we have shown above. All benchmarks are performed with double precision floating point numbers.

The GPU versions of the one-dimensional convolutions are about one order of magnitude faster than their CPU counter-
parts. We can then achieve an effective performance rate of the GPU convolutions of about 40 GFLOPs, by also considering
the data transfers in the card. We are not close to peak performance since, on GPU, a considerable fraction of time is still
spent in data transfers rather than in calculations. This appears since data should be transposed between input and out-
put array, and the arithmetics needed to perform convolutions is not heavy enough to hide the latency of all the memory
transfers. However, we will later show that these results are really satisfying for our purposes.

The performance graphs for the above mentioned convolutions, together with the compression–decompression operator,
are indicated in Fig. 8 as a function of the size of the corresponding three-dimensional array.

Also the linear algebra operation can be executed on the card thanks to the CUBLAS routines. In Fig. 8 we present the
speedups we obtain for double precision calls to CUBLAS routines for a typical wavefunction size of a BigDFT run as a
function of the number of orbitals. These results take into account the amount of time needed for transfer the data of the
card.

5.5. Three-dimensional operators

To build a three-dimensional operation one must chain three times the corresponding one-dimensional GPU kernels.
We obtain in this way the three-dimensional wavelet transformations as well as the kinetic operator and the magic filter
transformation (direct and transposed). The multiplication with the potential and the calculation of the square of the wave-
function are performed via the application of some special GPU kernels, based on the same guidelines described earlier.
The GPU speedup of the local density construction as well as the local hamiltonian application and of the preconditioning
operation is represented in Fig. 9 as a function of the compressed wavefunction size.

From these tests, we can see that both GPU-ported sections are order of magnitude (or more) faster than the corre-
sponding CPU counterpart. We will now discuss the performance of the complete code, BigDFT.
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Fig. 8. Left panel: Double precision speedup for the GPU version of the fundamental operations on the wavefunctions as a function of the single wavefunc-
tion size. Right panel: Double precision speedup for the CUBLAS operations used in the code for a typical wavefunction size (300 KB) as a function of the
number of orbitals.

Fig. 9. Double precision speedup for the GPU version of the three-dimensional operators used in the BigDFT code as a function of the single wavefunction
size.

5.6. Performance evaluation of hybrid code

As a test system, we used the ZnO crystal, which has a wurtzite bulk-like structure. Such system has a relatively high
density of valence electrons so that the number of orbitals is rather large even for a moderate number of atoms.

We performed two kinds of tests. The first is related to the behaviour of the GPU-accelerated code on a single machine.
Results can be found in Fig. 5. It can be seen that GPU acceleration contribute to a significant reduction of the overhead of
linear algebra operations and convolutions. Both CUDA and the mode recent OpenCL implementation of these convolutions
were tested. By combining these accelerations with MPI parallelisation on the machine, we may achieve a speedup up to
one order of magnitude faster than the monocore CPU run.

The second test compares the behaviour of the Hybrid code in a multinode machine. To check the behaviour of the
code for systems of increasing size, we performed a set of calculations for different supercells with increasing number of
processors, such that the number of orbital per MPI process is kept constant. We performed a comparison for the same runs
in which all the CPU cores have a GPU associated. The hybrid code is around 5.5 times faster than its pure CPU counterpart,
regardless of the system size. We have also used the hybrid section of the CCRT Titane machine, with Intel X5570 (Nehalem)
CPUs and Tesla S1070 cards. In this test we kept fixed the size of the system and increased the number of MPI process such
as to decrease the number of orbitals per core. We then controlled the speedup of each run with the hybrid code. The
parallel efficiency of the code is not particularly affected by the presence of the GPU. For this machine, due to the better
CPU technology, the time-to-solution speedup is around 3.
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Table 2
Energy consumed (in kJ) for different BigDFT runs.

GPU CPU TOT

8 MPIs, 0 GPU (kJ) 60 59 119
8 MPIs, 1 GPUs (kJ) 38 35 73
8 MPIs, 2 GPUs (kJ) 28 19 47
16 MPIs, 4 GPUs (kJ) 28 23 52

Results of the two test are depicted in Fig. 10. Due to the fact that there is no hot-spot operation, the actual time-to-
solution speedup of the complete code is influenced by the features of the code. In other words, keeping Amdhal’s law in
mind, a performance analysis is of great importance to forecast the final benefit of the accelerated parts.

These results are interesting and sounds very promising for a number of reasons. First of all, as already discussed, not all
the routines of the code were ported on GPU. We focus our efforts to the operators which can be written via a convolution.
Also the application of the non-local part of the hamiltonian can be performed on the GPU, and we are planning to do this
in further developments.

Also the linear algebra operations can be further optimised. For the moment, only the calls to the BLAS routines were
accelerated on the GPU, via suitable calls to the corresponding CUBLAS routines. Also the LAPACK routines, which are
needed to perform the orthogonalisation process, can be ported on GPU, with a considerable gain. Indeed the linear algebra
operations represent the most expensive part of the code for very large systems (see [3]). An optimisation of this section is
then crucial for future improvements of the hybrid code.

5.7. Energy consumption

The emerging concept of “Green computing” deals with the energy consumption of modern supercomputers. To this aim,
a particularly interesting quantity is the energy per flops, which should state how energetically efficient architectures are.
the advent of GPU is trying to open pathways in this directions. However, such kind of quantities are always provided by
using the peak performances declared by the vendors. As a matter of fact, since GPUs are specialised architectures, for some
applications it is difficult to fully exploit the power. In other terms, in some situations it may be more difficult to reach
performances close to peak for GPU than for CPUs. In order to provide results for a production application, we have tried to
measure the energy consumption of some hybrid CPU GPU run with the BigDFT code.

The hardware on which our energy consumption experiments are done consists of 2 nodes with 16 GB of memory and
two processors Intel Xeon L5420 (4 cores, Harpertown technology) cadenced at 2.5 GHz. On this machine, we have one
NVIDIA C1070 rack that holds 4 GPUs with 4 GB of memory. Each node is connected to 2 GPUs NVIDIA held by our NVIDIA
C1070, so, we can use only 2 GPUs by node. We have a full control of this machine and we can separately measure the
power consumption of the GPUs and nodes. To measure the power consumption, we use a device named “APC Metered
PDU” [22] designed to provide in real time the amount of electric current i(t), in Ampere (A) consumed. The device is
connected to both nodes and GPUs. The value measured for the nodes take into account all the devices held by the node
(CPU cores, network card, hard disks, etc.).

For a BigDFT run time from tbeg to tend , the total energy E consumed by the run in Joule (J) is

E = U cos(φ)

tend∫
tbeg

i(t)dt (12)

where U = 230 V and cos(φ) = 0.98.
Table 2 shows that when an application use the GPUs with efficiency (BigDFT in our example), GPUs can help to reduce

energy consumption (59 kJ without GPU and 47 kJ with 2 GPUs). When 2 nodes and 4 GPUs are used, the total simulation
time decrease, but the overhead of the additional CPUs and GPUs increase the total energy consumption.

The GPU idle consumption must also be taken into consideration. It is obvious but if the GPUs are not used, they
consume a power between 300 W and 400 W (depending the number of cards activated) for nothing. So, on a machine
where the GPUs cannot be disconnected, it is very important to use them with efficiency.

5.8. The time-to-solution problem

Another point which is of interest in the evaluation of the performances is the behaviour of the GPU acceleration with
respect to the OpenMP parallelisation which is present in the BigDFT code. To give an example of that, we have performed
ab initio molecular dynamic (AIMD) simulation of a 32 water molecules system with combined MPI–OpenMP parallelisa-
tion.
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Fig. 10. Relative speedup of the hybrid DFT code wrt the equivalent pure CPU run. In the top panel, different runs for systems of increasing size have been
done on an Intel X5472 3 GHz (Harpertown) machine. In the bottom panel, a given system have been tested with increasing number of processors on an
Intel X5570 2.93 GHz (Nehalem) machine. The scaling efficiency of the calculation is also indicated. In the right side of each panel, the same calculation
have been done by accelerating the code via one Tesla S1070 card per CPU core used, for both architectures. The speedup is around a value of six for a
Harpertown, and around 3.5 for a Nehalem based calculation.
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Table 3
Timings on Rosa (Cray XT) for one wavefunction optimisation step for a system of 32 water molecules with periodic boundary conditions. The number of
cores is written as a product of the number of MPI processes and the number of OpenMP threads.

Number of cores Serial 32 × 1 64 × 1 128 × 1 32 × 6 = 192 128 × 6 = 768 128 MPI + 128 GPU

SCF iteration (s) 170 7.2 3.8 2.0 1.5 0.44 0.30
Force evaluation (s) 2210 93.6 49.4 26.0 19.5 5.72 3.92
AIMD steps/day 40 923 1749 3323 4430 15 104 22 040

6. Conclusions and future directions

The problems that BigDFT aims to tackle are computationally intensive. The use of hybrid architectures is an efficient
way to harness high amounts of computing power. Nonetheless, the scalability of the program is only one aspect of a
high performance distributed code. The basic building blocks that compose the program should be thoroughly optimised.
In this paper, we have identified several optimisations opportunities (communications, CPU convolutions, CPU/GPU overlap,
communication/computation overlap, etc.) that can bring important performance improvements. There are certainly many
more opportunities left to discover. But this process of optimisation is tedious and dependent on the target architecture. Au-
tomation of the optimising process for certain kind of operations (convolutions for instance) should be considered. Previous
approach of this kind have proven successful [23,24], and their viability should be evaluated in BigDFT’s context.

The GPU implementation of the code we propose fully respects these properties. We use double precision calculations,
and we may achieve considerable speedup for the converted routines (up to a factor of 20 for some operations). Our
developments are fully compatible with the existing parallelisation of the code, and the communication between CPU and
GPU does not affect the efficiency of the existing implementation.

At present, developments in several directions are under way to further increase the efficiency of the usage of GPU in
the context of BigDFT. Different developments directions are active at present:

• With the advent of Nehalem processor, we have seen that processors have had a big increase in performances in last
years, which have not been followed by similar increase in network performances (especially latency). So, even tough
the parallel efficiency is lower that in the past, the overall walltime has decreased significantly, which is not bad. For
last generation architectures (and compact systems which have a lower components per orbital ratio) it is reasonable to
expect an efficiency around 70%, instead of the 85–90% value we had until Harpertown architectures. We are at present
implementing a new communication scheme of BigDFT which will use non-blocking communication that may allow to
detect node failures and overlap communication and calculations at the same time. We believe that this new method
will be competitive for architectures which have a large spread between network and CPU performances.

• The strategy of the repartition of the GPU resource should be reworked. In particular, the possibility of the concur-
rent kernel execution should be allowed whenever possible, and the strategies of GPU repartition should be adapted
accordingly.

The hybrid BigDFT code, like its pure CPU counterpart, is available under GNU-GPL license and can be downloaded form the
site in Ref. [3].
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